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Chapter 1: Introduction

Just over a century ago, Ernest Rutherford and Niels Bohr developed a revo-

lutionary model of the atom: a nucleus containing positively charged protons and

electrically neutral neutrons, surrounded by negatively charged electrons in quan-

tized orbitals. This model and other related models, along with the empirical results

which motivated them, led to the development of quantum mechanics to describe

physics at the subatomic level. As physicists investigated further, accelerating par-

ticles closer and closer to the speed of light in order to reach higher energies and

smaller distances, it became necessary to merge the formulations of quantum me-

chanics with Einstein’s special relativity to develop quantum field theories. The

results of decades of these experimental tests are collected in the unified frame-

work of the standard model of particle physics. The standard model describes all

observed elementary particles and three of the fundamental forces, including elec-

tromagnetism and the weak and strong nuclear interactions. The weak nuclear

interaction is responsible for most radioactivity and for nuclear fusion, while the

strong force holds quarks and gluons together as protons and neutrons, and residu-

ally holds protons and neutrons together as atomic nuclei.

The last missing piece of the standard model, the Higgs boson, was discovered
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in 2012 by the Compact Muon Solenoid experiment and the ATLAS experiment at

the Large Hadron Collider. This collider and the several detectors placed around

it are the largest scientific experiment yet undertaken by humanity. Two beams

of protons are each accelerated to 99.999997% of the speed of light, achieving an

energy level never before produced in the laboratory, and then collided together.

The constituent quarks and gluons of the protons interact with each other through

the fundamental forces, producing any of the particles in the standard model. Just

as a radioactive element will decay into a different element by emitting radiation, the

produced particles decay into the lightest stable particles, which are detected by the

Compact Muon Solenoid. Each subsystem of the detector is optimized to measure

certain types of particles, including photons, electrons, muons, charged hadrons such

as protons, and neutral hadrons such as neutrons. The presence of non-interacting

particles such as neutrinos can be inferred by balancing the momentum measured

by the detector in each collision event. The unprecedented energy scale and collision

rate of these experiments enabled the discovery of the Higgs boson, the first observed

scalar elementary particle. The Higgs boson is an excitation of the Higgs field, which

was postulated and is now confirmed to provide masses to the various elementary

particles.

However, there are some phenomena which remain beyond the capability of

the standard model to explain. This dissertation presents a search for several types

of new particles, leptoquarks and top squarks, which are predicted by theories that

might supersede the standard model. Leptoquarks are bosons which have prop-

erties of both leptons (such as electrons) and quarks (such as the constituents of
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protons and neutrons). The existence of leptoquarks could indicate new relation-

ships between the leptons and quarks in the standard model. James Maxwell unified

electricity and magnetism into electromagnetism, and similarly, Abdus Salam, Shel-

don Glashow, and Steven Weinberg unified electromagnetism and the weak nuclear

interaction into the electroweak interaction. Leptoquarks could point the way to

possible solutions for the grand unification of all three fundamental forces. The the-

ory of supersymmetry postulates a partner for each standard model particle, such

as the top squark, which is the supersymmetric partner of the top quark, a heavy

version of the up quarks contained in protons and neutrons. As the heaviest elemen-

tary particle, the top quark is the most likely to interact with the Higgs boson. The

discovery of its supersymmetric partner the top squark would indicate how that

interaction is balanced to produce the relatively light Higgs boson that has been

observed.

In this dissertation, a search is conducted for scalar leptoquarks coupling to the

third generation of elementary particles, including tau leptons and bottom quarks.

The search for top squarks considers R-parity violating supersymmetry, in order to

get around experimental constraints on R-parity conserving supersymmetry. The

R-parity violating model eliminates a proposed separation between standard model

and supersymmetric particles, which allows the supersymmetric particles to decay

to final states involving only standard model particles. There are two cases consid-

ered for top squarks. In the first case, the top squarks decay identically to third-

generation scalar leptoquarks. In the second case, the top squarks decay differently,

producing a final state similar to the first case: a tau lepton, a bottom quark, and
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two light quarks. The existence of third-generation scalar leptoquarks and the first

case of top squarks is already excluded if their mass is below values probed by ear-

lier searches, but the high energy of the 2012 run of the Large Hadron Collider will

extend the experimental reach of this search. Previously, no direct search for the

second case of top squarks had ever been performed.

4



Chapter 2: Theoretical Motivations

2.1 The Standard Model

The standard model (SM) of particle physics includes three fundamental forces

and all of the particles of ordinary matter using a locally gauge-invariant quantum

field theory framework. The three fundamental forces are electromagnetism, the

weak force, and the strong force. These forces are carried by spin-1 gauge bosons,

while the matter particles consist of quarks and leptons, two categories of spin-1/2

fermions. When these forces are weak enough, quantum field theory calculations use

a perturbative method in which the leading order (LO) term is calculated, then the

next-to-leading order (NLO) correction is added, then the next-to-next-to-leading

order correction (NNLO), and so forth. In addition, the standard model contains a

scalar spin-0 boson, the Higgs boson, which is part of the Higgs field that provides

masses to certain gauge bosons and fermions. Figure 2.1 summarizes the particles

in the standard model, including the spin, electric charge, and mass values of each

particle. The standard model and quantum field theory are described in more detail

in many standard textbooks.

The electromagnetic force is mediated by photons (γ), spin-1 gauge bosons

which have no mass or electric charge Q. This force causes interactions between
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Figure 2.1: A table of all the elementary particles in the standard model, with
the spin, electric charge, and mass values of each particle [1]. The faint gray lines
indicate which gauge bosons interact with which fermions.

electrically charged particles and has infinite range due to the masslessness of the

photon. Quantum electrodynamics (QED) is a gauge-invariant quantum field the-

ory embedding a U(1) symmetry group that describes electromagnetism. The weak

force is mediated by the massive W± and Z bosons and can be represented by an

SU(2) symmetry group. The weak force acts on particles carrying weak isospin T .

Weak isospin is a quantum number whose third component T3 is conserved in all

interactions and which has the same mathematical group structure as angular mo-

mentum, though the two quantities are physically distinct. The massiveness of the

weak carrier bosons means that the weak force has a limited range, approximately
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10−18 m. The charged current weak interaction, mediated by the W± bosons, is

sensitive to the chirality of fermions; only left-handed fermions and right-handed

antifermions participate in this interaction. The neutral current weak interaction,

mediated by the Z boson, acts on fermions of all chiralities, with different coupling

strengths depending on the chirality.

As suggested by the inclusion of both forces in the previous paragraph, the

electromagnetic and weak forces can be unified to form the electroweak force, rep-

resented by the symmetry group SU(2)L×U(1)Y . In this unification, the quantum

numbers of electromagnetism and the weak force are related by a new conserved

quantum number, weak hypercharge Y = 2(Q − T3). The Higgs mechanism is re-

sponsible for electroweak symmetry breaking (EWSB). In order for the electroweak

theory to be gauge invariant, the gauge bosons must be massless, but the W± and

Z bosons are observed to have mass. The Higgs mechanism solves this dilemma

via spontaneous EWSB due to its non-zero vacuum expectation value (VEV). The

Higgs field consists of a doublet, with two charged particles and two neutral parti-

cles, all scalar bosons. The two charged particles and one of the neutral particles

act as Goldstone bosons, combining with the W± and Z bosons to produce their

masses. The remaining neutral particle is the Higgs boson, which was discovered at

the LHC in 2012 [2, 3].

The strong force, quantum chromodynamics (QCD), is mediated by gluons (g)

and can be represented by an SU(3) symmetry group. Gluons, like photons, are

spin-1 gauge bosons without mass or electric charge. However, gluons do possess

color charge, the quantum number on which the strong force acts. Color charge
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is so named because the charge has three possible values, which are labeled red,

green, or blue. The strong force between quarks does not decrease as they become

spatially separated, a phenomenon known as confinement. The energy in the gluon

field between the separated quarks can become large enough to form one or more

quark-antiquark pairs, which prevents quarks or gluons from existing in a bare state.

Correspondingly, the range of the strong force is limited to ∼10−15 m. Quarks and

gluons are always observed in nature as bound states called hadrons, and the for-

mation of those bound states is called hadronization. States with one quark and

one antiquark are mesons, while states with three quarks are baryons. Mesons and

baryons are the two allowed types of bound states because they represent color sin-

glets. Complementarily, as quarks get closer together, the strong force between them

weakens. This behavior is known as asymptotic freedom; because short distances

are equivalent to high energies, the strong interactions of quarks at a high-energy

collider like the LHC can be calculated perturbatively. A residual form of the strong

force acts on nucleons, protons and neutrons, to form atomic nuclei.

As mentioned, fermions are the particles of matter, which are separated into

two groups: quarks and leptons. Quarks have fractional electric charge, weak

isospin, and color charge, so they are affected by all three fundamental forces. There

are two types of quarks: up-type quarks that have Q = 2/3 and down-type quarks

that have Q = −1/3. Leptons consist of charged leptons and neutrinos. Charged

leptons possess electric charge and weak isospin, while neutrinos only possess weak

isospin. In total, there are six flavors of leptons and six flavors of quarks, arranged

into three generations. The flavors of up-type quarks are the up, charm, and top
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quarks; the flavors of down-type quarks are the down, strange, and bottom quarks;

the flavors of charged leptons are the electron, muon, and tau lepton; and the fla-

vors of the neutrinos are the electron, muon, and tau neutrinos. The top quark is

the heaviest elementary particle and is so heavy that it decays before hadronizing,

making it an exception to the rule that quarks are only observed in bound states.

Quarks possess an additively conserved quantum number called baryon number B,

which is defined as B = 1
3
(nq − nq). The conservation of baryon number results in

the stability of the proton, as it is the lightest baryon. Similarly, lepton number

L is defined for leptons as L = n` − n`. Specific lepton flavor numbers Le, Lµ,

Lτ are defined for each flavor pair of leptons. Baryon number and lepton number

are accidental symmetries of the standard model, as only higher-dimensional terms

excluded from the SM Lagrangian would break them.

The fermions are arranged into multiplets based on their chirality. The left-

handed up- and down-type quarks are grouped together in a weak doublet qL, as

are the left-handed charged leptons and neutrinos in `L. The right-handed particles

are weak singlets. It is important to note that right-handed neutrinos, and corre-

spondingly left-handed antineutrinos, do not exist in the standard model. The Higgs

field spontaneously provides masses to the quarks and charged leptons through a

Yukawa interaction which couples the left- and right-handed versions of each flavor

of particle. For a fermion f , this interaction takes the form −yffLHfR, where yf is

the Yukawa coupling. The mass eigenstates formed by this interaction are mixtures

of the weak eigenstates, leading to flavor-changing charged weak currents for the

quarks, with the amount of mixing between any two flavors given by the unitary
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Cabibbo-Kobayashi-Maskawa (CKM) matrix. The quantum numbers of each type

of particle are summarized in Table 2.1, and the interactions among all the particles

are illustrated in Fig. 2.2.

Particle Q T3 Y B L

Quarks
qL =

(
u
d

)

L

(
2/3
−1/3

) (
1/2
−1/2

)
1/3 1/3 0

uR 2/3 0 4/3 1/3 0
dR −1/3 0 −2/3 1/3 0

Leptons
`L =

(
ν
e

)

L

(
0
−1

) (
1/2
−1/2

)
−1 0 1

eR −1 0 −2 0 1

Table 2.1: The quantum numbers of each category of fermions, based on chirality
and particle type: up-type quarks, down-type quarks, charged leptons, and neutri-
nos. The various flavors of each category, also called the first, second, and third
generations of matter, possess the same quantum numbers and differ only in their
masses.

2.2 Beyond the Standard Model

The predictions of the standard model have been confirmed by decades of

precise experimental tests. However, as an effective field theory, its domain of appli-

cability is ultimately limited; at a high enough energy, the theory will break down.

Further, some laboratory and cosmological observations are difficult to accommo-

date in the standard model. These limitations and indications of new phenomena,

as well as aesthetic considerations, motivate various searches for physics beyond

the standard model (BSM), including the searches which will be presented in this

dissertation.

Unless unnatural fine-tuning occurs, the calculation of the Higgs mass produces
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Figure 2.2: A diagram illustrating the leading order interactions between particles
in the standard model, including self-interactions [4].

a value near the Planck scale of 1019 GeV, orders of magnitude higher than the

observed value of 125 GeV, which characterizes the electroweak scale [5]. This is

known as the hierarchy problem. To construct a natural theory which avoids such

fine-tuning while making predictions that agree with observation, it is necessary

to cancel divergent contributions to the Higgs mass. The hierarchy problem is an

important motivation to search for new physics at the LHC [6].

Astrophysics provides numerous indications of the need for BSM theories.
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Most notably, the measurement of galactic rotation curves and galaxy cluster colli-

sions [7] indicates that dark matter makes up ∼85% of the matter in the universe.

Dark matter interacts gravitationally but not electromagnetically or strongly; it is

currently unknown if dark matter interacts weakly. Dark matter is likely to be a

new particle not present in the standard model. The most popular type of dark

matter candidate is a weakly interacting massive particle (WIMP) [6], but many

other candidates have been proposed [8].

Electroweak unification and charge quantization suggest that a Grand Unified

Theory (GUT) could unify all three fundamental forces, at an expected energy

scale of ∼1016 GeV [9]. Further, gravity is not included in the standard model. A

successful unification of general relativity and quantum field theory has not been

achieved, due to the difficulty of constructing a renormalizable theory for the spin-

2 graviton. At the Planck scale, gravitational effects become comparable to SM

interactions, which calls for a new theory.

The following sections discuss the theories of leptoquarks and R-parity vio-

lating supersymmetry. The existence of leptoquarks can be a consequence of grand

unification or other theories that address the parallels between leptons and quarks in

the standard model. Supersymmetry is motivated by basic considerations of quan-

tum field theory, the hierarchy problem, grand unification, and dark matter [10,11].

The introduction of R-parity violation in supersymmetry evades existing limits on

signatures with large missing transverse energy due to the stability of the lightest

supersymmetric particle (LSP). Without a stable LSP, R-parity violating supersym-

metry lacks a dark matter candidate. However, it retains other desirable character-

12



istics of supersymmetry, including a solution to the hierarchy problem and grand

unification. R-parity violating supersymmetry can also act as a signature generator

to suggest novel searches which might discover or rule out other BSM theories [12].

2.3 Leptoquarks

Many BSM theories include a deeper relationship between leptons and quarks.

Such a relationship is indicated by the cancellation of SM gauge anomalies from

triangle diagrams, which requires each generation of matter to consist of quarks

and leptons with the specific weak hypercharge values and multiplet arrangements

that they possess in the SM [13]. Such theories introduce a class of particles called

leptoquarks (LQs), which possess lepton number, baryon number, color charge, and

fractional electric charge. Leptoquarks are bosons, either scalar with spin 0 or vector

with spin 1. The values of the LQ quantum numbers are model-dependent. A total

fermion number F can be defined as F = 3B + L to characterize the combinations

of lepton and baryon numbers found in LQs. The possible values are F = 0 for LQs

which couple to `q or `q pairs and |F | = 2 for coupling to `q or `q pairs.

In general, grand unified theories group leptons and quarks together in multi-

plets. The first BSM theory to include leptoquarks was the SU(4) model by Pati and

Salam [14], a GUT which casts lepton number as the fourth type of color charge,

hence the SU(4) symmetry instead of the SM SU(3). Another GUT, the SU(5)

model by Georgi and Glashow [15], also contains leptoquarks. However, the sym-

metries in these theories are typically assumed to break at the GUT scale, rendering
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the expected LQ masses very large and therefore unable to be directly produced at

colliders. E6 superstring theory [16] can also contain LQs, as it behaves similarly

to GUTs below the string compactification scale, which is typically near the Planck

scale. In other models, leptoquarks may be composite particles [17]. These include

extended technicolor theories [18], which postulate a new strong interaction similar

to QCD, and provide spontaneous masses to SM fermions using technifermions. A

techniquark and anti-technilepton can bind together to form a technimeson which

interacts with SM fermions as a leptoquark with a model-dependent coupling. Tech-

nicolor, though, has become disfavored after experimental data confirmed the Higgs

mechanism as the solution to EWSB and spontaneous fermion masses.

The Buchmüller-Rückl-Wyler (BRW) model of leptoquarks includes all renor-

malizable Lagrangian terms compatible with the standard model [19]. There are

several constraints imposed in the BRW model:

1. LQ interactions are dimensionless, in order to be renormalizable.

2. LQ interactions are invariant under the overall SM symmetry

SU(3)C × SU(2)L × U(1)Y .

3. LQ interactions conserve B and L, to avoid contributions to proton decay.

4. LQs couple only to SM particles.

Further consideration of experimental limits imposes two additional constraints,

creating the minimal BRW (mBRW) model:

5. LQ couplings are chiral, involving either only left-handed fermions or only
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right-handed fermions, due to limits on otherwise chirally-suppressed decays

such as π+ → e+νe.

6. LQ couplings involve only a single generation of leptons and quarks, to evade

limits on flavor-changing neutral currents (FCNCs).

The Lagrangian terms are given for scalar LQs in Eq. (2.1) and for vector LQs in

Eq. (2.2) below, using the “Aachen” notation as specified in Ref. [20].

LS = (λL,S0q
c
Liσ2`L + λR,S0u

c
ReR)S†0 + λR,S̃0

d
c

ReRS̃
†
0

+ (λL,S1/2
uR`L + λR,S1/2

qLiσ2eR)S†1/2 + λL,S̃1/2
dR`LS̃

†
1/2

+ λL,S1q
c
Liσ2σ`L · S†1 + h.c. (2.1)

LV = (λL,V0qLγµ`L + λR,V0dRγµeR)V µ†
0 + λR,Ṽ0uRγµeRṼ

µ†
0

+ (λL,V1/2d
c

Rγµ`L + λR,V1/2q
c
LγµeR)V µ†

1/2 + λL,Ṽ1/2u
c
Rγµ`LṼ

µ†
1/2

+ λL,V1qLγµσ`L · V µ†
1 + h.c. (2.2)

In these equations, scalar leptoquarks are denoted by S and vector leptoquarks are

denoted by V . The subscripts 0, 1/2, and 1 denote singlet, doublet, and triplet

states, respectively. Similar states with different quantum numbers are separated in

the notation by the presence or absence of a tilde ˜. The coupling constants for the

Yukawa couplings between leptoquarks, leptons, and quarks are represented by λ,

with the chirality L or R and the leptoquark type indicated in the subscript. The

generation indices for the couplings and fermion multiplets are suppressed. The

Pauli matrices are denoted by σi and the Dirac matrices by γµ. The Hermitian

conjugate terms are indicated as “h.c.” The quantum numbers for the different
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types of mBRW leptoquarks are listed in Table 2.2.

