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Higgs inflation is attractive because it identifies inflaton with the electroweak Higgs boson. In this work,
we construct a new class of supersymmetric Higgs inflationary models in no-scale supergravity with an
SU(5) grand unified theory (GUT) group. Extending the no-scale Kähler potential and SU(5) GUT
superpotential, we derive a generic potential for Higgs inflation that includes the quadratic monomial
potential and a Starobinsky-type potential as special limits. This type of models can accommodate a wide
range of the tensor-to-scalar ratio r ¼ Oð10−3 − 10−1Þ as well as a scalar spectral index ns ∼ 0.96.
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I. INTRODUCTION

Cosmological inflation [1] resolves the conceptual
dilemma of the standard big-bang cosmology such as
the horizon and flatness problems, and predicts that
large-scale structures in the Universe originated from a
nearly scale-invariant spectrum of density perturbations,
which is well consistent with cosmological observations
[2,3]. Theories of cosmological inflation postulate a scalar
field, the inflaton, whose field energy drove an early epoch
of near-exponential expansion. Before the LHC Higgs
discovery, it was very tempting to identify this inflaton
as the Higgs boson of the standard model (SM) [4], a very
economical and predictive scenario. However, the recent
LHC and Tevatron measurements of the Higgs and top
quark masses indicate that the SM Higgs potential turns
negative at ∼1011 GeV [5], which is lower than the typical
cosmic inflation scale ∼1016 GeV. This means that new
physics is indispensable for our Universe to reach a stable
electroweak vacuum after inflation.
On the other hand, the SM suffers from the naturalness

problem of stabilizing the electroweak scale against radiative
corrections to Higgs mass, for which one possible solution is
low-energy supersymmetry (SUSY). Remarkably, it was
shown [6] that the instability of the SM Higgs potential can
be cured without severe fine-tuning by adding bosonic and
fermionic degrees of freedom, ending up with a theory much
like SUSY. In the simplest example along this line, it was
also shown [7] that adding a new boson-fermion pair does
lead to successful Higgs inflation with a wider range of the

tensor-to-scalar ratio than that of the conventional Higgs
inflation.
Combining Higgs inflation with SUSY is a challenging

task. For instance, it was found in [8] that building Higgs
inflation in the minimal supersymmetric standard model
(MSSM) with a minimal Kähler potential is not viable.
On the other hand, in the next-to-minimal supersymmetric
standard model (NMSSM) one encounters a tachyonic
instability along the direction of the additional singlet scalar
[9], though this can be cured by adding higher-order terms
to the Kähler potential [10]. Models of this kind were built
in the minimal SU(5) grand unified theory (GUT) with a
(strongly) modified no-scale Kähler potential and invoking
a large nonminimal Higgs-curvature coupling, which gave
a small tensor-to-scalar ratio r [11]. Another type of GUT
inflation model is F-term hybrid inflation, which generally
leads to very small r as well [12], though an enhanced value
of r could be achieved with a particular choice of Kähler
potential [13]. Finally, it was shown in [14] that no-scale
supergravity naturally accommodates models of inflation
that yield predictions similar to the Starobinsky model [15]
and the original model of Higgs inflation [4], as well as
allowing more general inflationary potentials that could
yield larger values of r [16].
In this work, we construct a new class of Higgs inflation

models, using the framework of no-scale supergravity
(SUGRA) [17] and embedded in the supersymmetric
SU(5) GUT. There are many motivations for this con-
struction, of which we mention three. First, the inflation
scale may well be close to the GUT scale, according to
cosmological microwave background (CMB) measure-
ments [2,3], so it is very attractive to embed Higgs inflation
into a GUT. Second, no-scale SUGRA emerges from
simple compactifications of string theory [18]. Third, the
flat directions in no-scale SUGRA are advantageous for
cosmological applications [19].
For the new type of supersymmetric Higgs inflation in the

no-scale SU(5) GUT framework, we adopt the minimal field
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content, with simple extensions of the no-scale Kähler
potential and minimal SU(5) GUT superpotential. We derive
a generic inflationary potential that interpolates between a
quadratic monomial potential and a Starobinsky-type poten-
tial. The corresponding predictions of the tensor-to-scalar
ratio r and spectral index ns can accommodate the Planck
and BICEP2 observations [2,3]. A notable feature of this
no-scale SUSY GUT Higgs inflation scenario is that it does
not invoke any nonminimal coupling between the Higgs
fields and the Ricci curvature; i.e., all Higgs bosons couple
minimally to gravity via the energy-momentum tensor.
This is an essential difference between our construction
and the conventional SM Higgs inflation [4] as well as its
previous SUSYand GUTextensions [8–11]. Finally, we will
further analyze the stability of inflation trajectories in all
directions of field space and demonstrate the consistency.