Particle Q T3 Y F

Scalar

S0 −1/3 0 −2/3 2

S̃0 −4/3 0 −8/3 2

S1/2

(
−2/3
−5/3

) (
1/2
−1/2

)
−7/3 0

S̃1/2

(
1/3
−2/3

) (
1/2
−1/2

)
−1/3 0

S1




2/3
−1/3
−4/3







1
0
−1


 −2/3 2

Vector

V0 −2/3 0 −4/3 0

Ṽ0 −5/3 0 −10/3 0

V1/2

(
−1/3
−4/3

) (
1/2
−1/2

)
−5/3 2

Ṽ1/2

(
2/3
−1/3

) (
1/2
−1/2

)
1/3 2

V1




1/3
−2/3
−5/3







1
0
−1


 −4/3 0

Table 2.2: The quantum numbers of the different types of scalar and vector lepto-
quarks in the mBRW model.

As color-charged particles, leptoquarks are primarily produced by strong in-

teractions in pp collisions. For pair production of leptoquarks, these interactions

include gluon-gluon fusion and quark-antiquark annihilation, whose LO Feynman

diagrams are shown in Fig. 2.3. An additional contribution to quark-antiquark anni-

hilation may proceed through the Yukawa coupling λ of the leptoquark to the quark

and lepton pair. However, the ratio MLQ/λ, where MLQ is the leptoquark mass,

is restricted by limits from low-energy processes including π+ → e+νe and atomic

parity violation. The limits on MLQ/λ range from 1800–6400 GeV/c2, depending on
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the type of leptoquark [21, 22, 23]. The expected accessible mass for leptoquarks

at the LHC with
√
s = 14 TeV ranges from 900–1200 GeV/c2 for scalar LQs and

1200–1500 GeV/c2 for vector LQs [24]. Up to these masses, λ will be small enough

that its contribution to leptoquark production can be neglected. This applies both

to the Yukawa-based pair production diagram in Fig. 2.3 and the single production

diagrams from quark-gluon scattering in Fig. 2.4.

q

q̄ LQ
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g

λ

q

q̄

LQ

LQ

l

λ

g

g LQ
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g

g

g LQ

LQ

g

g

LQ

LQ

LQ

g

g

LQ

LQ

LQ

Figure 2.3: The LO Feynman diagrams for leptoquark pair production from quark-
antiquark annihilation (top) and gluon-gluon fusion (middle, bottom).

Table 2.3 lists the pair production cross sections for a range of scalar leptoquark

masses. They have been calculated using the CTEQ6 parton distribution functions

(PDFs) [25, 26] with K-factors applied to include NLO corrections from QCD [27].
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Figure 2.4: The LO diagrams for single leptoquark production from quark-gluon
scattering. The LQ is produced in association with a lepton.

Theoretical uncertainties are calculated by propagating the PDF uncertainty and

varying the factorization/renormalization scale µ from µ = MLQ/2 to µ = 2MLQ.

These cross sections are sensitive only to the leptoquark mass and spin, so they

are largely model-independent. For vector leptoquarks, the cross sections may be

modified by anomalous triple and quartic gauge couplings. The cross sections for

vector leptoquarks are typically larger than the cross sections for scalar leptoquarks.

The decay widths for scalar and vector leptoquarks can be calculated according to

Eqs. (2.3) and (2.4), respectively [19]:

ΓS =
∑

i

λ2
i

16π
MLQ, (2.3)

ΓV =
∑

i

λ2
i

24π
MLQ. (2.4)

Equations (2.3) and (2.4) sum over all Yukawa couplings for a given leptoquark.

Given the limits on λ discussed above, leptoquarks accessible at the LHC with a

single Yukawa coupling can be expected to have a fractional decay width of less

than 0.1–0.2%.

In this dissertation, a search is performed for pair production of scalar lep-

toquarks decaying to third generation fermions. The symbol B is used for the
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MLQ [GeV] σ(µ = MLQ) [pb] δ(PDF) [pb] σ(µ = MLQ/2) [pb] σ(µ = 2MLQ) [pb]

200 17.4 1.24 15.0 19.7
250 5.26 0.487 4.54 5.94
300 1.89 0.214 1.63 2.13
350 0.77 0.102 0.663 0.866
400 0.342 0.052 0.295 0.385
450 0.163 0.0278 0.14 0.183
500 0.082 0.0155 0.0704 0.0922
550 0.0431 0.00893 0.037 0.0485
600 0.0235 0.0053 0.0201 0.0265
650 0.0132 0.00322 0.0113 0.0149
700 0.00761 0.002 0.00648 0.00858
750 0.00448 0.00126 0.00381 0.00506
800 0.00269 0.00081 0.00228 0.00304
850 0.00164 0.000527 0.00139 0.00186
900 0.00101 0.000347 0.000856 0.00115
950 0.000634 0.000231 0.000534 0.000722
1000 0.000401 0.000155 0.000337 0.000458

Table 2.3: The pair production cross sections for a range of scalar leptoquark masses
at
√
s = 8 TeV. Theoretical uncertainties from the PDFs and from varying the

factorization/renormalization scale µ from µ = MLQ/2 to µ = 2MLQ are indicated.

branching fraction for the decay LQ → τb. Because they are pair produced, this

results in a final state with two tau leptons and two bottom quarks. One tau lepton

is required to decay leptonically: τ → `ν`ντ , where ` can be a muon or an electron,

which are collectively called light leptons. The other tau lepton is required to de-

cay hadronically, denoted as τh; see Sec. 4.8 for more information about hadronic

decays of tau leptons. These decays result in two channels based on the leptonic

decay of the tau, which are labeled as eτh and µτh, or collectively `τh when the

light lepton flavor is unimportant. Both bottom quarks hadronize into b-jets, as

described in Sec. 4.9. Currently, the strongest mass limits on such third-generation

scalar leptoquarks come from direct searches. Assuming B = 100%, the lower limit

is approximately 530 GeV, set by both the CMS [28] and ATLAS [29] experiments

using 4.7–4.8 fb−1 of data from pp collisions with
√
s = 7 TeV. Indirect limits from
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low-energy processes are discussed in Refs. [20, 21, 22, 23]. Though this search does

not consider vector leptoquarks explicitly, scalar and vector leptoquarks tend to

have similar angular distributions. Combined with the larger cross section for vec-

tor leptoquarks, this implies that the same search can set higher mass limits on

vector leptoquarks, as shown in Ref. [28] for the 7 TeV data.

2.4 R-Parity Violating Supersymmetry

Supersymmetry proposes a symmetry between bosons and fermions. Such

a symmetry appeals to mathematical considerations in quantum field theory by

simplifying many calculations [13]. However, the primary motivation for a theory

of SUSY with effects at the electroweak scale and therefore accessible at the LHC is

the hierarchy problem. The mass of the Higgs boson, experimentally measured as

MH = 125 GeV, is theoretically sensitive to quantum corrections via loop diagrams

from any particle that couples to it. This sensitivity arises due to the scalar nature

of the Higgs boson, which means that there is no symmetry available to protect its

mass value. Therefore, precise cancellations must occur among the various quantum

corrections to produce such a small mass value, relative to the expected energy scales

of new physics. Any BSM theory lacking a simple mechanism to produce such

cancellations must undergo unnatural fine-tuning in order to arrive at the correct

value of MH. The following discussion of supersymmetry is drawn primarily from

Ref. [30].
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The Higgs mass parameter m2
H appears in the Higgs potential:

V = m2
H|H|2 + λH|H|4. (2.5)

Consider the one-loop contribution to m2
H from a fermion f which has a Yukawa

coupling to the Higgs field, −yffLHfR. The correction term in the mass parameter

calculation can be written as follows:

∆fm
2
H = −|yf |

2

8π2
Λ2

UV + · · · . (2.6)

The factor ΛUV is the cutoff scale used to handle the ultraviolet divergence in the

loop integral through regularization. This cutoff scale is typically related to the

energy scale of new physics, e.g. the GUT scale or Planck scale. Even if the cutoff

scale is small, the contribution to the Higgs mass from any new heavy fermion will

be proportional to its Yukawa coupling y, which could itself be large. Similarly,

consider the one-loop contribution from a scalar boson S with a coupling to the

Higgs written as −yS|H|2|S|2, which produces a correction term:

∆Sm
2
H =

yS
16π2

Λ2
UV + · · · . (2.7)

Both one-loop diagrams are shown in Fig. 2.5. The leading terms of Eqs. (2.6)

and (2.7) have opposite signs, which suggests that the two terms could cancel if

there were two scalars, one left-handed and one right-handed, for each fermion,

with yS = |yf |2.

This observation motivates SUSY as an extension of the standard model.

While many formulations of SUSY exist, it is instructive to consider the minimal

supersymmetric model (MSSM) to understand the fundamental components of the
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H
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Figure 1.1: One-loop quantum corrections to the Higgs squared mass parameter m2
H , due to (a) a Dirac

fermion f , and (b) a scalar S.

3

Figure 2.5: One-loop diagrams for contributions to the Higgs mass parameter m2
H

from a fermion f (left) and a scalar S (right) [30].

class of SUSY theories. SM particles are paired with new particles called super-

partners with a spin difference of 1/2; SM fermions have scalar boson superpartners

and SM bosons have spin-1/2 fermion superpartners. The scalar superpartners are

named after the corresponding SM fermions with the prefix “s-”, e.g. squarks and

sleptons. The fermionic superpartners are named after the corresponding SM bosons

with the suffix “-ino”, e.g. higgsinos and gauginos. The symbols for superpartners

are indicated by a tilde ˜ . SM particles and their superpartners are arranged to-

gether in supermultiplets which extend the multiplets listed in Table 2.1. Chiral

supermultiplets contain scalar bosons and spin-1/2 fermions, while gauge supermul-

tiplets contain spin-1/2 fermions and vector bosons. The superpartners possess the

same quantum numbers as the corresponding SM particles, except for spin.

The Higgs boson, as a scalar, therefore becomes part of a chiral supermultiplet

with weak hypercharge values Y = ±1/2. However, the existence of the correspond-

ing chiral higgsinos creates new triangle gauge anomalies which must be cancelled

to preserve the consistency of the theory. In addition, the weak hypercharge values

of the Higgs supermultiplet restrict the possible Yukawa interactions with the other
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chiral supermultiplets, which are necessary for spontaneous fermion masses. For

both of these reasons, the MSSM contains two Higgs doublets, conventionally la-

beled Hu and Hd to indicate their couplings to up-type quarks or down-type quarks

and charged leptons, respectively. Each Higgs doublet has its own VEV, labeled

vu and vd, respectively. The angle β is defined as tan(β) = vu/vd, with each VEV

taken as a component of a single value v.

Given these details, the superpotential of the MSSM, WMSSM, contains these

terms:

WMSSM = yu,ijU
c
iQjHu + yd,ijD

c
iQjHd + ye,ijE

c
iLjHd + µHuHd. (2.8)

Equation (2.8) is written in terms of superfields. U is the up-type quark singlet

superfield; D is the down-type quark singlet superfield; Q is the quark doublet

superfield; E is the charged lepton singlet superfield; and L is the lepton doublet

superfield. The Yukawa couplings y are labeled by the fermion type u, d, or e with

generation indices i, j. As an example, the top quark Yukawa coupling is yu,33 = yt.

The higgsino mass parameter is denoted as µ.

The superpotential is limited to these terms by requiring the conservation of

R-parity. The quantity R is related to the baryon and lepton numbers as well as

the particle spin S and may be defined in two equivalent ways [31], as shown in Eq.

(2.9). Equation (2.10) defines R-parity based on R.

R = 3B + L+ 2S = 3(B − L) + 2S, (2.9)

Rp = (−1)R. (2.10)

All SM particles have Rp = +1, while all superpartners have Rp = −1. If R-parity
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is conserved, interactions which violate lepton or baryon number are not allowed.

Notably, the lightest supersymmetric particle must be stable in order to conserve

R-parity in the decays of SUSY particles. In many models, the LSP is the lightest

neutralino, a state created by mixing between the neutral higgsinos and gauginos

due to EWSB. As a weakly interacting massive particle, the neutralino LSP is a

promising candidate for WIMP dark matter.

If supersymmetry were unbroken, superpartners would have the same masses

as their corresponding SM particles and would already have been detected. There-

fore, there must be some mechanism responsible for breaking supersymmetry. In

order for broken SUSY to continue to solve the hierarchy problem, it must preserve

the conditions such as yS = |yf |2 that lead to natural cancellations in the Higgs

mass correction terms. So-called “soft” supersymmetry breaking accomplishes this

by separating the Lagrangian into two separate terms:

L = LSUSY + Lsoft, (2.11)

where LSUSY is made up of the SUSY-preserving terms, including the Yukawa inter-

actions from the superpotential as well as the gauge interactions, and Lsoft is made

up of the SUSY-violating terms. The contributions to Lsoft must be only mass terms

and couplings whose parameters have positive mass dimension. These include triple-

scalar interactions between two sfermions and a Higgs, such as au,ijũ
c
i q̃jHu, where

au,ij are the soft couplings for those interactions. All such soft couplings are either

at or below the mass scale msoft, which is expected to be around the TeV scale from

hierarchy problem considerations.
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In general, the soft SUSY breaking terms can introduce FCNCs and charge-

parity (CP) violation that are limited by precision measurements. These limits

can be avoided by assuming the sfermion masses are universal; in other words, all

sfermions should have the same mass regardless of flavor. This “flavor-blindness”

eliminates mixing between flavors, and, as a bonus, greatly reduces the number of

free parameters in the MSSM. The first- and second-generation sfermions possess

flavor-blind universal masses. However, in the third generation, the sfermion masses

can differ from the other two generations. In quantum field theory calculations, the

couplings and mass parameters are treated as running factors which change based

on renormalization group (RG) equations. These RG equations lead to corrections

which tend to be small for Yukawa interactions, except for third generation particles,

which have relatively large Yukawa couplings. In addition, at low energy scales, the

slepton masses may deviate from the squark masses due to the different running

behaviors of their respective couplings. The effects of RG evolution in SUSY on the

gauge couplings for the three fundamental forces significantly aid grand unification,

which is another motivation for SUSY.

The concept of naturalness, described in Ref. [32], requires the third-generation

sfermion masses to be relatively light, while the other superpartners may be heavy.

The tree level relationship M2
Z ∝ |µ|2 + |m2

Hu
| implies that the superpartners with

the largest contributions to µ and m2
Hu

must have masses near the electroweak scale.

This applies especially to the higgsinos, whose masses are constrained by µ, and to

the top squark, whose partner the top quark generates the largest correction to

m2
Hu

. This consideration also applies to some extent to the other third-generation
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sfermions and the gluino. In addition, because the top squark masses are not flavor-

blind, the mass eigenstates can involve significant mixing between the chiral eigen-

states. The top squark mass matrix is written as follows:

m2
t̃

=




m2
Q3 +m2

t + ∆ũL v(a∗t sin(β)− µytcos(β))

v(atsin(β)− µ∗ytcos(β)) m2
U3 +m2

t + ∆ũR


 . (2.12)

The terms ∆ũL and ∆ũR arise via hyperfine splitting from quartic interactions and

are defined in Ref. [30]. When this mass matrix is diagonalized, a large mixing angle

typically occurs because of the off-diagonal entries, which contain terms involving

the large top Yukawa coupling and soft coupling. This means that one top squark

mass eigenstate will be lighter than the other, and in fact it will be the lightest

squark. This mass splitting, together with the general consideration of naturalness

that implies a light top squark mass, suggests that top squarks are likely to be

accessible at the LHC.

In R-parity conserving (RPC) SUSY, all decays of superpartners eventually

produce at least one LSP. As a weakly interacting particle, the LSP will escape a

particle detector without interacting, leading to events with signatures including

large missing transverse energy or E/T. The precise details of the production and

decay of SUSY particles depend on which model is considered. This section has

focused on the MSSM, but many variations of this model exist. These include,

but are not limited to [8]: the constrained MSSM, in which there are only five

parameters: the sfermion mass m0, the gaugino mass m1/2, the soft parameter

scale A0, tan(β), and µ; the phenomenological MSSM, which uses experimental

limits to restrict the number of free parameters to ∼19; and the next-to-MSSM,
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which introduces a gauge singlet field to explain the electroweak-scale value of µ

[33]. In order to produce results with the broadest possible applicability, the CMS

experiment uses simplified models, sometimes called decoupled models, in which

the SUSY particles not under direct consideration are assumed to have masses too

large to contribute significantly to the interactions. The latest results from the

broad program of SUSY searches at the CMS experiment with
√
s = 8 TeV are

summarized in Fig. 2.6. The requirements for naturalness introduced in Ref. [32],

which include top squark and bottom squark masses less than 500–700 GeV and

gluino mass less than 900-1500 GeV, are very nearly excluded at this point. In

addition, recent measurements of the decay B0
s → µ+µ− from the CMS [34] and

LHCb [35] experiments are in agreement with the SM prediction, further limiting

the possible forms of SUSY, which would enhance this decay.

The introduction of R-parity violating (RPV) terms in the SUSY Lagrangian

is one way to evade these limits. If R-parity is violated, SUSY particles can decay

to final states containing only SM particles, avoiding the characteristically large E/T

from the LSP, which is no longer stable. This generally eliminates the LSP as a dark

matter candidate, making it a less popular option. However, RPV SUSY still solves

the hierarchy problem and assists in grand unification. The possible RPV terms in

the superpotential are [31]:

WRPV =
1

2
λijkLiLjE

c
k + λ′ijkLiQjD

c
k +

1

2
λ′′ijkU

c
iD

c
jD

c
k + µiLiHu. (2.13)

The different RPV coupling constants are denoted as λijk, λ
′
ijk, λ

′′
ijk, and µi, where

i, j, and k are generation indices. Figure 2.7 shows the tree-level diagrams for
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Figure 2.6: Summary of CMS exclusion limits for the masses of various SUSY particles with
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s = 8 TeV [36]. These limits

assume simplified models and unity branching fractions for the specified decays. Two scenarios are presented: the dark shades
show m(LSP) = 0 and the light shades show m(mother)−m(LSP) = 0.
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the trilinear RPV couplings. As indicated by Fig. 2.7 and the definition of R in

Eq. (2.9), violating R is equivalent to violating lepton number or baryon number.

Scenarios which allow all of the RPV couplings produce large contributions to proton

decay, due to the violation of both B and L, and are therefore ruled out. Scenarios

in which only a certain type of RPV coupling is allowed can still be viable.

�~l �l
l
�l6L �00~q �q

�q6B�0~q 6L
q
�l

2
λijk

(
ν̃iLl̄kRljL + l̃jLl̄kRνiL + l̃⋆kRν̄

c
iRljL − (i↔ j)

)
+ h.c. , (2.7)

Figure 2.7: The LO diagrams for the three trilinear RPV couplings λ (left), λ′

(middle), and λ′′ (right) [31]. These couplings violate lepton number, lepton number,
and baryon number, respectively.

This dissertation considers the pair production of top squarks with two dif-

ferent RPV decays, using a decoupled model as described above. As a strongly-

interacting scalar particle, the top squark has a production cross section that is

identical to the leptoquark production cross section at leading order. In decoupled

models, the cross section depends on the squark mass scale and the top squark

mixing angle only at higher order, and the corrections from these terms amount to

less than 2% [37]. The first decay considered is t̃ → τb via the coupling λ′333. The

final-state signature and kinematic distributions of this signal are identical to those

from the pair production of third-generation scalar leptoquarks, as described in Sec.

2.3. Therefore, the results of the leptoquark search can be directly reinterpreted to

apply to the λ′333 decay of top squarks.
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In some natural SUSY models, if the higgsinos are lighter than the top squark,

or if the RPV couplings that allow direct decays to SM particles are sufficiently

small, the top squark decay may preferentially proceed via superpartners [38]. This

motivates the second search in the dissertation, which focuses on a scenario in which

the dominant RPC decay of the top squark is t̃ → χ̃±b. This requires the mass

splitting between the top squark and the chargino to be less than the mass of the

top quark, so it is chosen to be 100 GeV. The chargino is assumed to be a pure

higgsino and to be nearly degenerate in mass with the neutralino, with a decay

χ̃± → ν̃τ± → qqτ±. The decay of the sneutrino occurs via the RPV coupling

λ′3jk, where the cases j, k = 1, 2 are considered. Such a signal can only be probed

by searches that do not require large E/T, as chiral suppression prevents the other

possible decay of the chargino, χ̃± → ντ̃ , from contributing to scenarios involving

the λ′3jk coupling.

The final state from pair production of top squarks undergoing this chargino-

mediated RPV decay contains two tau leptons, two b-jets, and at least four addi-

tional jets. The search for the signal with this final state is called the top squark

search, to distinguish it from the similar but not identical final state in the lepto-

quark search. As in the leptoquark search, the analysis is divided into two channels,

eτh and µτh, based on the required leptonic decay of one of the tau leptons. The

symbol B in the top squark search is used to represent the branching fraction for

the decay t̃ → χ̃±b, χ̃± → ν̃τ± → qqτ±. This dissertation presents the first search

for the chargino-mediated λ′3jk decay of the top squark.
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Chapter 3: Compact Muon Solenoid Experiment

The Compact Muon Solenoid (CMS) experiment is one of two general-purpose

detectors at the LHC. It is located about 100 m underground on the LHC ring, near

Cessy, France. The detector is cylindrically shaped, with a total length of 22 m, a

diameter of 15 m, and a weight of 14000 tons. Figure 3.1 shows the overall layout of

the detector. The following sections describe the LHC (based on Ref. [39]) and the

CMS subdetector systems (based on Ref. [40]).

The center of the detector, the interaction point (IP), is used as the origin of

the right-handed coordinate system that describes locations and directions within

the detector. The z-axis is assigned to the direction of the LHC beam line. The

polar angle θ is often transformed into pseudorapidity, defined as η = −ln[tan(θ/2)].

Differences in pseudorapidity are Lorentz invariant for boosts in the z direction, and

particle production is approximately uniform in η. The plane transverse to the z-

axis comprises the x- and y-axes, with the x-axis pointing toward the center of the

LHC ring and the y-axis pointing upward in the normal direction. The azimuthal

angle φ and the radial coordinate r are also defined in the transverse plane. The

magnitude of the component of momentum in the transverse plane is labeled pT.
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Figure 3.1: The layout of the CMS detector, with the subdetectors labeled and two
humans shown for a height reference.

3.1 The Large Hadron Collider

The Large Hadron Collider is the largest machine ever built and the highest-

energy collider in the world. It uses the tunnel originally constructed for the Large

Electron-Positron Collider (LEP), with a circumference of 26.7 km. The tunnel is

located underground in Switzerland and France, near Geneva. Figure 3.2 shows a

diagram of the LHC. The location of the CMS experiment is provided and the other

major experiments are also indicated.

The LHC is designed to accelerate two beams of protons up to energies of 7 TeV

each, at instantaneous luminosities up to 1034 cm−2 s−1. The use of supercooled su-
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Figure 3.2: A diagram of the LHC with the major experiments labeled [41].

perconducting magnets, discussed below, is crucial. Several stages of CERN accel-

erators are used to inject proton beams into the LHC, as shown in Fig. 3.3. These

include the linear accelerator Linac2, the Proton Synchrotron Booster (PSB), the

Proton Synchrotron (PS), and the Super Proton Synchrotron (SPS). The acceler-

ated protons are grouped into bunches using radio frequency (RF) electromagnetic

fields. The LHC is designed to accommodate a bunch spacing of 25 ns, with 1011

protons per bunch and 2808 bunches per beam.
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Figure 3.3: A diagram of the CERN accelerators which form the LHC injector [42].

Due to size limitations in the tunnel, the two rings used to accelerate the

two proton beams are formed by twin bore magnets. Each magnet has a single

mechanical structure and cryostat, in which are placed two coils and two beam

channels. The dipole magnet coils use superconducting NbTi Rutherford cables

cooled to 1.9 K, as shown in Fig. 3.4, with a design field strength of 8.33 T for

acceleration of protons up to 7 TeV. This extreme cooling is accomplished using

superfluid helium. In total, the LHC contains 1232 dipole magnets. Thousands

of quadrupole, sextupole, octupole, and decapole magnets are used to correct and

focus the beam.

In 2012, the LHC accelerated proton beams to energies of 4 TeV each, with

a peak instantaneous luminosity of 7.67 × 1033 cm−2 s−1 and a bunch spacing of
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Figure 3.4: A diagram of an LHC dipole magnet, with the major components labeled
[43].

50 ns. During that year, it delivered 23.30 fb−1 of integrated luminosity to the CMS

detector, of which 21.79 fb−1 was recorded [44]. In the upcoming 2015 run, the LHC

will achieve its design energy, instantaneous luminosity, and bunch spacing.

3.2 Tracker

The CMS tracker is the first subdetector to measure charged particles pro-

duced in collisions at the IP. It is 5.8 m long and 2.5 m in diameter, covering the

pseudorapidity range −2.5 < η < 2.5. Two subsystems make up the tracker: the

pixel detector and the silicon strip tracker. The layout of the tracker, with these
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subsystems labeled, is shown in Fig. 3.5. Due to the tracker’s location close to the

IP, it experiences severe radiation doses that are expected to range from 0.18 to

84 Mrad after 500 fb−1 of data. Hence, the tracker must be robust against radiation

damage, requiring operation at −10 ◦C and influencing the design of the sensors and

electronics. For tracks with momentum of 100 GeV, the tracker has a transverse mo-

mentum resolution of 1–2% for |η| < 1.6; at higher η, the reduced transverse depth

of the tracker degrades the resolution.
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Figure 3.5: The layout of the CMS tracker, with subsystems labeled.

The pixel detector is the innermost portion of the tracker. It consists of three

barrel layers, collectively called BPIX, and two endcap layers, called FPIX. Each

pixel cell is a hybrid silicon detector with dimensions 100×150µm2. The small pixel

size enables precise track resolutions of 10µm in the r-φ direction and 20µm in the

z direction. In total, the BPIX comprises 48 million pixels and the FPIX comprises

18 million pixels. The pixel detector is important for many key components of

CMS physics analysis. These include the reconstruction of secondary vertices from
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decays of tau leptons and bottom quarks, as well as producing seed tracks for the

strip tracker and the high level trigger.

The silicon strip detector consists of four subsystems. The Tracker Inner Barrel

(TIB) has four layers with the three-layer Tracker Inner Disks (TID) at each end;

both systems’ strips are 320µm thick. Surrounding the TIB/TID is the Tracker

Outer Barrel (TOB), which has six layers. The first four layers of the TOB use

500µm thick strips, while the last two layers use 122µm thick strips. The Tracker

EndCaps (TEC) have nine disks with up to seven layers of strips, 320µm thick in

the inner four rings and 500µm thick in the outer three rings. In total, all of these

layers contain 9.3 million silicon strips.

The tracker maintained excellent performance during the 2012 run of the LHC.

The pixel detector had 97.7% of channels operational in BPIX and 92.8% of channels

operational in FPIX, while 97.5% of channels in the strip detector were active.

The hit reconstruction efficiencies were greater than 99% for each layer of the strip

detector and greater than 99.5% for each layer of the pixel except for the first layer

of BPIX, which had an efficiency greater than 99.2% [45].

3.3 Electromagnetic Calorimeter

The electromagnetic calorimeter (ECAL) is a homogeneous calorimeter con-

structed entirely of lead tungstate (PbWO4) crystals. The ECAL is divided into

two subsystems: the ECAL barrel (EB) and the ECAL endcap (EE). In the end-

cap region, there is an additional ECAL preshower (ES) detector in front of the
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EE. Figure 3.6 displays these subsystems. PbWO4 has a peak emission wavelength

of 425 nm and many desirable material properties. These properties include high

density (8.28 g/cm3), short radiation length (0.89 cm), short Molière radius (2.2 cm),

and fast decay time (6 ns). The use of homogeneous PbWO4 crystals enables precise

energy resolution for electromagnetic objects. For photons with ET ≈ 60 GeV, the

energy resolution ranges from 1.1% to 2.6% for the EB and 2.2% to 5.0% for the

EE. In general, the energy resolution σ varies as a function of energy E in GeV:

( σ
E

)2

=

(
S√
E

)2

+

(
N

E

)2

+ C2. (3.1)

In Eq. (3.1), S is the stochastic term, N is the noise term, and C is the constant

term. Typical values for these terms were measured by a test beam to be S = 2.8%,

N = 12%, C = 0.30%.
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Figure 3.6: A diagram of the CMS ECAL, with subsystems and η ranges labeled.

The EB contains 61200 PbWO4 crystals and covers the range |η| < 1.479. The

crystals are arranged in a projective geometry with a tapered shape. The crystal
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granularity is approximately 0.0174 × 0.0174 in η-φ, corresponding to dimensions

of 22 × 22 mm2 at the front face and 26 × 26 mm2 at the back face. The EB has

a depth of 230 mm or 25.8 radiation lengths (X0). The scintillation light produced

by the PbWO4 crystals is read out using avalanche photodiodes (APDs). At 18 ◦C,

the APDs measure approximately 4.5 photoelectrons per MeV. The dark current of

the APDs is sensitive to radiation exposure. Over the course of the 2012 run, the

dark current ranged from 0.3–1.3µA on average, corresponding to an average noise

of 47–57 MeV [46].

The EE contains 14648 PbWO4 crystals and covers the range 1.479 < |η| < 3.0.

The crystals are arranged in a non-projective x-y geometry, with dimensions of

28.62 × 28.62 mm2 at the front face and 30 × 30 mm2 at the back face. The EE

has a depth of 220 mm or 24.7X0. Vacuum phototriodes (VPTs) are used as the

photodetectors to read out the scintillation light from the PbWO4 crystals. They

collect approximately 4.5 photoelectrons per MeV at 18 ◦C. During the 2012 run,

the average noise ranged from 180–220 MeV, with a more dramatic increase up to

600 MeV at high η because of the high radiation dose [46].

The ES is intended to identify neutral pions in the endcap region, covering

the range 1.653 < |η| < 2.6. It is a sampling calorimeter with two layers of lead

absorber and silicon strip detectors. The first layer of lead absorber has a thickness

of 2X0, while the second layer has a thickness of 1X0. Each layer of silicon strips

is 320µm thick and can collect 3.6 fC of charge from a minimum ionizing particle.
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3.4 Hadron Calorimeter

The hadron calorimeter (HCAL) is a sampling calorimeter which measures

the energy of hadrons. The HCAL is especially important for measuring neutral

hadrons, which do not leave tracks in the tracker. In addition, by containing all

hadronic activity in each event within |n| < 5, the HCAL enables the measurement

of E/T caused by neutrinos and other theoretical weakly-interacting particles. The

HCAL consists of four subsystems. Three of these subsystems use similar technol-

ogy: the HCAL barrel (HB), the HCAL endcap (HE), and the HCAL outer (HO).

The fourth subsystem, the HCAL forward (HF), uses an alternative technology nec-

essary to survive the high radiation doses at its forward location. The locations of

the various HCAL subsystems in the CMS detector are shown in Fig. 3.7. The

calorimeter system, combining the ECAL and the HCAL, can measure charged pi-

ons with a resolution σ/E ≈ 100%/
√
E [GeV]⊕ 5% that varies with the jet energy

E.

The HB is a 16-layer sampling calorimeter covering the range |η| < 1.3. The

absorbing layers are made of C26000 cartridge brass, composed of 70% copper and

30% zinc. Cartridge brass has a density of 8.53 g/cm3, a radiation length of 1.49 cm,

and a nuclear interaction length of 16.42 cm. The first absorbing layer in the HB is

a 40-mm-thick steel plate. The next eight absorbing layers are 50.5-mm-thick brass

plates, and the subsequent six absorbing layers are 56.5-mm-thick brass plates. The

last absorbing layer is a 75-mm-thick steel plate. The overall thickness of the HB

absorber ranges from 5.82 nuclear interaction lengths (λ0) at η = 0 to 10.6λ0 at
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Figure 3.7: The layout of the HCAL subsystems HB, HE, HO, and HF in the CMS
detector.

|η| = 1.3. The EB in front of the HB has a thickness of 1.1λ0 and can measure

the electromagnetic portions of early developing hadronic showers. The scintillating

layers consist of 3.7-mm-thick Kuraray SCSN81 plastic scintillator, a polystyrene

base doped with fluors. The exception is Layer 16, which has a thickness of 9 mm,

in order to sample more from late developing hadronic showers. At the front of the

HB, before the first absorbing layer, is the scintillator Layer 0, which is 9 mm of

Bicron BC408 plastic scintillator, a polyvinyltoluene base doped with fluors. Layer

0 samples the energy deposited by hadronic showers in the dead material between

the EB and the HB. The scintillator tiles are arranged in a projective geometry

with a granularity of 0.087 × 0.087 in η-φ. In total, the HB has 16 η divisions, 36

φ divisions, and approximately 70000 tiles. The light from the scintillators is col-

lected by Kuraray Y-11 green wavelength shifting (WLS) fiber, which is placed in a
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groove shaped like the Greek letter σ in the scintillator tiles. The wavelength-shifted

light from multiple layers is brought together and read out by hybrid photodiodes

(HPDs). These photodetectors are used because of their large dynamical range and

low sensitivity to magnetic fields.

The thinness of the HB at low η prevents it from fully containing hadronic

showers, so the HO is added to act as an extension of the calorimeter system. The

HO uses the same scintillator tile technology as the HB: 3.7-mm-thick SCSN81 with

Y-11 WLS fiber and granularity 0.087×0.087 in η-φ, read out by HPDs. The residual

magnetic field outside of the CMS solenoid is misaligned with the HPDs in the HO,

causing random noise discharges [47, 48]. The HO is divided into five rings, each

with a width of 2.536 m in the z direction, based on the structure of the iron return

yoke outside of the solenoid. In the central Ring 0, the HO has two scintillating

layers, one inside the solenoid and one outside of it. In the other rings, the HO has

one scintillating layer outside of the solenoid. The thickness of the absorbing iron

layer formed by the solenoid is 19.5 cm, extending the total depth of the calorimeter

system to a minimum of 11.8λ0.

The HE is a 17-layer sampling calorimeter covering the range 1.3 < |η| < 3.0.

Each absorbing layer consists of 79-mm-thick cartridge brass, the same material

used for the HB absorbing layers. The scintillating layers use the same technology

as the HB and the HO. In total, the HE contains 20916 scintillator tiles. The

granularity of the tiles is the same as HB for |η| < 1.6; for higher η, they become

coarser, with a granularity of approximately 0.17× 0.17 in η-φ. Unlike the HB, the

scintillating layers in each tower are split into multiple groups called depths before
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being read out by HPDs. A diagram of the depth segmentation scheme is shown

in Fig. 3.8. This depth segmentation allows for more precise recalibration of the

HE, which experiences a higher radiation dose than the HB. Towers 27, 28, and 29,

which are the closest to the beamline, have three readout depths, while the other

towers have two readout depths. The crossover region between the HB and the HE,

towers 15 and 16, also utilize depth segmentation. As in the HB, Layer 0 in the HE

consists of 9-mm-thick BC408 to sample from the dead material between the EE

and the HE. The combined calorimeter system, including both the EE and the HE,

has an approximate thickness of 10λ0.

The HF covers the range 3.0 < |η| < 5.0, with no ECAL in front of it. It

consists of a steel absorber structure with a thickness of 165 cm or 10λ0. Polymer-

cladded quartz fibers with diameter 800µm are embedded in the steel absorber. The

fibers are bundled together to form 13 towers in a non-projective x-y geometry with

granularity 0.175 × 0.175 in η-φ. Over 1000 km of fiber is used in the HF. Half of

the fibers run for the full 165 cm depth of the detector, while the other half start

22 cm into the detector. Electromagnetic showers deposit most of their energy in

the first 22 cm of the HF, while hadronic showers deposit energy throughout the HF.

Therefore, by reading out each type of fiber separately, the two types of showers

can be distinguished. The fibers measure particle showers using Cherenkov light,

which is read out by photomultiplier tubes (PMTs). They measure approximately

1 photoelectron for every 4 GeV of energy deposited. This alternative design was

necessary to ensure the radiation hardness of the HF, parts of which can experience

100 Mrad/year.
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Figure 3.8: A diagram of the depth segmentation scheme in the HB and the HE.

3.5 Solenoid

The superconducting solenoid is the central feature of the CMS detector. The

solenoid provides a magnetic field of 3.8 T within the volume formed by its diameter

of 6 m and length of 12.5 m. This strong magnet field is necessary so that high

energy charged particles bend sufficiently for the tracker to measure their momenta

accurately. At full current, the solenoid has a stored energy of 2.35 GJ. The magnet

is constructed from a 4-layer winding of reinforced NbTi conductor, cooled to 4.5 K.

It is split into five rings of equal length. The cold mass of the magnet is 220 tons,

and the high ratio between the stored energy and the cold mass, 11.6 KJ/kg, causes

a significant mechanical deformation of 0.15% when the magnet is powered. Figure

3.9 shows an artistic rendering of the solenoid.

44



Figure 3.9: An artistic rendering of the CMS solenoid, showing the five rings placed
inside the cryostat, along with the support structure.

3.6 Muon System

The identification and measurement of muons is a major focus of the CMS

experiment. The CMS muon system comprises three subsystems, each utilizing

different gaseous particle detection technologies. In the barrel region, drift tubes

(DTs) are used. In the endcap region, cathode strip chambers (CSCs) are used.

Resistive plate chambers (RPCs) are also used in both regions. The muon systems

are built into the iron yoke, which consists of five barrel rings and six endcap disks

weighing 10000 tons in total. The yoke confines the outer magnetic field from the

return flux from the solenoid and absorbs stray hadrons. The layout of the muon

45



system is shown in Fig. 3.10. For 1 TeV muons, the resolution varies between 15%

and 40%, depending on |η|. When the muon system measurements are combined

with measurements from the tracker, the 1 TeV muon resolution is improved to 5%.
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Figure 3.10: The layout of the muon system, with the three subsystems labeled.