II. NEW HIGGS INFLATION WITH
NO-SCALE SUGRA

Our Higgs inflation with no-scale SUGRA and SU(5)
GUT contains the following chiral fields as ingredients: a
singlet modulus field T that may arise from string com-
pactification, a GUT Higgs multiplet Σ in the adjoint
representation of SU(5), and a pair of Higgs multiplets
H1 and H2 belonging to 5 and 5̄ representations of SU(5),
respectively. We postulate the following extended no-scale
Kähler potential K, which is a Hermitian function of these
superfields,

K ¼ −3 log
�
T þ T� −

1

3
trðΣ†ΣÞ

−
1

3
ðjH1j2 þ jH2j2 − ζðH1H2 þ H:c:ÞÞ

�
; ð1Þ

where we set the reduced Planck mass MPl ¼ 1 as a mass
unit, and ζ is a dimensionless parameter. The theory obeys a
simple Z2 symmetry, under which Σ is odd and all other
fields are even. We also postulate the following holomor-
phic superpotential W,

W ¼ WΣ þWH; ð2Þ

where the Σ part

WΣ ¼ −
1

2
mtrðΣ2Þ þ 1

4
~λtrðΣ4Þ ð3Þ

ensures the correct GUT-breaking vacuum for the GUT
Higgs Σ, and the H part

WH ¼ μH1H2 − ~β1H1Σ2H2 þ β2ðH1H2Þ2 ð4Þ

generates desired triplet-doublet splitting for the funda-
mental Higgs multiplets H1 and H2. Due to the Z2

symmetry, the trilinear terms trðΣ3Þ and H1ΣH2 are absent
in WΣ and WH, respectively.
When considering spontaneous breaking of the GUT

gauge group SU(5) down to the SM gauge group
SUð3Þ ⊗ SUð2Þ ⊗ Uð1Þ, the adjoint Higgs field Σ contains
the relevant component, Σ ⊃

ffiffiffiffiffiffiffiffiffiffi
2=15

p
diagð1; 1; 1;−3=2;

−3=2Þχ, where χ is a singlet chiral multiplet, in terms of
which the superpotential WΣ reduces to

WΣ ¼ −
1

2
mχ2 þ 7

120
~λχ4: ð5Þ

The χ field should have its vacuum expectation value
(VEV) take a value hχi≡ u≃ 2 × 1016 GeV, as deter-
mined by the SUSY GUT gauge unification. The stationary
condition ∂W=∂χ ¼ 0 yields m ¼ λu2, with λ≡ 7

30
~λ.

In the presence of the GUT-breaking VEV u, the Higgs
multiplets H1 and H2 split into H1 ¼ ðHc;HuÞT and
H2 ¼ ðH̄c; HdÞT as usual, where ðHc; H̄cÞ are color SU(3)
triplets and ðHu;HdÞ are weak SU(2) doublets. Thus, theH
part of the superpotential becomes

WH ¼ Hc

�
μ −

4

9
β1χ

2

�
H̄c þHuðμ − β1χ

2ÞHd

þ β2ðHcH̄c þHuHdÞ2; ð6Þ

where β1 ≡ 3
10
~β1. In order for the two Higgs doublets

ðHu;HdÞ to remain light (at the weak scale) while the
colored Higgs triplets ðHc; H̄cÞ become heavy, we set
μ≃ β1u2. The color-triplet Higgs bosons then acquire a
large mass Mc ¼ 5

9
β1u2 at tree level. We parametrize the

Higgs doublets ðHu;HdÞ as Hu ¼ ðHþ
u ; H0

uÞT and Hd ¼
ðH0

d; H
−
d ÞT , and identify a linear combination ofH0

u andH0
d

as the inflaton. The colored components ðHc; H̄cÞ and the
electrically charged components ðHþ

u ; H−
d Þ do not play

important roles during inflation, as we will discuss
in Sec. IV.
Examples of modulus stabilization were studied in [14],

and we assume here that nonperturbative ultraviolet
dynamics fixes the VEV of the modulus field to be
T ¼ T� ¼ 1=2 [20]. After these simplifications, the
Kähler potential and the superpotential become

K ¼ −3 log
�
1 −

1

3
ðjχj2 þ jH0

uj2 þ jH0
dj2

− ζðH0
uH0

d þ H:c:ÞÞ
�
; ð7aÞ

W ¼ β1H0
uðu2 − χ2ÞH0

d þ β2ðH0
uH0

dÞ2

−
1

2
λu2χ2 þ 1

4
λχ4: ð7bÞ
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This is the basis for our following analysis of Higgs
inflation in the no-scale SUSY SU(5) GUT.