The DTs are divided into four stations, which together cover the range |η| < 1.2

and are labeled MB1 through MB4 (Muon Barrel). The first three stations each

contain twelve chambers divided into three groups of four. Two of the groups of

four measure the r-φ coordinate of muons, while the third group of four measures

the z coordinate. MB4 does not include a group of chambers that measures z. All

four stations together contain 250 DTs with a total of 172000 sensitive wires. The

gas used in the DTs is a mixture of 85% Ar and 15% CO2, and the anode wires
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are gold-plated stainless steel with a diameter of 50µm. Within |η| < 0.8, the

MB stations alone can reconstruct high-pT muon tracks with an efficiency exceeding

95%. The global r-φ resolution is 100µm.

The CSCs are also divided into four stations and cover the range 0.9 < |η| <

2.4. The four stations are labeled ME1 through ME4 (Muon Endcap). Each station

is divided into several groups as follows: ME1 has three groups of 72 CSCs; ME2

and ME3 each have one group of 36 CSCs and another group of 72 CSCs; ME4

has one group of 36 CSCs. The total number of CSCs is thus 468. The cathode

strips are arranged in the radial direction to measure the r-φ coordinate, while the

anode wires are perpendicular to the strips to measure η. There are approximately

220000 cathode strip readout channels and 180000 anode wire readout channels.

The CSC gas mixture is set at 40% AR, 50% CO2, and 10% CF4. The cathode

strips are formed from a fiberglass/epoxy material called FR4, coated with 36-µm-

thick copper. The anode wires are made of gold-plated tungsten with a diameter of

50µm. The first group of ME1 CSCs uses slightly thinner wire with 30µm diameter

and has some other slightly modified properties.

To complement the DTs and CSCs, RPCs are installed in both the barrel

and endcap regions, covering the range |η| < 1.6. The RPCs are primarily used to

provide muon trigger information, due to fast tagging capabilities which allow them

to precisely identify the bunch crossing time of muon candidate events. The time

resolution of the RPCs is less than 3 ns, compared to maximum drift times of 400 ns

for the DTs and 60 ns for the CSCs. MB1 and MB2 each have one internal and one

external group of RPCs, relative to the DTs; MB3 and MB4 each have two internal
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groups of RPCs. These groups together comprise 480 chambers. In the endcap,

there are three RPC stations mounted in concentric circles on the iron yoke disks,

with a total of 144 chambers. The RPCs are parallel plate detectors filled with a

gas mixture of 96.2% C2H2F4, 3.5% iC4H10, and 0.3% SF6.

3.7 Trigger

The LHC operates at a high instantaneous luminosity, up to 1034 cm−2 s−1.

With an expected proton-proton cross section of 100 mb at the LHC center-of-mass

energies, the collision rate is approximately 1 MHz. The CMS trigger is necessary to

reduce this high rate of collision events to a rate which can be stored and processed.

The trigger system consists of two stages. The first stage uses hardware and is

called the Level-1 (L1) Trigger. The L1 Trigger is designed to have a maximum

output rate of 100 kHz. The second stage is the High Level Trigger (HLT), which

uses software and reduces the output rate to O(100 Hz).

The L1 Trigger uses custom-built programmable electronics, including field-

programmable gate arrays (FPGAs), memory lookup tables (LUTs), and application-

specific integrated circuits (ASICs). All of the subdetectors send input to the L1

Trigger, which is organized into local, regional, and global components as shown in

Fig. 3.11. The local components, Trigger Primitive Generators (TPGs), are con-

structed from energy deposits in the calorimeters and track segments or hit patterns

from the muon system.

The TPGs from the ECAL, the HCAL, and the HF are combined into the
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Regional Calorimeter Trigger (RCT). The RCT groups calorimeter trigger towers

into regions, which are made up of four towers in the barrel and endcap, and one

tower in the HF. These regions are used to determine electron and photon candi-

dates, as well as transverse energy sums (
∑
ET) and tau-jet vetoes. The RCT also

passes information to the muon triggers about minimum ionizing particle (MIP)

energy deposits and surrounding energy deposits that indicate whether muon candi-

dates are isolated from other particles. Using information from the RCT, the Global

Calorimeter Trigger (GCT) determines jet candidates and counts, providing up to

four jets and four tau-jets from the central HCAL and four jets from the HF. The

GCT also determines total ET, E/T, and HT, which is calculated as
∑
ET for all jets

above a certain threshold.

In parallel, the muon DT, CSC, and RPC systems each produce their own

local triggers. The Regional Muon Trigger (RMT) contains the DT and CSC Track

Finders (DTTF, CSCTF) which make tracks using segments from their respective

subdetectors. As mentioned in Sec. 3.6, the RPCs act as a dedicated trigger using

their timing resolution of 1 ns to determine bunch crossing times. The Global Muon

Trigger (GMT) combines the information from the RMT and RPCs to produce up

to four muon candidates in each of the barrel and endcap regions. These candi-

dates include the following information: pT, charge, η, φ, a quality code, MIP, and

isolation.

Finally, the Global Trigger (GT) combines the GCT and GMT candidates and

quantities to decide whether or not to keep the event, based on a set of L1 triggers

with different criteria. The GT also uses information from the Trigger Control
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System (TCS) regarding the status of the subdetector readout and data acquisition

systems. The Timing, Trigger, and Control (TTC) system is used to return the GT

decision, called the Level-1 Accept (L1A), to the various subdetectors. This entire

process is completed within 3.2µs. During this time, the high-resolution data for the

event must be stored in memory, while O(100) subsequent bunch crossings occur.

All of this incoming data must be pipelined in order to synchronize the results of

the various steps of the trigger system for each event.

Figure 3.11: The architecture of the L1 Trigger.

The HLT further analyzes events which pass the L1A decision. Using a farm

of roughly 1000 commercial processors comprised of over 13000 central processing

units (CPUs), it emulates the full offline reconstruction algorithms described in Ch.

4. Like the L1 Trigger, the HLT uses a set of triggers with different criteria, called
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the trigger menu. Different trigger menus are constructed for various conditions,

including different instantaneous luminosity levels and different types of collisions

or measurements. The selected menu can be changed during the operation of the

detector in response to new conditions. Events which pass the HLT decision are

sorted into primary datasets (PDs) with minimal overlap. The HLT output includes

several streams, including monitoring and calibration streams in addition to the

primary stream of physics events.

During the 2012 run, the L1 Trigger operated at rates up to 100 kHz with only

3% dead time [49]. The HLT operated at rates up to 1 kHz and took an average of

200 ms to process an event [50]. This processing speed is two orders of magnitude

faster than the full offline reconstruction. The HLT achieves this fast processing

time using several optimizations. The reconstruction algorithms in a given trigger

path are arranged so that the fastest algorithms run first. If an algorithm’s product

does not pass a specified quality filter, the rest of the trigger path is skipped. In

addition, the reconstruction algorithms only consider small regions of the detector

output, based on the locations of L1 candidates.

3.8 Luminosity Measurement

The fine resolution of the CMS pixel detector (Sec. 3.2) implies that a given

pixel will tend to be activated by one track at most per bunch crossing. Clusters

are created from groups of nearby activated pixels in the tracker. A minimum

bias interaction creates an average of 200 clusters, with each cluster containing an
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average of 5 pixels [51]. Even with 100 pileup events per bunch crossing, the pixel

detector will have an occupancy as low as 0.1%. The number of pixel hits should thus

scale linearly with the number of interactions per bunch crossing for instantaneous

luminosities up to and even beyond the LHC design performance. Equation (3.2)

shows how the instantaneous luminosity L is related to the average number of pixel

clusters per event 〈n〉 [52]:

L =
ν〈n〉
σvis

. (3.2)

Here, ν = 11246 Hz is the LHC revolution frequency and σvis is the the visible cross

section, calibrated by a Van der Meer scan [53]. In 2012, CMS measured the total

integrated luminosity with a systematic uncertainty of 2.6% using this method.

The HF is used as a second method of measuring the luminosity. This is

possible because the HF can be run safely during unstable beams [52]. Information

from the HF can be used to measure the luminosity in two different ways. The

average fraction of empty towers can be related to the mean number of interactions

per crossing, or the average transverse energy per tower can be linearly related

to the luminosity. It can make an online determination of the average luminosity

to a statistical uncertainty of 1% in under 1 s. However, the calibration of this

measurement can drift over long time periods due to changes in the gain of the HF

PMTs. In practice, the increase in pileup interactions observed during the 2012

run moves the HF response into a nonlinear regime, limiting the accuracy of this

method. Because of these limitations, the HF method is utilized primarily as a

cross-check for the pixel cluster counting method.
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Chapter 4: Event Reconstruction

Particles created in proton-proton collisions pass through the CMS detector

and leave signals in different subdetectors. Figure 4.1 shows examples of typical

signals for different types of particles. Each type of particle has a different charac-

teristic signature from which it can be identified using information from the various

subdetectors. Muons, electrons, and charged hadrons create tracks in the tracker,

while photons and neutral hadrons do not. Muons also create hits in the muon sys-

tems. Electrons and photons deposit energy in the ECAL, while charged and neutral

hadrons deposit most of their energy in the HCAL. Neutrinos do not deposit any

energy in the detector. Their presence must be inferred from missing transverse

energy.

The raw output from each subdetector is processed in several steps in order to

reconstruct the different types of particles [55]. The first step is local reconstruction,

which involves the creation of reconstructed hits or “RecHits” for each subsystem of

each subdetector. The tracker RecHits include information about the positions of

clusters, which are combinations of contiguous strips or pixels that contain signals,

and energy deposition information used for particle identification. The muon sys-

tem RecHits also provide the positions of signals. In the DT and CSC subsystems,
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Figure 4.1: A cross-sectional view of the CMS detector with all subdetectors labeled
and examples of signals left by muons, electrons, charged hadrons, neutral hadrons,
and photons [54].

these RecHits can be combined into three-dimensional track segments, which pro-

vide information about the direction of the particle that created them. The ECAL

and HCAL RecHits contain the energy, position, and time of energy deposits from

traversing particles.

In the second step, global reconstruction, the RecHits from the different sub-

systems of a given subdetector are combined and further processed. In the tracker,

pattern recognition algorithms are employed to reconstruct tracks for various cases,

including displaced vertices, low pT tracks, and high pT tracks. The ECAL and

HCAL RecHits are summed if they are in the same tower, forming calorimeter

towers or “CaloTowers” using a projective η-φ geometry. “Standalone” muons are

created by the muon system global reconstruction, which associates RecHits and

track segments that have compatible radial trajectories, accounting for bending by
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the residual magnetic field, and uses a vertex-constrained fit.

High-level reconstruction is the final step, in which information from all subde-

tectors is used to reconstruct various types of particles as precisely as possible. The

particle types used in this search include electrons, muons, taus, jets, and b-jets.

E/T is also used in the definitions of some samples used for background estimations.

The reconstruction algorithms for these particles will be described in more detail in

the following sections of this chapter. Many of these algorithms use a particle flow

technique that will be described in Sec. 4.4.

4.1 Event Generation

Protons are primarily composed of two up quarks and one down quark. Be-

cause protons are QCD bound states, those three quarks should be treated as valence

quarks, the most prominent features in a quark-gluon sea of virtual particles. At

high energies such as those present in LHC collisions, the presence of additional

quarks and gluons, collectively called partons, becomes significant. The fraction

of the momentum of a hadron (such as a proton or neutron) A carried by a par-

ton a is defined as xa, and the PDF for that parton is fa/A(xa, Q
2), where Q2

is the momentum scale of the interaction, typically the square of the total four-

momentum in a collision. PDFs are calculated using experimental data sets, with

different groups taking different approaches to analyzing the data and modeling

proton behavior. The CMS experiment primarily uses PDFs from Martin-Stirling-

Thorne-Watt (MSTW) and the Coordinated Theoretical-Experimental Project on
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QCD (CTEQ). Figure 4.2 shows an example set of PDFs calculated at NLO by

MSTW [56]. At high momentum scales, even bottom quarks may be present in the

quark-gluon sea of a proton. The dependence of the PDFs on Q2 is given by the

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations [57].
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Figure 4.2: PDFs calculated at NLO by MSTW, plotted against momentum fraction
x for two different values of the momentum scale Q2 [56].

The QCD factorization theorem states that large logarithmic factors, for ex-

ample from collinear emission of gluons, can be included in the definition of the

PDFs for all hard-scattering processes. The DGLAP equations are used to account

for the dependence of this factorization on Q2. With this theorem, the interaction

of parton a in proton A with parton b in proton B, producing the final state X, can
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be written simply:

σAB→X(s) =

∫
dxadxbfa/A(xa, µ

2
F )fb/A(xb, µ

2
F )σ̂ab→X(ŝ, µ2

R) (4.1)

For such an interaction at high energy, the center-of-mass energy is
√
ŝ =
√
xaxbs,

where
√
s is the center-of-mass energy of the proton-proton system. There are two

scales in Eq. 4.1: the factorization scale µF which separates long-distance physics

from short-distance physics, and the renormalization scale µR of the QCD running

coupling. Values for these scales are typically chosen to be characteristic of the

hard scattering, with µF = µR. In addition to the primary hard-scattering process,

the incoming protons and outgoing final state particles may radiate photons and

gluons in processes called, respectively, initial state radiation (ISR) and final state

radiation (FSR). The remnant partons which did not participate in the primary

hard scatter may undergo soft interactions; these are collectively considered to be

the “underlying event”. All of these possible interactions in a proton-proton collision

are visualized in Fig. 4.3.

Various event generation programs exist to simulate proton-proton collisions.

The simulation of the hard scattering relies on a 2→ 2 matrix element to calculate

σ̂ab→X(ŝ, µ2
R). Usually, the LO matrix element and PDFs are used for the simula-

tion, and the results are scaled to NLO or NNLO using a K-factor derived from the

ratio of the relevant cross sections. The program pythia [58] uses a parton show-

ering approach to model ISR and FSR. Other generators such as MadGraph [59]

use alternate approaches which more accurately simulate additional hard radiation

outside of the primary hard scattering process, but must be combined with a pro-
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Figure 4.3: An illustration of a proton-proton collision, showing the hard scattering,
ISR, FSR, and the underlying event [57].

gram like pythia for showering from soft and collinear radiation. powheg [60,61]

is a generator which uses NLO matrix elements and PDFs by matching them with

parton shower contributions to prevent double counting. After the initial event gen-

eration, MadGraph and powheg are interfaced with pythia for hadronization.

In addition, a specialized program called tauola [62] can be applied for accurate

handling of tau lepton decays.

4.2 Detector Simulation

Monte Carlo (MC) simulation is used to model the response of the CMS detec-

tor to a proton-proton collision event, using the final state particles output by event

generators. The progression of each particle through the detector is tracked using

the Geant4 software [63,64]. The geometry of every subdetector and subsystem is
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carefully simulated to ensure the accuracy of the simulation. The conditions of the

real detector, including alignment and calibration changes, are measured periodically

and stored in a database which can be used to configure the simulation. Geant4

includes customizable physics lists containing models of various physical processes

to simulate the interactions of particles with matter. The models of electromagnetic

processes are generally precise, while the models of hadronic interactions have larger

uncertainties. The detector simulation creates simulated hits or “SimHits” for each

subdetector from the deposition of energy or charge based on those interactions.

The effects of photodetectors and readout electronics on these SimHits are then

simulated, mimicing the real subdetectors’ data acquisition processes. The ROOT

software library [65] is used to store and analyze both the simulated and observed

data.

4.3 Tracks and Vertices

Hits from the different tracker subsystems are reconstructed into charged-

particle tracks using the Combinatorial Track Finder (CTF) algorithm [66]. CTF is

an iterative algorithm which first identifies the tracks that are the easiest to find, in

order to remove the associated hits from consideration. This reduces the complexity

of identifying the tracks that are more difficult to find, which is done in subsequent

iterations. Each iteration follows the same four-step procedure, varying the type of

seed used and the selection criteria applied.

1. A seed is generated using only a few hits.
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2. Additional hits are added to the track based on the extrapolated trajectory of

the seed.

3. The parameters of the track are estimated using a fit which considers all hits

in the trajectory.

4. Selection criteria are applied to determine the quality of the track, and tracks

which do not pass the selection are excluded.

The types of seeds are categorized based on the number of hits included and

the source of those hits. Initial iterations use pixel triplet and pair seeds, created

from three and two pixel hits, respectively. These are the highest-quality seeds

and are used to reconstruct prompt tracks (those emitting from primary vertices

near the IP). A subsequent iteration uses a mixed triplet seed, containing 1–3 pixel

hits and <3 strip hits. This iteration typically finds displaced tracks from heavy

flavor decays, nuclear interactions, and photons which convert to e+e− pairs in the

tracker. The final iterations use strip pair seeds, consisting of two matched hits from

the strip detectors, usually generated by charged particles which did not enter the

pixel detector.

The iterations that use seeds with strip hits may also find prompt tracks which

lack pixel hits. The specific sequence of iterations has been modified several times

to improve the computing and physics performance of CMS tracking [67]. Table 4.1

lists the sequence used during the 2012 run. The selection criteria for each iteration

are given, including cuts on pT, transverse impact parameter d0, and longitudinal

impact parameter z0. Some of the z0 cuts are in terms of σ, the length of the beam
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spot in the z-direction as determined by a Gaussian fit.

step seed type seed subdetectors pT [GeV/c] d0 [cm] |z0|
0 triplet pixel >0.6 <0.02 <4.0σ
1 triplet pixel >0.2 <0.02 <4.0σ
2 pair pixel >0.6 <0.015 <0.09 cm
3 triplet pixel >0.3 <1.5 <2.5σ
4 triplet pixel/TIB/TID/TEC >0.5–0.6 <1.5 <10.0 cm
5 pair TIB/TID/TEC >0.6 <2.0 <10.0 cm
6 pair TOB/TEC >0.6 <2.0 <30.0 cm

Table 4.1: The sequence of tracking iterations used during the 2012 run, including
information on the seeds and selection criteria used in each step [67].

The reconstructed tracks are used to reconstruct the primary vertices from the

event [66]. This includes both the main hard scatter vertex and additional vertices

from pileup collisions. First, selection requirements are imposed on the tracks,

in order to consider only prompt tracks near the IP. The selection requirements

include cuts on the significance of d0, the number of pixel and strip hits in the

track, and the normalized χ2 from the fit of the track trajectory. The tracks which

pass the selection requirements are clustered together using their z-coordinates,

determined at each track’s closest approach to the beam spot. A deterministic

annealing algorithm is used to perform this clustering, in which each track may

have a different probability to be associated with each vertex. The algorithm uses

analogues of statistical mechanics quantities, slowly reducing the “temperature” and

minimizing the “free energy” during each temperature iteration.

Once the deterministic annealing algorithm produces a list of vertex candi-

dates, an adaptive vertex fitter is applied to each vertex candidate. This fitter

weights each track in the vertex based on the agreement between the track and
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vertex positions. Using those weights, it fits the parameters of the vertex, including

the (x, y, z) position, the covariance matrix, and the number of degrees of freedom,

ndof = −3 + 2
∑
wi, where wi is the weight for the ith track. The variable ndof can

be used to select vertices which correspond to actual proton-proton interactions, as

it is closely related to the number of tracks compatible with the vertex.

Several requirements are applied to the reconstructed primary vertices to en-

sure high quality [68]. The number of degrees of freedom ndof must be greater than

4. The longitudinal position z of the vertex must obey |z| < 24 mm, and the trans-

verse position ρ must obey |ρ| < 2 mm. The other reconstructed objects described

below can be assigned to a reconstructed vertex. The closest vertex to the track

associated with the object is chosen as its vertex. For electrons, the GSF track is

used; for muons, the best track is used; and for hadronically decaying tau leptons,

the track of the leading charged hadron is used.

4.4 Particle Flow

The CMS experiment uses a technique called particle flow (PF) to combine

information from all subdetectors in order to identify all stable particles in each event

[69]. As described at the beginning of this chapter and shown in Fig. 4.1, each type of

stable particle is expected to create signals in a certain subset of the subdetectors.

The performance of the PF algorithm was validated using early CMS data [70,

71], along with newer CMS data for more recent versions of the algorithm [72],

demonstrating significant improvement over simpler approaches. The reconstructed
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particles are known as PF candidates, which can be treated as input particles by

the various high-level reconstruction algorithms.

The RecHits from the local reconstruction process are used to create the basic

elements for this technique: tracks and clusters. Charged-particle tracks are cre-

ated from tracker RecHits using an iterative algorithm as described in Sec. 4.3, and

muon tracks are created from muon system RecHits. Calorimeter energy deposits

are grouped into clusters by identifying seed hits as local energy maxima exceeding

a certain threshold, and then adding neighboring hits with energy above subsystem-

specific thresholds meant to eliminate photodetector noise. Further removal of noise

from the calorimeters is performed by rejecting clusters with characteristics match-

ing those expected from leading sources of noise. Tracks and clusters are associated

together using a linking algorithm that determines if they were likely produced by

the same particle. The algorithm considers a possible link between each element

based on the η-φ distance between a charged-particle track and a cluster, account-

ing for propagation in the magnetic field, or between two clusters. For links between

a charged-particle track and a muon track, the χ2 value from a global fit is used as

the link distance. Groups of elements are associated based on minimizing the link

distance and are called “blocks”.

PF reconstruction algorithms classify the blocks as different types of particles.

When a block is classified as a certain type of particle, it is removed from the list of

unclassified blocks. A global muon block is accepted as a PF muon if the momentum

of the combined charged-particle and muon tracks agrees with the momentum of the

charged-particle track alone. The energy expected to have been deposited by the
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PF muons in the calorimeters due to minimum ionization is subtracted from the

clusters. The remaining charged-particle tracks are checked for compatibility with

electrons, which tend to radiate energy via bremsstrahlung, causing the curvature of

their tracks to increase with radial distance in the tracker. A Gaussian Sum Filter

(GSF) is used to fit the compatible tracks in order to match their trajectories with

ECAL clusters, and the combination of a track and one or more clusters is classified

as a PF electron. Using a mixture of Gaussians to select the electron track better

accounts for the energy loss from bremsstrahlung, as compared to the standard CMS

track finding procedure [73].

The remaining tracks are linked to clusters to form PF charged hadrons, when

the total cluster energy is similar to but smaller than the total track momentum.

More than one track can link to a given cluster, but for a given track, only the

link to the closest cluster is kept. This reflects the coarser segmentation of the

calorimeter system as compared to the tracker. In cases where the total cluster

energy is significantly smaller than the total track momentum, additional PF muons

may be found using tracks from the block, and some tracks may be classified as fake

and removed from consideration. Finally, an excess of energy in the clusters, above

the total track momentum, is assumed to come from neutral particles. Any excess

energy in the ECAL is typically classified as a PF photon. If additional excess

energy remains after this, a PF neutral hadron is created. The remaining clusters

not linked to any tracks are used to create PF photons in ECAL and PF neutral

hadrons in HCAL.
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4.5 Electrons

The electron candidates reconstructed by the PF algorithm are considered to

be “tracker-driven” [74]. This approach is suitable for low-pT electrons and electrons

produced by jets. For higher-pT electrons, an alternative “ECAL-driven” approach is

used, distinct from the PF framework. ECAL clusters are grouped into superclusters

to account for bremsstrahlung photons radiated by electrons as they traverse the

tracker, as well as the spread of energy in the φ-direction due to the magnetic

field [75]. Similarly to the PF algorithm, these superclusters are matched with track

seeds and a GSF is used to reconstruct the trajectory of the electron track. The

lists of tracker-driven and ECAL-driven electron candidates are compared to avoid

double counting.

Quality cuts on various kinematic variables are applied to the GSF electron

candidates to identify whether or not they are genuine electrons [76]. A set of cut

values is called a working point, and multiple working points are defined based on the

strictness of the cut values. The η width of the supercluster, σiηiη, is taken from the

covariance matrix of a weighted difference between the η positions of the included

crystals and the seed cluster. A modified η variable which accounts for the crystal

spacing is used, and each crystal’s contribution is weighted using the logarithm of

the ratio of its energy to the seed cluster energy [77]. The differences in position of

the supercluster, (ηsc, φsc), and the extrapolated track, (ηextrap
in , φextrap

in ), are defined

as |∆ηin| = |ηsc − ηextrap
in | and |∆φin| = |φsc − φextrap

in |. The leakage energy H in the

HCAL tower located behind the ECAL seed cluster is compared to the energy of
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the seed cluster E in the variable H/E. The transverse and longitudinal impact

parameters of the electron track compared to its associated vertex, dvtx
0 and zvtx

0 ,

are used. The variable |1/E − 1/p|, comparing the electron energy and momentum,

is also considered. Finally, isolation is computed by summing the pT of charged

hadron (CH), neutral hadron (NH), and photon (γ) PF candidates within a cone of

∆R < 0.3 of the electron candidate, including a correction for contributions from

pileup based on the median energy per area ρ and the effective area of the electron

Aeff:

IPF
e =

∑

∆R<0.3

p
(CH)
T + max

( ∑

∆R<0.3

p
(NH)
T +

∑

∆R<0.3

p
(γ)
T − ρAeff, 0

)
. (4.2)

The relative isolation IPF
e /p

(e)
T , scaled by the pT of the electron, is used for the quality

cuts.

Two working points for the quality cuts described in Sec. 4.5 are used to

identify reconstructed electrons in the analysis performed in this dissertation. Table

4.2 lists the various requirements for each working point. Electrons are required to

be in the barrel with |η| < 1.444 or in the endcap with 1.56 < |η| < 2.5. The leading

electron in the eτh channel is selected with the medium working point. In addition

to these quality cuts, it is required to have pT > 30 GeV to match the specifications

of the HLT criterion used to collect the PD, as described in Sec. 5.1.1. The loose

working point is used to veto additional electrons and for selections in some samples

used for background estimations. The less restrictive kinematic cut pT > 20 GeV is

applied to electrons identified with the loose working point.
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Cut Variable
Cut Value

Medium Loose
Barrel Endcap Barrel Endcap

IPF
e /pT < 0.15 0.15 0.15 0.15
σiηiη < 0.01 0.03 0.01 0.03
|∆φin| < 0.06 0.03 0.15 0.10
|∆ηin| < 0.004 0.007 0.007 0.009
H/E < 0.12 0.10 0.12 0.10
|dvtx

0 | < 0.02 0.02 0.02 0.02
|dvtx
z | < 0.1 0.1 0.2 0.2

|1/E − 1/p| < 0.05 0.05 0.05 0.05

Table 4.2: The quality cuts for the medium and loose working points of the electron
identification.

4.6 Muons

The PF muon candidates are used for muon reconstruction. In addition, two

supplementary methods are used to reconstruct muons [78]. The first method con-

siders all charged-particle tracks from the tracker, above minimal pT and p cuts,

and creates a “tracker muon” from any track whose extrapolated position matches

a track segment in the muon system. This method is efficient for low-momentum

muons. The second method produces “global muons”. This method starts with

a standalone muon from a track segment in the muon system and finds a match-

ing track from the tracker. A global muon fit is then performed using both the

muon system and tracker tracks, which can provide better momentum resolution for

high-pT muons. The global and track muon candidates, along with any remaining

standalone muons which were not matched to a charged-particle track, are combined

into one collection in order to prevent double counting.

As with electrons, working points are defined based on sets of quality cuts with
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different strictness. These cuts can include minimum numbers of muon system hits

and segments, as well as minimum numbers of pixel hits and overall tracker hits.

The reduced χ2 from the global muon fit is considered. The distances between the

primary vertex and the transverse and longitudinal impact parameters d0 and dz

of the tracker track are also used. The isolation is calculated using PF candidates

within a cone of ∆R < 0.4 of the muon:

IPF
µ =

∑

∆R<0.4

p
(CH)
T + max

( ∑

∆R<0.4

p
(NH)
T +

∑

∆R<0.4

p
(γ)
T −∆β

∑

∆R<0.4

p
(PU)
T , 0

)
. (4.3)

A ∆β pileup (PU) correction is applied using the pT of PU particles, which are

identified as charged PF candidates from a different vertex than the muon. The ∆β

factor is assigned a value of 0.5 based on the expected ratio of charged to neutral

particles in pileup [70]. Again, cuts are made on the relative isolation IPF
µ /p

(µ)
T .

The selections on these quantities are intended to minimize the contribution from

cosmic ray muons, muons from heavy flavor decays, and leakage from hadronic

showers. They also ensure precise measurement of the muon pT.

Two working points for these quality cuts are used to identify reconstructed

muons in the analysis performed in this dissertation. Table 4.3 lists the various

requirements for each working point. The leading muon in the µτh channel is selected

with the tight working point. In addition to these quality cuts, it is required to have

pT > 30 GeV and |η| < 2.1 to match the specifications of the HLT criterion used

to collect the PD, as described in Sec. 5.1.1. The loose working point is used

to veto additional muons and for selections in some samples used for background

estimations. Less restrictive kinematic cuts pT > 20 GeV and |η| < 2.4 are applied
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to muons identified with the loose working point.

Working Point
Tight Loose

PF muon PF muon
Global muon Global muon OR tracker muon

IPF
µ /pT < 0.12

d0 < 0.2 cm

dz < 0.5 cm

Global track fit χ2/ndof < 10

Global track fit nmuon segment > 0

nhits(pixel) > 0

nlayers(tracker) > 5

nstations(muon) > 1

IPF
µ /pT < 0.3

Table 4.3: The quality cuts for the tight and loose working points of the muon
identification.

4.7 Jets

Due to QCD confinement, strongly interacting particles (quarks and gluons)

cannot exist in a bare state. They immediately form multiple color singlet bound

states, hadrons, using the energy from the gluon field in a process called hadroniza-

tion. These hadrons tend to be produced in a narrow spray, which is called a jet [79].

To reconstruct a jet, the component particles must be clustered together. CMS uses

the anti-kT algorithm [80] to perform this clustering. This algorithm is a specific
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case of a generalized iterative cone algorithm, using the following equations:

dij = min(p2p
Ti, p

2p
Tj)

∆R2
ij

R2
, (4.4)

∆R2
ij = (ηi − ηj)2 + (φi − φj)2, (4.5)

diB = p2p
Ti. (4.6)

Two distance variables are defined: the distance between particles i and j, dij, and

the distance between particle i and the beam, diB. These distances are weighted by

the pT of the particles as indicated, and R is a size parameter. At each iteration,

both distance variables are calculated for all particles. If the minimum distance is

diB, particle i is considered to be a fully-clustered jet and removed from the list of

particles. Otherwise, particles i and j from the minimum dij are grouped together

in the particle list. The algorithm continues to iterate until the particle list is empty.

The anti-kT algorithm is a special case of these equations with parameter p = −1.

It has many desirable properties, including infrared and collinear safety, and the

creation of circular jets with radius R as shown in Fig. 4.4, which aids in the jet

calibration.

CMS chooses the value R = 0.5 for the size parameter and uses PF candidates

for clustering, producing PF jets [69, 70]. Alternative jet methods use CaloTowers

and charged-particle tracks separately or together, but these do not perform as well

as PF jets. Typically, 65% of jet energy goes into charged particles, 25% goes into

photons, and 10% goes into neutral hadrons. Using PF candidates takes advantage

of the excellent energy and position resolution for charged particles and photons

provided by the combination of the tracker and the calorimeters in the PF algorithm.
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Figure 4.4: An example of jets reconstructed with the anti-kT algorithm, demon-
strating the characteristic circular shape [80].

Once a jet is reconstructed, several important types of corrections are applied

to its energy response [81]. First, minimum bias events are used to estimate the

contributions from electronic noise and pileup, and those are subtracted in the offset

correction. Next, the energy response is made uniform in η using the multiplicative

relative correction, derived from simulated dijet events. Finally, the multiplicative

absolute correction is derived from observed γ/Z+jets events, exploiting the precise

energy resolution of the ECAL and the tracker, and applied to make the energy

response uniform in pT.

To ensure the quality of reconstructed jets used in data analysis, a set of

variables is used for PF jet identification [82]. These variables include: the fraction
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of neutral hadrons in the jet fNH, the fraction of neutral EM particles fγ, the fraction

of charged hadrons fCH, the fraction of charged EM particles fEM, the number of

constituents nconstituents, and the multiplicity of charged particles ncharged. Multiple

sets of cuts on these variables are defined as working points [83]. The loose working

point of the PF jet identification algorithm is used to identify reconstructed jets in

the analysis performed in this dissertation. The requirements for the loose working

point are summarized in Table 4.4. To eliminate many jets from pileup interactions,

each selected jet is required to have pT > 30 GeV. The cut |η| < 2.4 is also applied,

in order to include only jets measured in the best-performing regions of the detector.

Cut Variable
Cut Value

Loose
fCH > 0.0
fNH < 0.99
fγ < 0.99

fEM < 0.99
ncharged > 0

nconstituents > 1

Table 4.4: The quality cuts for the loose working point of the jet identification.

4.8 Taus

Tau leptons decay into hadrons approximately 64.76% of the time [8]. These

hadronic decays produce objects similar to jets, but typically narrower and more

isolated. For this reason, PF jets are used as the basis for reconstructing hadron-

ically decaying tau leptons (hadronic taus or τhs). The Hadron Plus Strips (HPS)

algorithm is used to identify tau leptons [84, 85]. The vast majority of τh decays
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consist of a tau neutrino ντ , one or three charged hadrons h− that are either π−

or K−, and zero or more neutral hadrons π0 that almost immediately decay to two

photons. The HPS algorithm only considers the visible decay products, so the ντ is

ignored. Table 4.5 lists the leading hadronic decays, which account for 61.56% of all

tau lepton decays. Some of these decays include intermediate hadronic resonances,

as noted in the table. In the decays with indicated resonances, the non-resonant

contribution is negligible.

Decay Resonance Mass (MeV/c2) Branching fraction (%)
τ− → h−ντ 11.53%
τ− → h−π0ντ ρ− 775 25.95%
τ− → h−π0π0ντ a−1 1230 9.52%
τ− → h−h+h−ντ a−1 1230 9.80%
τ− → h−h+h−π0ντ 4.76%

Table 4.5: The leading hadronic decays of tau leptons, including branching fractions
and intermediate hadronic resonances [8]. The symbol h− can be either π− or K−.

The strips in the HPS algorithm consist of PF photon candidates. Starting

with the most energetic photon in the PF jet, the strip is built using an iterative

search for other photons within a range 0.20× 0.05 in η-φ around the center of the

strip. Each iteration accepts the most energetic photon found and then recalculates

the four-momentum of the updated strip. The strip is complete once no remaining

photons are found in the given window, and it is kept if it passes a minimum pT

cut. The procedure is repeated with any remaining ungrouped photons in the jet.

The formation of strips from photons accounts for spreading of their energy due to

the effect of the magnetic field on conversions in the tracker.

Using the constituents of the PF jet, all combinations of strips with one
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or three charged hadrons are tested, with the charged hadrons assumed to be

pions. All strips and charged hadrons must be found within a cone of ∆R =

max(min(0.10, 3.0/pτhT ), 0.05), where pτhT is the pT of the τh candidate in GeV. The in-

variant mass of each combination, calculated from all constituent strips and charged

hadrons, is required to be within a certain range based on the tau lepton mass and

any hadronic resonance in the decay [86]. Several decay mode topologies are included

in the algorithm, as depicted in Fig. 4.5 and listed below:

1. Single hadron, when no strips are found.

2. One hadron + one strip, when the π0 decay creates one strip from two narrowly

separated photons. The invariant mass of the τh candidate, Mτh , must be in

the range 0.3 < Mτh < max(1.3,min(1.3
√
pτhT /200, 2.1)) GeV.

3. One hadron + two strips, when the π0 decay creates one strip from two nar-

rowly separated photons. In this case, the invariant mass of the two strips

combined, Mstrips, must be in the range 50 < Mstrips < 200 MeV, and Mτh

must be in the range 0.4 < Mτh < max(1.2,min(1.2
√
pτhT /200, 2.0)) GeV.

4. Three hadrons, which requires all three charged hadron candidates to originate

from the same primary vertex and to have the appropriate electric charges.

Mτh must be in the range 0.8 < Mτh < 1.5 GeV.

If more than one combination of PF constituents passes these decay mode finding

requirements, the combination with the highest pτhT is selected.

Isolation is an important tool in discriminating between τhs and jets. The
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Single 
Hadron

Hadron + Strip(s) Three Hadrons

Figure 4.5: A simple diagram of the different hadronic tau decay mode topologies
reconstructed by the HPS algorithm [87].

isolation variable is computed using charged hadron and photon PF candidates

within a cone of ∆R < 0.5 around the τh candidate. A ∆β PU correction is applied

using PU particles within a cone of ∆R < 0.8 which originate from a different vertex

than the τh candidate, with the factor ∆β = 0.4576 [87].

IPF
τh

=
∑

∆R<0.5

p
(CH)
T + max

( ∑

∆R<0.5

p
(γ)
T −∆β

∑

∆R<0.8

p
(PU)
T , 0

)
. (4.7)

The HPS algorithm uses the absolute isolation IPF
τh

for the different working point

quality cuts. The isolation discrimination also requires that each track associated

with the τh contain at least three hits in the tracker. In addition to isolation, it

is necessary to discriminate against electrons and muons which are misidentified as

τhs. The electron-tau discriminator uses a multivariate (MVA) approach, training

boosted decision trees (BDTs) using numerous variables depending on different cases

of τh. These cases include: the possible association of the primary charged hadron

in the τh with a GSF track; the possible association of the τh with a GSF electron

within a cone of ∆R < 0.3; whether or not the τh includes strips; and whether the

τh η coordinate lies in the EB or EE range. Multiple trainings for the anti-electron

MVA discriminator were performed using simulated events and multiple working
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points are defined. The muon-tau discriminator uses a cut-based approach, with

multiple sets of cuts and working points defined. The cuts include requirements to

minimize the activity in the muon system in the direction of the τh and to veto MIP

muons based on energy and momentum.