III. HIGGS INFLATION POTENTIAL AND
OBSERVABLES

The F-term scalar potential V takes the following
standard form,

V ¼ eG
�
Kij�

∂G
∂ϕi

∂G
∂ϕ�

j
− 3

�
; ð8Þ

where G ¼ K þ logW þ logW�, Kij� is the inverse of
Kähler metric Kij� ≡ ∂2K=∂ϕi∂ϕ�

j , and ϕi denotes generic
scalar fields. We parametrize the neutral scalars explicitly
as H0

u ¼ 1
2
ðX þ YÞeiθ and H0

d ¼ 1
2
ðX − YÞeiφ, which give

X ¼ jH0
uj þ jH0

dj; Y ¼ jH0
uj − jH0

dj: ð9Þ

The D-flatness condition sets Y ¼ 0, and we further take
θ ¼ φ ¼ 0 in the following (the validity of this choice will
be examined in Sec. IV). Thus, we can identify the Higgs
combination, X ¼ jH0

uj þ jH0
dj, as the inflaton. Moreover,

during inflation the minimum of the χ field for a given X is
always at χ ¼ 0, as will be examined in Sec. IV, so we also
set χ ¼ 0 from now on. Thus, the scalar potential V
becomes a function of X alone, and takes the form

VðXÞ ¼
β21u

4ð1 − β2
2β1u2

X2Þ2X2

2ð1 − 1−ζ
6
X2Þ2 ; ð10Þ

which is the basis for our subsequent analysis.
The potential (10) displays a singularity at X2 ¼ 6=

ð1 − ζÞ. The presence of such a singularity is ubiquitous
in no-scale supergravity due to the form of the Kähler
potential. It would lead to an exponentially steep potential
in terms of a canonically normalized scalar field, violating
the slow-roll condition. To cure this singularity, we impose
the relation β2 ¼ 1

3
β1ð1 − ζÞu2, in which case the scalar

potential simplifies to a quadratic monomial,

VðXÞ ¼ 1

2
β21u

4X2: ð11Þ

This does not lead to a quadratic chaotic inflation model,
however, because the inflaton field X is not canonically
normalized, and its kinetic term takes the following form

LKðXÞ ¼
1 − ζð1−ζÞ

6
X2

2ð1 − 1−ζ
6
X2Þ2 ð∂μXÞ2: ð12Þ

Thus, we derive the canonically normalized inflaton field h
as a function of X,

h ¼
ffiffiffiffi
6

p
arctanh

ð1 − ζÞXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð1 − 1

6
ζð1 − ζÞX2Þ

q

−

ffiffiffiffiffiffiffiffiffiffiffi
6ζ

1 − ζ

s
arcsin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζð1 − ζÞ

6

r
X

�
: ð13Þ

From Eq. (13), we recognize two interesting limiting cases,
ζ ¼ 0 and ζ ¼ 1, which can be worked out analytically.
When ζ ¼ 0, we have the simplified relation XðhÞ ¼ffiffiffi
6

p
tanhðh= ffiffiffi

6
p Þ, and the potential VðhÞ becomes

VðhÞ ¼ 3β21u
4tanh2

hffiffiffi
6

p ; ð14Þ

which is exponentially flat at large h, and analogous to the
Starobinsky model [15]. In this case, we can derive the
following predictions for the primary inflationary observ-
ables, ðns; rÞ≃ ð0.967; 0.003Þ for 60 e-foldings, which are
similar to the predictions of the Starobinsky model [15] and
conventional Higgs inflation [4], as expected.
On the other hand, when ζ ¼ 1, the X field is already

normalized canonically, XðhÞ ¼ h, and we recover a
quadratic monomial potential. This limit therefore yields
the same predictions as quadratic chaotic inflation, namely,
ðns; rÞ≃ ð0.967; 0.130Þ for 60 e-foldings.
When ζ varies between 0 and 1, we obtain a class of

inflation potentials that extrapolate between the quadratic
monomial and Starobinsky-type potentials. The predictions
for ðns; rÞ can be worked out numerically. We plot them in
Fig. 1(a), where the green (yellow) dots and their attached
curves represent predictions with 50(60) e-foldings. In this
plot, the round (square) dots correspond to ζ ¼ 0ðζ ¼ 1Þ.
The horizontal strips attached to the lower round dots
correspond to the effect of varying ζ ∈ ½0; 0.1� (from right
to left), while the upper strips attached to the square dots
depict the effect of varying ζ ∈ ½0.9; 1� (from left to right). For
comparison, we have depicted the recent observational limits
[2,3] as the shaded red andblue (pink and light-blue) contours
at the 68% (95%) confidence level. We see that our pre-
dictions for ðns; rÞ are well compatible with the current data.
For Fig. 1(a), we imposed the constraint β2 ¼