The working points for each discriminator are listed in Table 4.6 for each

channel of the analysis performed in this dissertation. The loose working point

for the combined isolation requires IPF
τh

< 2 GeV. A tighter working point for the

muon-tau discriminator is used in the µτh channel to increase the rejection of muons

misidentified as tau leptons from, e.g., the Z→ µµ process. The loose working point

for the electron-tau discriminator was found to be optimal for both channels. In

addition to these discriminators, each reconstructed tau lepton is required to have

pT > 30 GeV and |η| < 2.3.

Discriminator
Working Point

eτh µτh

Isolation Loose (3 hits) Loose (3 hits)
e-τ Loose MVA (v3) Loose MVA (v3)
µ-τ Loose (v2) Tight (v2)

Table 4.6: The working points for the different tau discriminators used in the tau
lepton identification.

4.9 b-tagging

Bottom quarks are associated with many interesting physical signatures, in-

cluding decays of top quarks and Higgs bosons, as well as many BSM theories, includ-

ing supersymmetry, that privilege or otherwise relate to third-generation fermions.
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Jets generated by bottom quark hadronization (b-jets) can be identified using cer-

tain properties which set them apart from jets from lighter quarks or gluons [88].

Bottom quarks form hadrons with relatively long lifetimes and decay products that

tend to have high pT. Numerous algorithms have been created to identify b-jets

based on information from tracks or reconstructed secondary vertices from b-hadron

decays. The most successful of these algorithms is the Combined Secondary Ver-

tex (CSV) algorithm, which uses secondary vertices and adds information from the

tracks. The CSV algorithm calculates a likelihood-based discriminator to separate

b-jets and other jets. Loose, medium, and tight working points are defined for this

discriminator, based on setting the probability of misidentifying a light quark or

gluon jet as a b-jet to be 10%, 1%, and 0.1%, respectively [89]. In this dissertation,

the loose working point is used to select b-tagged jets, which requires the discrim-

inator calculated by the CSV algorithm to have a value greater than 0.244. The

loose working point has an efficiency of ∼85%.

For a given jet, the CSV algorithm subjects the tracks within that jet to

additional purity requirements, beyond those specified in Sec. 4.3. The track must

fall within a cone of ∆R < 0.3 relative to the direction of the jet and the distance

between the track and the jet at closest approach must be less than 0.07 cm. The

track must include at least two pixel hits and at least eight total tracker hits, with

χ2/ndof < 5. The impact parameters between the track and the primary vertex must

satisfy d0 < 0.2 cm and dz < 17 cm. Finally, the track must have pT > 1 GeV/c and

decay length less than 5 cm, where decay length is the distance between the primary

vertex and the closest approach of the track and the jet. The significance of the
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track’s impact parameter Sip, defined as the value of the impact parameter divided

by its uncertainty, is a powerful observable. The number of high-quality tracks in

the jet is also used.

Secondary vertices are reconstructed using the adaptive vertex fitter, which

was described in Sec. 4.3. Candidates are rejected if ≥65% of their tracks are also

associated with the primary vertex; if they are outside a cone ∆R < 0.5 with respect

to the jet direction; or if they are radially separated from the primary vertex by more

than 2.5 cm with an invariant mass close to the K0 mass. The CSV algorithm assigns

jets into one of three categories based on the presence of a secondary vertex: real

vertex, pseudo-vertex, and no vertex. In the pseudo-vertex case, the algorithm uses

tracks with Sip > 2 to create an effective secondary vertex when the adaptive vertex

fitter fails. In the no-vertex case, the algorithm defaults to the track-based variables

described previously. Otherwise, the vertex variables used include:

• The significance of the flight distance between the secondary and primary

vertices in the transverse plane.

• The mass of the secondary vertex.

• The number of tracks in the secondary vertex.

• The ratio between the energy in the secondary vertex tracks and the energy

in all the tracks in the jet.

• The ∆η values between each the secondary vertex track and the jet.

• The transverse impact parameter significance for the track that pushes the
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invariant mass of the secondary vertex above 1.5 GeV/c2, the threshold for

charm quarks. This is calculated by sorting the tracks by Sip and combining

them one by one.

4.10 Missing Transverse Energy

Missing transverse momentum is reconstructed as the negative vector sum of

~pT for all PF candidate particles in the event: ~E/T = −∑i ~pT
(i). The magnitude

of this quantity is called the missing transverse energy, denoted as E/T. Because

the incident proton beams have momentum only in the z direction, any imbalance

of measured momentum in the tranverse plane indicates particles which were not

detected. Particles which produce E/T include neutrinos and hypothetical particles

such as the LSP in RPC SUSY. The use of PF candidates allows the contributions

to E/T from photon, electron, and muon candidates, jets, and unclustered energies

to be considered separately. This is important for several types of corrections, which

improve the measurement of genuine E/T from invisible particles [90].

The jet energy scale corrections are applied to the jet contributions in the E/T

calculation, significantly reducing the effects of calorimeter thresholds and nonlin-

earities on the estimation of the E/T magnitude. These corrections are applied for

jets, with the requirements fEM < 0.9 and pT > 10 GeV used to exclude electrons

from the jet collection. Pileup interactions tend to induce non-genuine E/T, also due

to the effects of calorimeter thresholds and response nonlinearities. The correction

to reduce the contribution from pileup is parameterized as a function of the vector
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sum of ~pT from the charged hadron candidates that are identified as pileup based on

their association with vertices other than the primary vertex. A φ asymmetry is also

induced by imperfect detector calibrations and alignment, scaling roughly linearly

with the number of reconstructed vertices. This scaling is used to derive corrections

which are applied separately to the two components of E/T, E/x and E/y, event-by-

event. Various filters are applied to reduce contributions from calorimeter noise and

the beam halo, based on the physical characteristics of these contributions [91].
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Chapter 5: Data Analysis

5.1 Data Samples

5.1.1 Data

The data analyzed in this dissertation consist of 19.712 fb−1 of integrated lu-

minosity, collected by the CMS detector during the 2012 run of the LHC. Figure

5.1 shows the total delivered, recorded, and validated integrated luminosity versus

time throughout the 2012 run. Events are included in the validated data only if the

LHC and the CMS detector were fully operational when the event was recorded.

Events are selected from the single electron and single muon PDs, listed in Table

5.1, for the eτh and µτh channels if they pass the HLT criteria HLT Ele27 WP80

and HLT IsoMu24, respectively. The criterion HLT Ele27 WP80 requires a recon-

structed electron with pT > 27 GeV using the identification working point with 80%

efficiency. The criterion HLT IsoMu24 requires an isolated reconstructed muon with

pT > 24 GeV. The average number of interactions per bunch crossing was 21 [44].
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Figure 5.1: A plot of the total integrated luminosity over time for the 2012 run of
the LHC, showing the luminosity delivered by the LHC (blue), recorded by the CMS
detector (dark orange), and validated as good for physics analysis (light orange) [92].

5.1.2 Monte Carlo

MC simulation is used to study the SM background processes which can mimic

the signatures of the signal processes. For some processes, the MC simulation is used

for the estimation of the final yields and kinematic distributions. For other processes,

the final yields and/or kinematic distributions may be estimated from control regions

in the observed data. More details on the final background estimations are provided

in Sec. 5.3. The leptoquark and top squark signal processes are also modeled using

MC. A full list of the MC samples used in the analysis described in this dissertation
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eτh channel
Dataset Name
/SingleElectron/Run2012A-22Jan2013-v1/AOD
/SingleElectron/Run2012B-22Jan2013-v1/AOD
/SingleElectron/Run2012C-22Jan2013-v1/AOD
/SingleElectron/Run2012D-22Jan2013-v1/AOD

µτh channel
Dataset Name
/SingleMu/Run2012A-22Jan2013-v1/AOD
/SingleMu/Run2012B-22Jan2013-v1/AOD
/SingleMu/Run2012C-22Jan2013-v1/AOD
/SingleMu/Run2012D-22Jan2013-v1/AOD

Table 5.1: The list of data samples used in each channel.

can be found in App. C.

The MadGraph v5.1.3.30 generator [59] is used to model the tt, W + jets,

and Z + jets processes. For the tt process, an inclusive sample is generated including

all decay modes of the two W bosons from the top quark decays. Exclusive samples

with larger numbers of events are also generated, each including only one of three

categories for the W decays: fully leptonic, semileptonic, and fully hadronic. For

the W + jets and Z + jets processes, inclusive samples including any number of jets

are generated. Exclusive samples with larger numbers of events are also generated

separately for events with 1 jet, 2 jets, 3 jets, and 4 jets. Single top quark production

is modeled with the powheg 1.0 r138 [93, 94, 95] generator. The pythia v6.4.24

generator [58] is used to model the diboson processes, including the production of

W+W−, W±Z, and ZZ, collectively denoted as VV. The cross sections for the tt

and single top quark processes are calculated at next-to-next-to-leading logarithmic

(NNLL) accuracy [96]. The cross sections for the inclusive W + jets and Z + jets

processes are calculated at NNLO accuracy, while the cross sections for the exclusive
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production with a specific number of jets are calculated at LO accuracy [97]. For

the VV processes, the cross sections are calculated at NLO accuracy [98].

The leptoquark and top squark signal processes are generated using pythia

v6.4.24 [58]. The leptoquark pair production process is generated for MLQ =

200 GeV to MLQ = 1000 GeV in steps of 50 GeV, with the decay LQ→ τb required.

The cross section for leptoquark pair production is calculated at NLO accuracy [27].

The theoretical uncertainties on these cross sections have been discussed in Sec. 2.3

and are listed in Table 2.3. As mentioned in Sec. 2.4, the deviation between these

LQ production cross sections and the corresponding top squark production cross

sections is less than 2%, so the same cross sections can be used to normalize the

samples for both signals. The simulation of the chargino-mediated λ′3jk decay of the

top squark is summarized in Table 5.2. Samples are generated for Mt̃ = 200 GeV

to Mt̃ = 900 GeV in steps of 100 GeV, where Mt̃ is the top squark mass. The

MSSM parameters for the event generation are M1 = 1000 GeV, M2 = 1000 GeV,

M3 = 1500 GeV, m˜̀ = 1500 GeV, mq̃ = 1500 GeV, mν̃ = 2000 GeV and tan(β) = 40.

Here, M1 is the bino mass term, M2 is the wino mass term, and M3 is the gluino

mass term. The λ′321 coupling is selected for the generation; because reconstructed

light-quark jets are generally indistinguishable regardless of the flavor of the ini-

tial quark, these samples can be used to model signals for all λ′3jk couplings with

j, k = 1, 2.

To account for known discrepancies between the MC simulation and the ob-

served data, various correction factors are applied to the simulated samples. Cor-

rections for the efficiency of muon trigger criteria, identification, and isolation are
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Mt̃ [GeV] Mχ̃± [GeV] µ [GeV] λ′321 Nevents

200 100 100.98 1 539,000
300 200 201.69 1 50,000
400 300 302.49 1 50,000
500 400 403.46 1 50,000
600 500 504.73 1 50,000
700 600 606.55 1 50,000
800 700 709.47 1 50,000
900 800 815.16 1 50,000

Table 5.2: A summary of the generation of signal samples for the chargino-mediated
λ′3jk decay of the top squark. The chargino mass is determined by the value of µ.

calculated using tag and probe methods [99]. Similar correction factors are calcu-

lated for electrons [100,101]. These correction factors depend on the lepton pT and

η, and they are usually consistent with 1 within the uncertainties. The chosen work-

ing points for the hadronic tau lepton discriminators were found not to need any

corrections in the simulation [102]. Correction factors for b-tagging and mistagging

efficiencies, typically in the range 5–10%, are applied using the method called “event

reweighting using scale factors and MC b-tagging efficiencies” with the EPS13 pre-

scription [103]. When E/T is used to define control regions, the energies of the PF jet

candidates used to calculate the E/T in the simulation are smeared to improve the

agreement with the observed jet energy resolution [81]. This improves the modeling

of E/T in the simulation [104]. Each simulated event is weighted based on the true

number of proton-proton interactions in the simulated collision in order to ensure

that the overall distribution of interactions in the simulated sample matches the

observed data.
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5.2 Selection and Optimization

The events analyzed in this dissertation are selected based on requirements

for the numbers and types of different reconstructed objects and the relationships

between those objects within each event. The selection criteria are applied in three

stages. The most basic criteria are applied first in the preselection. This stage is

used to validate the Monte Carlo background simulations by examining various rele-

vant kinematic distributions. Second, the main selection applies additional criteria,

which more closely address the expected properties of signal events. Kinematic dis-

tributions in the main selection are used to optimize the cuts for the final selection,

in order to reduce the contributions from background while enhancing the signal.

These optimizations maximize the expected limit on the mass of the new particle

assuming that only background processes occur, and they use the MC background

simulations. Separate final selections are defined for the leptoquark search and the

top squark search.

5.2.1 Preselection

At the preselection stage, a single primary well-identified light lepton ` is

required. In the eτh channel, this is an electron satisfying the medium working

point and kinematic criteria described in Sec. 4.5. In the µτh channel, this is a

muon satisfying the tight working point and kinematic criteria described in Sec.

4.6. In addition to the light lepton, the event must contain a hadronic tau identified

by the HPS algorithm and associated discriminators as defined in Sec. 4.8. The
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two objects, light lepton and hadronic tau, must have opposite charges, originate

from the same vertex, and be separated by ∆R > 0.5. Two jets are also required,

satisfying the loose working point and kinematic criteria described in Sec. 4.7. The

jets must be separated from the light lepton and the hadronic tau by ∆R > 0.5.

Several cases of additional light leptons are vetoed. To suppress background

from the Z + jets process, events are rejected if they contain additional light leptons

satisfying the loose working point and having the same flavor and opposite charge

with respect to the primary lepton. This creates control regions, separate from the

signal region, containing Z → `` + jets events, which will be used for background

estimation. To avoid overlap between the two channels, events are rejected if they

contain additional light leptons satisfying the primary working point and kinematic

criteria for leptons (medium for electrons and tight for muons) and having the

opposite flavor and opposite charge with respect to the primary lepton. This also

defines an eµ control region which will be used for background estimation.

Figures 5.2 and 5.3 compare the observed data to the MC background simula-

tion after the preselection in the eτh and µτh channels, respectively. All histograms

in this dissertation show the overflow, if any, in the last bin. The event yields for

the observed data and the expected SM backgrounds after the preselection are sum-

marized in Table 5.3. The discrepancy between the observed data and simulated

background yields in the eτh channel is due to the presence of QCD multijet events

in the data. This discrepancy is primarily observed at low pT and high η, as ex-

pected from QCD. This process is not modeled in the MC simulation because of

the difficulty in simulating enough events to be comparable to the amount of data
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collected by the CMS experiment in 2012. Instead, the yield from QCD is estimated

using a same-sign/opposite-sign method which is described in detail in Sec. 5.3.2.1.

eτh channel µτh channel
W + jets 4221.6± 188.1 4846.3± 233.6
Z + jets 4766.7± 85.1 2369.1± 80.7
tt 6272.2± 65.5 6430.5± 69.8
Single t 462.9± 14.4 512.3± 16.0
VV 223.4± 4.4 212.5± 4.6
QCD multijets (2452.6± 512.1) —
Total Bkg. (no QCD) 15946.8± 232.9 14370.8± 257.3

Data 18177 14351

Table 5.3: The simulated background and observed event yields after the preselection
in the eτh and µτh channels. The statistical uncertainties are given for each simulated
background. The contribution from the QCD multijets process is not taken into
account in the total background yield.

5.2.2 Main Selection

A preselected event satisfies the main selection if at least one of the selected

jets in the event is b-tagged. Though the expected final state from the signal includes

two b-jets, it was found that requiring b-tagging for only one jet improved the signal

yield S in comparison to the SM backgrounds yield B, compared using the quantity

S/
√
B. This is expected due to the reduced efficiency of applying the CSV algorithm

for b-tagging multiple times per event, and because the major tt background also

contains two b-jets. The second jet in the event may or may not be b-tagged. Plots

comparing observed data to the simulated backgrounds after the main selection are

shown in Figs. 5.4 and 5.5, and event yields are given in Table 5.4.

At this stage of the selection, several new observables are introduced. The first
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Figure 5.2: Plots of various kinematic quantities comparing observed data and sim-
ulated backgrounds in the eτh channel after the preselection: the visible mass of the
electron and hadronic tau (top left), the number of b-tagged jets (top right), the
pT (left) and η (right) of the electron (middle) and hadronic tau (bottom). The
uncertainty band reflects the statistical uncertainty in the simulated backgrounds.
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Figure 5.3: Plots of various kinematic quantities comparing observed data and sim-
ulated backgrounds in the µτh channel after the preselection: the visible mass of
the muon and hadronic tau (top left), the number of b-tagged jets (top right),
the pT (left) and η (right) of the muon (middle) and hadronic tau (bottom). The
uncertainty band reflects the statistical uncertainty in the simulated backgrounds.
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is the visible mass of the hadronic tau and a jet, M(τh, jet). There are two possible

pairings of the light lepton and the hadronic tau with the two selected jets. The

pairing is chosen that minimizes the difference between M(τh, jet) and M(`, jet). In

signal events, these two values are expected to be similar, as both sets of correctly-

paired particles will originate from the same mother particles, leptoquarks or top

squarks. However, the visible mass variables will not directly measure the true mass

of the mother particles; some of the energy will be lost in the form of neutrinos

produced in tau lepton decays. According to the simulation of the signal process,

this minimization selects the correct pairing in approximately 70% of events. This

observable will be used in the final selection for the leptoquark search.

The second new variable is ST, which is defined as the scalar sum of transverse

momenta for all final-state objects:

ST(LQ) = pT(`) + pT(τh) + pT(b-jet) + pT(jet). (5.1)

As indicated in Eq. (5.1), this definition of ST is appropriate for the leptoquark

search, which requires four objects in the final state: a light lepton, a hadronic

tau, a b-tagged jet, and another jet. Figures 5.4 and 5.5 show this version of ST.

An alternate definition appropriate for the top squark search, which has a slightly

different final state, is given in Eq. (5.2).

5.2.3 Final Selections

In the final stage of the selection for the leptoquark search, two additional

requirements are applied. The selected hadronic tau must have pT > 50 GeV, and
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Figure 5.4: Plots of various kinematic quantities comparing observed data and sim-
ulated backgrounds in the eτh channel after the main selection: the pT spectra (top)
of the first (left) and second (right) selected jets, M(τh, jet) (bottom left), and ST

(bottom right). The uncertainty band reflects the statistical uncertainty in the
simulated backgrounds.
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Figure 5.5: Plots of various kinematic quantities comparing observed data and sim-
ulated backgrounds in the µτh channel after the main selection: the pT spectra
(top) of the first (left) and second (right) selected jets, M(τh, jet) (bottom left), and
ST (bottom right). The uncertainty band reflects the statistical uncertainty in the
simulated backgrounds.
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eτh channel µτh channel
W + jets 1201.9± 104.0 1285.8± 122.7
Z + jets 1534.0± 49.5 774.4± 46.8
tt 5783.6± 63.5 5699.5± 64.4
Single t 390.2± 13.5 418.6± 14.2
VV 82.9± 2.7 74.1± 2.7
QCD multijets (1226.0± 131.0) —
Total Bkg. (no QCD) 8992.6± 141.2 8252.3± 147.0

Data 10113 8866

Table 5.4: The simulated background and observed event yields after the main
selection in the eτh and µτh channels. The statistical uncertainties are given for
each simulated background. The contribution from the QCD multijets process is
not taken into account in the total background yield.

the selected events must have M(τh, jet) > 250 GeV. This cut on the M(τh, jet)

value gives the optimum expected limit (calculated using simulated samples) for the

entire range of leptoquark masses under consideration. The change in the kinematic

properties of the signal for different mass values is taken into account when the

ST distribution is used to set CLs limits. The procedure for setting limits with a

distribution is described in App. A.

Slightly different final selection criteria are applied for the top squark search.

Again, the selected hadronic tau must have pT > 50 GeV. Instead of a cut on

M(τh, jet), which is not a meaningful variable for the top squark λ′3jk decay chain,

the selected events are required to have Njets ≥ 5. The expected final state of the

top squark signal has at least Njets = 6, and though it was found that requiring

Njets ≥ 6 would maximize the expected limit based on the simulation, the number

of both signal and background events passing that cut was greatly reduced. Because

this would also reduce the number of events in the control regions used to estimate
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the major backgrounds, the corresponding increase in systematic uncertainty would

render the limit indistinguishable from the Njets ≥ 5 case. Thus, the slightly looser

Njets cut was chosen. The ST variable for the top squark search is defined as:

ST(̃t) = pT(`) + pT(τh) + pT(b-jet) +
4∑

i=1

pT(jet i). (5.2)

Figure 5.6 shows the final selection variables for each search with both channels

combined. Simulated signal distributions are added on top of the background to

demonstrate the effect of the final selection cuts in removing background while

preserving signal events. The common requirement pT(τh) > 50 GeV is applied in

these plots, and the major background yields are estimated from observed data.

The background estimation techniques will be described in Sec. 5.3.
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Figure 5.6: M(τh, jet) (left) and Njets (right) before the respective final selection
cuts on these variables, with the eτh and µτh channels combined. A signal sample
for leptoquarks with a mass of 500 GeV (left) or top squarks with a mass of 300 GeV
(right) is added on top of the background prediction. Both plots include the cut
pT(τh) > 50 GeV and the major backgrounds are estimated from observed data.
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5.3 Background Estimations

Several SM processes can mimic the final-state signatures expected from lepto-

quark or top squark pair production and decay. In this dissertation, the backgrounds

are divided into three groups, which are denoted as tt irreducible, major reducible,

and other. The tt irreducible background comes from the pair production of top

quarks when both the light lepton and τh are genuine, each produced from the decay

of a W boson. In this case, the light lepton can originate either directly from the

W boson decay or from a decay chain W → τντ → `ν`ντντ . The major reducible

background consists of events in which a quark or gluon jet is misidentified as a τh.

The processes contributing to the major reducible background are W + jets, Z +

jets, and tt. Additionally, a small contribution from the QCD multijet process is

included, in which both the light lepton and the τh are misidentified jets. The con-

tribution from QCD is only significant in the eτh channel of the leptoquark search.

The third group, other backgrounds, consists of processes that make small contri-

butions and may contain either genuine or misidentified tau leptons. The other

backgrounds are estimated using the MC simulation, while the tt irreducible and

major reducible backgrounds are estimated using observed data. Both the major

reducible and other backgrounds include events with both genuine and misidentified

light leptons.
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5.3.1 tt Irreducible Background

A large fraction of the background from the tt process is irreducible, due to its

similar signature to the signal when both W bosons produce one muon or electron

and one hadronic tau. Thus, the tt irreducible background is one of the dominant

backgrounds and has to be estimated precisely. The use of single muon and single

electron HLT criteria, along with extra lepton vetoes, enables the definition of a

control region of observed events containing one electron and one muon. This eµ

control region is used to estimate the yield of the tt background in the signal region,

using the simulation to correct for the differences between the two regions. It is

defined using the selection from the µτh channel, except requiring an electron instead

of a hadronic tau. For example, the final cut on pT(τh) is applied to the electron

in this selection. Figure 5.7 shows the ST distributions after the leptoquark final

selection in the eµ channel, with good agreement between the observed data and

the simulation. The eµ sample consists of approximately 87% tt events; the residual

background from other processes is simulated and subtracted from the observed

data. The residual background consists of 10% single top quark events, 2% diboson

events, and 1% W/Z + jets events. The signal contamination in this sample has

been found to be negligible for any signal mass hypothesis, as expected due to the

small branching fraction (only 6%) for both tau leptons in the signal final state to

decay leptonically.

The tt yields in the eµ control region, Neµ, and in the signal regions, N`τh , are

defined in Eqs. (5.3) and (5.4). Throughout this section, the convention ` = e, µ
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Figure 5.7: The ST distribution in the eµ control region after the leptoquark final
selection. The uncertainty band reflects the statistical uncertainty in the simulated
backgrounds.

will be used.

Neµ = σL ×
(
εID

e ε
ID
µ ε

sel
eµρ

sel
eµ

)

× 2
[
AeµBWeBWµ +AµτeBWµBWτe (5.3)

+ AeτµBWeBWτµ +AτeτµBWτeBWτµ

]
,

N`τh = σL ×
(
εID
` ε

ID
τh
εsel
`τh
ρsel
`τh

)

× 2 [A`τhBW`BWτh +Aτ`τhBWτ`BWτh ] . (5.4)

Here, σ is the tt production cross section; L is the integrated luminosity; εID
x is the

selection efficiency for the identification and isolation of a lepton x in the simulation;

εsel
i is the analysis selection efficiency in the simulation, including the jet multiplicity

cut, the b-tagging requirement, and so forth, for the channel i; ρsel
i is the simulation

to data scale factor associated with the selection efficiency for the channel i; A``′
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channel A (%) channel A (%)
eτh 23.6± 0.3 µτh 23.7± 0.3
τeτh 10.4± 0.5 τµτh 10.5± 0.4
eτµ 13.9± 0.4 µτe 12.3± 0.4
eµ 41.6± 0.3 τeτµ 3.4± 0.5

Table 5.5: Acceptances (in %) for the tt process in each leptonic decay channel of
the W boson produced by the top quark decays. Variations in the acceptances are
mostly due to differences in the pT distributions for each type of lepton.

is the kinematic acceptance for a process that produces one lepton ` and another

lepton `′; and B is the branching fraction for a given leptonic decay channel.

The branching fractions B of the W boson decay for each leptonic decay chan-

nel are labeled as follows:

B(W→ `ν`) = BW`, (5.5)

B(W→ τντ → `ν`ντ ) = BWτ` , (5.6)

B(W→ τντ → hadrons + ντ ) = BWτh . (5.7)

The kinematic acceptances A are computed using the MC simulation of the tt

process and are defined for each leptonic decay channel:

A =
Nsel(``

′)

Ngen(``′)
. (5.8)

Ngen(``′) is the number of generated events containing two leptons ` and `′, and

Nsel(``
′) is the number of those generated events that pass the pT and η cuts used

for the selection of the primary leptons (electrons, muons, or hadronic taus) in the

signal region. The acceptances for each decay channel are listed in Table 5.5.

The efficiencies ε and the data/MC scale factors ρ are derived from several

different sources. The standard efficiencies for the lepton identification algorithms
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lepton εID from tt events (%) ρ from Z events

e 77.3± 0.1 1.011± 0.001
µ 81.3± 0.1 0.995± 0.001
τh 35.5± 4.9 1.000

Table 5.6: Lepton identification efficiencies εID measured in simulated tt events and
associated scale factors ρ measured in Z events.

are estimated using Z events. However, differences in topology between tt and

Z events make these values inappropriate for the tt background estimation. The

identification efficiencies are therefore calculated using simulated tt events. The

reconstructed leptons in these events are required to be matched with genuine lep-

tons at the generator level, and the results are listed in Table 5.6. The standard

efficiencies for the HLT criteria are used. The standard data/MC scale factors for

the lepton identification, HLT efficiency, and b-tagging are also used. The difference

in performance between the observed data and the MC simulation is assumed to be

due to inherent properties of the simulation of the individual objects, without any

dependence on the type of event.

The analysis selection efficiencies are calculated using the tt simulation. The

efficiencies are computed for each selection requirement, including: vertex matching

between the two leptons, opposite charge between the two leptons, additional lepton

veto, Njets ≥ 2, Nb-jets ≥ 1, and pT(τh) > 50 GeV. Efficiencies are also computed for

the final selection cuts (M(τh, jet) > 250 GeV for the leptoquark search and Njets ≥ 5

for the top squark search). To create a tt enriched sample in the observed data for

the computation of the data/MC scale factors, the order of the selection cuts listed

in Sec. 5.2 must be altered. In the altered order, the jet multiplicity requirement
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is applied first: Njets ≥ 2 for the leptoquark search or Njets ≥ 5 for the top squark

search. Next, the b-tagging requirement is applied, and then the M(τh, jet) cut

is applied for the leptoquark search. The other selection requirements are applied

subsequently.

The overall data/MC scale factors associated with the vertex matching, oppo-

site charge, lepton veto, and final hadronic tau pT cut are computed in the control

region defined by requiring events with two b-jets and M(τh, jet) < 120 GeV. The

separate control region with 120 GeV < M(τh, jet) < 250 GeV is used to check that

the scale factors do not depend on the value of the M(τh, jet) cuts. Due to the lack

of a pure tt control region to estimate the data/MC scale factor at the level of the

jet multiplicity requirement, no scale factor is applied and an additional system-

atic uncertainty is assigned. For similar reasons, no scale factor is applied for the

M(τh, jet) cut. The results of these selection efficiency and scale factor calculations

are listed in Table 5.7. The primary source of disagreement between the data and

the simulation is mismodeling of the hadronic tau energy scale and momentum in

the tt MC samples.

The systematic uncertainty assigned to the jet multiplicity requirement is de-

fined as the difference between data and simulation in the efficiency of the require-

ment. This difference is calculated in a control region consisting of 95% tt events,

which is selected by requiring both W bosons in each event to decay to muons.

Additional requirements are applied to reduce the contamination from non-tt pro-

cesses: E/T > 50 GeV, 20 GeV < Mµµ < 70 GeV or Mµµ > 120 GeV. This control

region contains enough events for an accurate comparison between data and MC.
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Selection
eτh channel µτh channel eµ channel

ε (%) ρ ε (%) ρ ε (%) ρ

ε`ε`′ 27.4± 0.1 1.011± 0.001 28.9± 0.1 0.995± 0.001 62.8± 0.1 1.006± 0.001
εHLT 91.4± 0.1 − 89.2± 0.1 − 89.2± 0.1 −

Leptoquark search
εjet 76.1± 0.5 − 74.1± 0.5 − 79.5± 0.2 −
εb-tag 94.2± 0.3 − 92.7± 0.4 − 94.0± 0.1 −
εvtx, OS, ` veto, pT(τh) 38.2± 1.5 0.987± 0.042 38.2± 1.6 0.947± 0.038 60.5± 1.0 1.002± 0.020
εmass 6.8± 0.6 − 5.3± 0.6 − 7.1± 0.1 −

Top squark search
εjet 3.7± 0.2 − 2.8± 0.2 − 4.2± 0.2 −
εb-tag 98.3± 0.3 − 99.0± 0.3 − 98.0± 0.1 −
εvtx, OS, ` veto, pT(τh) 51.7± 2.0 0.987± 0.042 45.9± 2.1 0.947± 0.038 66.7± 2.0 1.002± 0.020

Table 5.7: The relative selection efficiencies (in %) and data/MC scale factors ρ for the tt process in each channel eτh, µτh, and
eµ. The total selection efficiency is the product of all the relative selection efficiencies for a given search.

102



It is used to derive a systematic uncertainty because it is not kinematically similar

enough to the signal region to provide an appropriate scale factor. The data/MC

differences in the efficiency of the jet multiplicity requirements are found to be 1%

for Njets ≥ 2 in the leptoquark search and 3% for Njets ≥ 5 in the top squark search.

These differences are propagated through the tt estimation method as systematic

uncertainties.

The systematic uncertainty assigned to theM(τh, jet) requirement is calculated

from two sources. The first source is the relative difference between the efficiencies

in data and simulation in the tt → µµ control sample, which is found to be 6%.

The second source is the difference between the efficiencies obtained in data in the

eµ channel with and without the residual non-tt background. This difference is also

found to be 6%. The two sources are taken to be independent, so they are added in

quadrature to produce a total uncertainty of 8.5%.

Equations (5.4) and (5.3) can be combined to eliminate σL, which produces a

formula to estimate the tt yield in the `τh signal region from the eµ control region:

N`τh = Neµ ×
εID
` ε

ID
τh

εID
e ε

ID
µ

× εsel
`τh
ρsel
`τh

εsel
eµρ

sel
eµ

× A`τhBW`BWτh +Aτ`τhBWτ`BWτh

AeµBWeBWµ +AµτeBWµBWτe +AeτµBWeBWτµ +AτeτµBWτeBWτµ

. (5.9)

Neµ is the yield from the eµ control region in the observed data, with the residual

non-tt background subtracted. The yield in the signal region N`τh is calculated from

Neµ via multiplication by selection and identification efficiencies, data/MC scale

factors, acceptances, and branching fractions.

To describe the calculation of the total systematic uncertainty from the prop-
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agation of the uncertainty in the acceptances, efficiencies, and scale factors, a short-

hand notation is used to simplify Eq. (5.9):

N`τh = Neµ ×RID ×Rsel ×RAB. (5.10)

As indicated by comparing Eq. (5.9) and Eq. (5.10), RID is the ratio of the iden-

tification efficiencies, Rsel is the ratio of the selection efficiencies and scale factors,

and RAB is the ratio of the acceptances and branching fractions. Equation (5.11)

shows a simplified version of the propagation of the uncertainties from these three

ratio factors:

δsyst =
√

(δID ×Rsel ×RAB)2 + (RID × δsel ×RAB)2 + (RID ×Rsel × δAB)2. (5.11)

The uncertainty in the ratio Rx is written as δx. In the particular case of δsel, the

uncertainty value is modified by the additional uncertainties assigned to the Njets

and M(τh, jet) cuts, as discussed above:

δsel →
√
δ2

sel + (Rsel × UNjets
)2 + (Rsel × UM(τh,jet))2. (5.12)

Ux is the additional uncertainty associated with the cut x. In the top squark search,

the uncertainty associated with the M(τh, jet) cut is not included, as that cut is not

applied.

Using Eq. 5.9, the estimated yield of the tt irreducible background is computed

for each `τh channel. The results are summarized in Table 5.8 for the leptoquark

search and in Table 5.9 for the top squark search. This estimation method is applied

to a simulated eµ sample as a cross-check, and the results agree within one standard

deviation when compared to the expectation from the direct simulation of the irre-
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ducible tt contributions to the `τh channels. The calculation from observed data is

also in agreement with both the expectation from the direct tt `τh simulation and

the closure test using the eµ simulation. For each `τh channel, the tt ST distribution

is estimated from the exclusive tt→ b`νb`ν MC simulation.

Leptoquark search
eµ channel

tt MC data data − residual MC
966.71± 27.3 1065 (± 32.6) 920.0± 8.3± 32.6

`τh channel
channel tt MC (genuine τh) tt MC closure test data result
eτh 94.4± 8.3 94.0± 2.7± 14.9 98.7± 3.6± 17.7
µτh 72.8± 8.5 72.2± 2.0± 12.6 64.2± 2.3± 12.4

Table 5.8: The estimated tt irreducible yields after the leptoquark final selection,
from: direct simulation, closure test from the eµ simulation, and calculation from
the observed eµ data. In the direct simulation, only the statistical uncertainty is
given. In the closure test and the data result, the first uncertainty value corre-
sponds to the statistical uncertainty in the simulation and observed data, while the
second uncertainty value corresponds to the propagation of the uncertainties in the
acceptances, efficiencies and scale factors.

This estimation of the tt irreducible background estimation does not account

for events with jets or leptons misidentified as hadronic taus, but does include events

with jets or photons misidentified as electrons or muons. The yield from events in

which an electron or a muon is identified as a hadronic tau is estimated from the

simulation and added to the yield of the tt irreducible background. This contribution

is estimated to be 6.9 ± 2.1 (2.5 ± 1.3) for the eτh (µτh) channel in the leptoquark

search and 11.7± 2.7 (2.8± 1.3) for the eτh (µτh) channel in the top squark search.

The small statistical uncertainty from this contribution is neglected when adding it

to the tt irreducible yield. The estimation of the background from events with jets
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Top squark search
eµ channel

tt MC data data − residual MC
823.9± 26.3 733 (± 27.1) 700.0± 7.2± 27.1

`τh channel
channel tt MC (genuine τh) tt MC closure test data result
eτh 80.4± 7.5 81.7± 2.6± 12.5 76.6± 3.1± 13.3
µτh 57.9± 6.4 65.8± 2.1± 10.3 52.2± 2.1± 9.3

Table 5.9: The estimated tt irreducible yields after the top squark final selection,
from: direct simulation, closure test from the eµ simulation, and calculation from
the observed eµ data. In the direct simulation, only the statistical uncertainty is
given. In the closure test and the data result, the first uncertainty value corre-
sponds to the statistical uncertainty in the simulation and observed data, while the
second uncertainty value corresponds to the propagation of the uncertainties in the
acceptances, efficiencies and scale factors.

misidentified as hadronic taus will be discussed in the next section.

5.3.2 Major Reducible Background

The major reducible background comes from events with jets misidentified as

hadronic taus. This background has contributions from the W + jets, Z + jets,

tt, and QCD multijet processes. The contribution from W + jets, Z + jets, and

tt is estimated from observed data by measuring the misidentification probability

or “fake rate”. The QCD events contain mostly gluon jets, while the events from

the other processes contain mostly quark jets. Gluon jets tend to be wider than

quark jets and to have higher multiplicity, with a correspondingly lower energy per

particle. Therefore, gluon jets are less likely to pass isolation and therefore have a

lower fake rate. The fake rate used in this estimation is measured in a control region

that is appropriate for the quark jet processes. Therefore, this fake rate cannot
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produce an accurate estimate of the contribution from QCD. This contribution is

estimated using a same-sign/opposite-sign (SS/OS) method, which is described in

Sec. 5.3.2.1. The contribution from QCD is non-negligible only in the eτh channel of

the leptoquark search. In this case, the reconstructed electron is also a misidentified

jet. A jet is much less likely to be misidentified as a muon, so QCD does not

contribute in the µτh channel. In the top squark search, the high jet multiplicity

requirement eliminates any significant contribution from QCD.