1
3
β1ð1 − ζÞu2, and it is interesting to check what happens

when β2 deviates slightly from this relation. For this
purpose, our starting point will be (10) and (13). We find
that shifting β2 according to β2 ¼ 1

3
β1ð1 − ζ þ δÞu2, with δ

varying over the range �ð1.2 × 10−3Þ, will make the
predicted ðns; rÞ values vary as shown by the green and
yellow strips (attached to the corresponding dots) in
Fig. 1(b). Here the three pairs of round dots from top to
bottom correspond to ζ ¼ ð1; 0.98; 0.95Þ, while the green
(yellow) dots and strips represent the predictions with 50
(60) e-foldings. Figure 1(b) shows again that the predicted
values of ðns; rÞ agree well with the current experimental
limits [2,3]. Together with the minimal case (11) presented
in Fig. 1(a), Fig. 1(b) shows that our model predicts the
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range of the tensor-to-scalar ratio r to be in the range
Oð10−3–10−1Þ, without contrived theoretical inputs [21].
The coefficient β1 in the potential (11) is fixed by the

amplitude of scalar perturbations, ðV=ϵÞ1=4 ≃ 0.027, as
measured by the Planck satellite [2]. This yields β1 ≃
0.06 with little variation when ζ changes between 0 and 1.
Taking the GUT-breaking scale u≃ 0.01 in units of the
reduced Planck massMPl ≃ 2.44 × 1018 GeV, we estimate
the mass of colored-triplet Higgs bosons to be Mc≃
0.8 × 1013 GeV. There are arguments [23] from proton
stability and gauge coupling unification that prefer Mc to
be much larger than 1013 GeV [24]. However, the proton
stability argument relies on particular hypotheses about the
mechanism for generating the light fermion masses and
mixing in the SU(5) GUT. This is a known problem of the
model and can be evaded in various ways (which are beyond
the scope of this short paper). Also, the unification argument
depends on oversimplified assumptions about physics
around and beyond the GUT scale that may be relaxed
without affecting our main predictions. For example, the
nonminimal contributions to the gauge kinetic function in
supergravity will modify the gauge unification condition.
Finally, we note that the β2-term in the superpotential (6)

induces a new dimension-4 term (involving the light Higgs
doublets Hu and Hd) in the Higgs potential. However, the
coefficient of this term is only of the order of μ̄β2 ≃ 1

3
β1ð1 −

ζÞu2μ̄ in Planck-mass units [or μ̄β2 ≃ 0.02ð1 − ζÞu2μ̄=
M3

Pl ⋘ 1 with the Planck-mass dependence exhibited],
where μ̄ ¼ μ − β1u2 ¼ OðTeVÞ is the residual μ-term at

the electroweak scale. Hence, this new term is negligible for
low-energy SUSY phenomenology. Other induced higher-
dimensional operators in the Higgs potential are even more
suppressed by powers of 1=MPl.

IV. STABILITY OF THE INFLATIONARY
TRAJECTORY

In this section, we study the stability of inflationary
trajectory in our Higgs inflation scenario. Checking sta-
bility is a necessary and nontrivial task since some previous
proposals for SUSY Higgs inflation suffer from tachyonic
instabilities, as mentioned in Sec. I. For this purpose, we
compute the effective mass matrix Mij ≡ 1

2
ð∂2V=∂ϕi∂ϕjÞ

in all scalar directions ϕi along the inflationary trajectory
for X <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6=ð1 − ζÞp

(with ζ < 1), and all other fields
ϕj ¼ 0. The mass matrix is block diagonal, and the analysis
can be subdivided into four independent sectors, namely,
the colored Higgs fields ðHc; H̄cÞ, the charged Higgs fields
ðH�

u ; H�
d Þ, the phases of neutral Higgs fields ðθ;φÞ, and

the two components ðs; tÞ of the SM gauge-singlet scalar
χ ¼ sþ it.
In the case of the color-triplet Higgs fields ðHc; H̄cÞ,

we consider the first color component of each field
for simplicity, which we parametrize as hceiθc and h̄ceiθ̄c .
Steepness along the hc − h̄c direction is guaranteed by the
D-term in the effective potential, and the effective mass
along the hc þ h̄c direction is M2

cc ¼ 2β21u
4 [25]. We have
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FIG. 1 (color online). The predictions of our no-scale SUSY GUT model of Higgs inflation for the spectral index ns and tensor-to-
scalar ratio r. The green (yellow) dots and curves represent predictions with 50(60) e-foldings. In plot (a), the condition
β2 ¼ 1

3
β1ð1 − ζÞu2 is imposed and the round (square) dots correspond to ζ ¼ 0ðζ ¼ 1Þ. The horizontal strips attached to the lower

round dots correspond to the effect of varying ζ ∈ ½0; 0.1� (from right to left), while the upper strips attached to the square dots depict the
effect of varying ζ ∈ ½0.9; 1� (from left to right). In plot (b), the three pairs of dots from top to bottom correspond to ζ ¼ ð1; 0.98; 0.95Þ
and δ ¼ 0. The strip attached to each round dot describes the effect of varying δ over the range �ð1.2 × 10−3Þ, via the shifted relation
β2 ¼ 1

3
β1ð1 − ζ þ δÞu2. In each plot, the shaded red and blue (pink and light-blue) contours represent the observational limits at the

68% (95%) confidence level as given by Ref. [3].
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also checked that there are no instabilities in the ðθc; θ̄cÞ
directions. Therefore, there is no instability in this sector.
The check for the charged Higgs sector is similar.
Regarding the angular parts of neutral Higgs bosons

ðθ;φÞ, we find the following elements in the 2 × 2 effective
mass matrix M2,

M2
θθ¼M2

φφ¼
β21u

4X4

ð1−1−ζ
6
X2Þ4

�
1

3
þ8ζ2þ17ζ−7

144
X2

þ5ζ3−6ζþ1

432
X4þð1−ζÞ2ð17ζ2þ4ζ−3Þ

20736
X6

�
;

ð15aÞ

M2
θφ¼M2

φθ¼
β21u

4X4

ð1−1−ζ
6
X2Þ4

�
3ζþ1

12
þ14ζ2þ5ζ−1

144
X2

þ 13ζ3−9ζ2−3ζ−1

864
X4þζð10ζ−1Þðζ−1Þ2

10368
X6

�
:

ð15bÞ
The two eigenvalues of M2 are

M2
1 ¼

β21u
4X4

ð1 − 1−χ
6
X2Þ4

�
3ζ þ 5

12
þ 11ζ2 þ 11ζ − 4

72
X2

þ 23ζ3 − 9ζ2 − 15ζ þ 1

864
X4

þ ð1 − ζÞ2ð37ζ2 þ 2ζ − 3Þ
20736

X6

�
; ð16aÞ

M2
2 ¼

β21u
4X4

ð1 − 1−ζ
6
X2Þ4

�
1 − ζ

4
−
ð1 − ζÞ2

24
X2

þ ð1 − ζÞ3
288

X4 −
ð1 − ζÞ4
6912

X6

�
; ð16bÞ

which are both positive for ζ ∈ ½0; 1� and X <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6=ð1 − ζÞp

,
during the inflationary epoch. Hence, the effective mass
matrixM2 is positive definite along the inflation trajectory.
Finally, we compute the effective mass matrix for the real

and imaginary parts of the singlet field χ, up to corrections
of Oðu2Þ,

M2
ss ¼ M2

tt ¼
β21X

4

4ð1 − 1−ζ
6
X2Þ2 ;

M2
st ¼ 0: ð17Þ

This is always positive definite, so the ðs; tÞ directions are
also stable. In summary, we have systematically verified
that the inflationary trajectory is stable in all scalar
directions for typical parameter choices.

V. CONCLUSIONS

Higgs inflation provides a highly economical and
predictive approach for the cosmic inflationary paradigm.
In this work, we have proposed a new class of Higgs
inflation models in the framework of an SU(5) GUT
embedded in no-scale supergravity. The structure of this
type of models is fairly simple, since it includes a near-
minimal no-scale Kähler potential and simple superpo-
tential with terms up to fourth order in the Higgs chiral
multiplets. The resultant inflaton potential has a variable
form, capable of interpolating between quadratic mono-
mial and Starobinsky-type potentials. These models
can therefore accommodate a wide range of values of
the tensor-to-scalar ratio r, while predicting values of
the scalar spectral index ns that are compatible with the
present experimental limits. Future CMB observations
will soon measure or constrain more precisely the possible
value of r. These will further test the predictions of this
new class of Higgs inflation models with no-scale
SUSY GUT.
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