The probability for a jet to be misidentified as a hadronic tau is measured from

the observed data in a Z→ µµ + jets control region. The selection of the primary

muon uses the same criteria as the µτh channel in the signal region. The second muon

is selected using the loose working point for identification and isolation, along with

looser kinematic cuts. The two muons are required to have the same vertex, opposite

charges, and a separation of ∆R > 0.5. This ensures the orthogonality of the control

region because of the opposite-sign additional lepton veto in the signal region. The

selection of hadronic tau candidates, which are misidentified jets in the Z → µµ +

jets control region, uses the same identification, discriminator working points, and

kinematic cuts as the signal selection. However, the hadronic tau candidates are not

required to be isolated, as the isolation variable is used to compute the fake rate.

All selected hadronic taus must originate from the same vertex as the two muons

and must be separated from each muon with ∆R > 0.5. A cut on the invariant mass

of the two muons is also applied, Mµµ > 50 GeV, in order to match the generation

of the simulated Z + jets samples.

This selection produces a control region which consists of 95% Z + jets events.
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The simulated Z + jets sample is normalized to the yield from the observed data,

with the yield from the other simulated backgrounds subtracted. The normalization

factor is N [data − other MC]/N [Z + jets] = 0.924 ± 0.003, calculated using the

range 70 < Mµµ < 110 GeV. Figure 5.8 shows the dimuon mass Mµµ and the

multiplicity of extra jets, which are not misidentified as hadronic taus, in the Z →

µµ + jets control region. Good agreement is seen between data and simulation,

demonstrating the validity of the control region. The majority of events contain no

extra jets, but an appreciable percentage, around 40%, contain one or more extra

jets.
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Figure 5.8: Comparison of observed data and simulation in the Z → µµ + jets
control region forMµµ (left) and multiplicity of extra jets, which are not misidentified
as hadronic taus (right).

All hadronic tau candidates in the Z→ µµ + jets control region are considered

when calculating the fake rate. These hadronic tau candidates are misidentified jets

which pass all selection requirements for hadronic taus, except that isolation is not

required. The subset of these candidates which also pass the isolation requirement
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would be fully misidentified as hadronic taus. The fake rate is therefore the rate at

which the hadronic tau candidates pass the isolation requirement. It is parameter-

ized as a function of the transverse momentum of the tau candidates, as shown in

Eq. (5.13):

f(pT) =
N

(Z→µµ)
iso τ (pT)

N
(Z→µµ)
all τ (pT)

(5.13)

When calculating the fake rate from the observed data, the contribution from

the residual background is subtracted from both the numerator and the denominator

of Eq. (5.13). The residual background consists of 4% tt events, 1% diboson events,

and 0.2% single top quark events. The observed data and simulated fake rates

calculated from all Z→ µµ + jets events, from events with one or more extra jets,

and from events with two or more extra jets are shown in Fig. 5.9. The fake rate

calculated from all Z → µµ + jets events is called the inclusive fake rate, since it

includes all events regardless of the number of extra jets.
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Figure 5.9: The fake rates measured in the Z→ µµ + jets control region, using all
events (left), only events with one or more extra jets (middle), only events with two
or more extra jets (right).

Events from semileptonic tt decays make up a significant portion of the major

reducible background. These events resemble events from the W + jets process,
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but with higher jet multiplicities. The relative difference in the fake rate between

Z→ µµ + jets events with Njet ≥ 1 and semileptonic tt events is estimated from the

simulation and found to be 18%. Figure 5.10 shows the simulated fake rates versus

hadronic tau pT and the calculation of the relative difference, which is independent

of pT. This relative difference is multiplied by the percentage of the major reducible

background consisting of semileptonic tt events, 35% in the leptoquark search and

95% in the top squark search according to the simulation, and applied as a systematic

uncertainty to account for any differences between the types of processes.
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Figure 5.10: Comparison of the fake rates between simulated Z→ µµ + jets events
with at least one extra jet and simulated semileptonic tt events (left). The difference
in the two fake rates is found to be 18%, independent of the hadronic tau pT (right).

To estimate the total yield of the major reducible background in the signal

region, a second control region is needed. This control region is defined identically

to the signal region, except that events are rejected if any selected hadronic tau

passes isolation. This creates an orthogonal region of events in which all selected

hadronic taus fail isolation, called the “anti-isolated” region. Figures 5.11 and 5.12

shows the hadronic tau pT spectrum and multiplicity in the anti-isolated region

for both channels after the leptoquark and top squark final selections, respectively.
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There is good agreement between observed data and simulated backgrounds in the

µτh channel. In the eτh channel in the leptoquark search, there is an expected

disagreement due to a contribution from QCD multijet events in the observed data,

which will be addressed. The simulated contributions labeled W + jets, Z + jets,

and tt contain only events where the hadronic tau candidates are misidentified jets

based on matching between the generated and reconstructed particles. The residual

background is defined to include events from two categories. The first category

consists of events from the diboson and single-top-quark processes, which are not

included in the major reducible background. The second category consists of events

from the W + jets, Z + jets, and tt processes with genuine hadronic taus that fail

isolation. The single top quark process contributes 2–5% depending on the channel

and the search, while the other processes contribute less than 1% each.

The fake rate is used to weight the anti-isolated events in order to estimate

the yield in the signal region. Because f(pT) is the probability for a fake hadronic

tau candidate to be isolated, 1 − f(pT) is the probability for a fake hadronic tau

candidate to fail isolation:

P (τ w/ given pT is isolated) = f(pT(τ)), (5.14)

P (τ w/ given pT is anti-isolated) = 1− f(pT(τ)). (5.15)

The signal region and the anti-isolated region are two complementary parts of a

total region containing all events with hadronic tau candidates, passing or failing

isolation. The probability that any given event in this total region is part of the

anti-isolated region is equivalent to the probability that all hadronic taus in that
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Figure 5.11: Plots of the anti-isolated control region after the leptoquark final se-
lection, showing the hadronic tau pT spectrum (left) and multiplicity (right) in the
µτh channel (top) and the eτh channel (bottom).
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Figure 5.12: Plots of the anti-isolated control region after the top squark final
selection, showing the hadronic tau pT spectrum (left) and multiplicity (right) in
the µτh channel (top) and the eτh channel (bottom).
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event fail isolation. The isolation status of each tau in an event is independent, so

this probability is given by the product of Eq. (5.15) for each tau, shown in Eq.

(5.16). The signal region contains all events with at least one isolated hadronic tau.

Therefore, the probability that an event in the total region is part of the signal

region is given by the complement of the anti-isolated region probability, shown in

Eq. (5.17).

P (all τs in event are anti-isolated) =

(event)∏

τ

[1− f(pT(τ))] (5.16)

P (at least 1 τ in event is isolated) = 1−
(event)∏

τ

[1− f(pT(τ))] (5.17)

Equation (5.18) sums over all events in the anti-isolated region, using these com-

plementary probabilities to produce a data-driven estimate of the major reducible

background in the signal region.

NmisID τ =

(anti-iso)∑

events

1−∏τ [1− f(pT(τ))]∏
τ [1− f(pT(τ))]

(5.18)

Events in the signal region from the exclusive samples simulated for the W +

jets, Z + jets, and tt processes are used to predict the ST distributions for the major

reducible background. Because the dependency of the fake rate on pT is similar in

data and simulation, as shown in Fig. 5.9, the simulated distributions are expected

not to be biased with respect to the observed data. Only the events in which the

leading selected hadronic tau is a misidentified jet, based on matching between

reconstructed and generated particles, are considered. The simulated distributions

are normalized to the data-driven estimation of the major reducible background

yield.
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In the leptoquark search, the central value for the yield estimation is calculated

using the inclusive fake rate from the observed data and the observed events in

the anti-isolated region. Systematic errors on this estimation are assigned based

on variations in the fake rate and in the anti-isolated region. The inclusive fake

rate is varied by the statistical uncertainty σstat in both directions f + 1σstat and

f−1σstat separately for each bin. Each of the two variations is applied to the observed

events in the anti-isolated region. The larger difference between the estimations

from the two statistical variations and the central value is taken as a systematic

uncertainty. Similarly, the Njet ≥ 1 fake rate from the observed data is applied

to the observed events in the anti-isolated region, and the difference is taken as a

systematic uncertainty. The contribution from residual backgrounds in the anti-

isolated region is estimated using the inclusive fake rate from the observed data and

included as an additional uncertainty. As mentioned previously, an uncertainty is

also assessed due to the systematic difference in fake rates between Z → µµ + jets

events and semileptonic tt events.

In the top squark search, the systematic uncertainties are computed in the

same way. However, the central value for the yield estimation is calculated using

the Njet ≥ 1 fake rate from the observed data, in order to account for the higher jet

multiplicity. Correspondingly, the Njet ≥ 2 fake rate from the observed data is used

as a variation. The overall systematic uncertainties are larger for both channels in

the top squark search, compared to the leptoquark search. This is caused by the

higher jet multiplicities required when calculating the fake rates in the Z→ µµ+ jets

control region, which reduces the number of events. In addition, the background
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in the top squark search is composed of a higher percentage of tt events, which

increases the contribution from the systematic deviation between the Z → µµ +

jets fake rate and the tt fake rate.

Tables 5.10 and 5.11 show the results of the major reducible background es-

timation in the µτh channel for the leptoquark search and the top squark search,

respectively. The predictions from the simulation are in agreement with the data-

driven values and with the closure test performed using the simulated fake rate and

simulated anti-isolated events. These predictions are taken from W + jets, Z + jets,

and tt events in the signal region with matching between generated jets and recon-

structed hadronic taus, normalized to L = 19.7 fb−1. When contributions from all

sources of systematic uncertainty are added in quadrature, the overall uncertainties

are 16% for the leptoquark search and 23% for the top squark search. The statistical

uncertainty from the anti-isolated region is approximately 1−2% in all cases, which

is negligible in comparison.

In the eτh channel, there is a significant contribution from QCD events in

the anti-isolated region. As described previously at the beginning of Sec. 5.3.2,

the fake rate measured in the Z → µµ + jets control region is not appropriate for

QCD events. The QCD contribution must be subtracted from the major reducible

background estimation calculated using the fake rate. Tables 5.12 and 5.13 show the

results of the estimation in the eτh channel for the leptoquark search and the top

squark search, respectively. The QCD contribution is already subtracted in these

tables; the details of the subtraction will be discussed in Sec. 5.3.2.1. The sources

of systematic uncertainty are the same as those considered in the µτh channel, with
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µτh channel
Sources LQ Results

anti-iso fake rate yield variation
data data (incl.) 117.3 (central)
data data (incl.) ± 1σstat 128.3 11.0
data data (Njet ≥ 1) 106.5 10.7

residual bkg. data (incl.) — 7.0
Z→ µµ vs. tt fake rates (18%× 35%) — 7.4

Final Result 117.3± 18.5
Simulated Prediction 117.7± 28.7

Closure Test 121.7± 3.5

Table 5.10: The results of the data-driven major reducible background estimation
for the leptoquark search in the µτh channel. This table shows all sources of sys-
tematic uncertainty and a comparison to the simulated prediction. Only statistical
uncertainty is given for the simulated prediction and the closure test. From the two
variations of the fake rate ± 1σstat, the estimation with the larger difference from
the central value is used.

an additional systematic uncertainty from the uncertainty on the subtracted QCD

contribution. The results from the data-drive estimations are consistent with the

simulated predictions and closure tests. The total uncertainty on the eτh channel

yield is 17% for the leptoquark search and 24% for the top squark search.

5.3.2.1 QCD Multijet Reducible Background

The estimation of the contribution from the QCD multijet process in the eτh

channel requires two steps. The presence of QCD events in the observed data in the

eτh anti-isolated control region biases the previous estimation, as these events are

weighted by the inappropriate quark-jet fake rate. Therefore, the first step must

be to estimate the yield and pT distribution of the QCD events in the anti-isolated

observed data, in order to correct for that bias by subtracting the contribution

from QCD. The second step is to perform an independent estimation of the QCD
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µτh channel

Sources t̃ Results
anti-iso fake rate yield variation

data data (Njet ≥ 1) 59.8 (central)
data data (Njet ≥ 1) ± 1σstat 67.0 7.2
data data (Njet ≥ 2) 54.4 5.4

residual MC data (Njet ≥ 1) — 2.1
Z→ µµ vs. tt fake rates (18%× 95%) — 10.2

Final Result 59.8± 13.8
Simulated Prediction 57.5± 6.5

Closure Test 58.0± 1.3

Table 5.11: The results of the data-driven major reducible background estimation
for the top squark search in the µτh channel. This table shows all sources of sys-
tematic uncertainty and a comparison to the simulated prediction. Only statistical
uncertainty is given for the simulated prediction and the closure test. From the two
variations of the fake rate ± 1σstat, the estimation with the larger difference from
the central value is used.

contribution in the signal region using the observed data.

In both steps, a same-sign/opposite-sign (SS/OS) method is used to estimate

the number of QCD events in a given region of the data. A same-sign control region

is defined by requiring that the light lepton and hadronic tau have the same electric

charge, instead of the opposite charge. Because both objects are misidentified jets

in QCD events, their charge assignments are expected to be random, so the number

of events in which both objects have the same charge should be the same as for

the opposite charge. In practice, a slight deviation between the numbers of same-

sign and opposite-sign events is possible, for example due to charge asymmetries

in proton-proton collisions. The scale factor relating the numbers of same-sign and

opposite-sign events was measured to be 1.06 in Ref. [105].

The non-QCD background in the same-sign control region is estimated using

the simulation and subtracted from the observed data; any remaining events are
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eτh channel
Sources LQ Results

anti-iso fake rate yield variation
data data (incl.) 124.2 (central)
data data (incl.) ± 1σstat 138.5 14.3
data data (Njet ≥ 1) 113.9 10.3

residual MC data (incl.) — 7.1
QCD data (incl.) — 2.7

Z→ µµ vs. tt fake rates (18%× 35%) — 7.8
Final Result 124.2± 20.7

Simulated Prediction 106.8± 27.3
Closure Test 129.5± 3.6

Table 5.12: The results of the data-driven major reducible background estimation
for the leptoquark search in the eτh channel. This table shows all sources of sys-
tematic uncertainty and a comparison to the simulated prediction. Only statistical
uncertainty is given for the simulated prediction and the closure test. From the two
variations of the fake rate ± 1σstat, the estimation with the larger difference from
the central value is used.

assumed to originate from the QCD process. The scale factor of 1.06 is applied to

extrapolate from this yield NSS
QCD to the opposite-sign region NOS

QCD:

NSS
QCD = NSS

data −NSS
MC, (5.19)

NOS
QCD = 1.06NSS

QCD. (5.20)

The subtraction of non-QCD backgrounds can potentially involve a large number of

events. In order to ensure the validity of the subtraction, the normalization of the

simulated samples must be carefully checked.

To check the normalization of the simulated W + jets, Z → `+`−, and Z →

τ+τ− samples, a region of data is defined using the preselection criteria listed in

Sec. 5.2.1 without the cut Njets ≥ 2. Most of the events at the preselection level are

eventually eliminated from the signal region by the stricter main and final selections,

so the contents of the signal region make up a relatively small portion of this larger
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eτh channel

Sources t̃ Results
anti-iso fake rate yield variation

data data (Njet ≥ 1) 65.7 (central)
data data (Njet ≥ 1) ± 1σstat 74.6 8.9
data data (Njet ≥ 2) 59.8 5.9

residual MC data (Njet ≥ 1) — 1.8
QCD data (Njet ≥ 1) — 0.1

Z→ µµ vs. tt fake rates (18%× 95%) — 11.2
Final Result 65.7± 15.6

Simulated Prediction 66.7± 7.6
Closure Test 61.6± 1.4

Table 5.13: The results of the data-driven major reducible background estimation
for the top squark search in the eτh channel. This table shows all sources of sys-
tematic uncertainty and a comparison to the simulated prediction. Only statistical
uncertainty is given for the simulated prediction and the closure test. From the two
variations of the fake rate ± 1σstat, the estimation with the larger difference from
the central value is used.

region. The transverse mass of the electron and E/T system, MT(e, E/T), is defined

in Eq. (5.21):

MT(e, E/T) =

√
2p

(e)
T E/T [1− cos (∆φ (e, E/T))]. (5.21)

This definition assumes both particles in the system are massless, which is a good

approximation for highly relativistic electrons and neutrinos. The MT distribution

in the region defined above is used to determine normalization parameters for the

simulated samples by comparing them to the observed data:

M
(data)
T = rWM

(W + jets)
T + rτM

(Z→τ+τ−)
T + r`M

(Z→`+`−)
T +M

(tt,t,VV)
T . (5.22)

The difference between the sum of the simulated MT distributions and the observed

MT distribution is minimized by varying the three normalization parameters rW, rτ ,

and r`. The normalization of the other processes, tt, single top, and diboson, is not
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addressed in this minimization. The observed distribution contains a contribution

from QCD which is not modeled in the simulation. Therefore, at least one of the

normalization parameters will be inflated during the minimization in order to include

this contribution. Measurements of the inclusive W and Z production cross sections

have demonstrated a similarity between theMT distributions for Z→ `+`− and QCD

events when using a selection tuned for W → `ν events [106, 107]. Hypothesizing

that this similarity holds for the selection considered here, the parameter r` should

scale the simulated Z→ `+`− yield to include the QCD yield.

The minimization in Eq. (5.22) provides the following values for the r param-

eters: rW = 0.86, rτ = 1.21, r` = 2.02. Using these parameters, corrected yields N

can be defined for the simulated samples, based on the uncorrected yields NMC:

N(W + jets) = rWNMC(W + jets), (5.23)

N(Z→ τ+τ−) = rτNMC(Z→ τ+τ−), (5.24)

N(Z→ `+`−) +N(QCD) = r`NMC(Z→ `+`−). (5.25)

Equation (5.25) arises from the hypothesis that the Z→ `+`− yield will be scaled to

include the QCD yield. This can be used to check the validity of the MT minimiza-

tion method for correcting the simulated sample normalizations. The parameter rτ

is assigned to be the normalization correction for both the Z→ `+`− and Z→ τ+τ−

samples, in order to solve for N(QCD) in terms of known quantities:

N(Z→ `+`−) = rτNMC(Z→ `+`−), (5.26)

N(QCD) = r`NMC(Z→ `+`−)− rτNMC(Z→ `+`−). (5.27)
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Equation (5.27) follows from the combination of Eqs. (5.25) and (5.26). This

equation produces the value N(QCD) = 24765± 1411 for the region defined by the

preselection criteria without the cut Njets ≥ 2. In comparison, the SS/OS method

applied directly to this region predicts the value N(QCD) = 26424 ± 1250. These

two values agree within uncertainties, validating the assumptions made in the MT

minimization method. The normalization parameters rW and rτ will be used for

the W + jets and Z + jets normalizations in the various same-sign and anti-isolated

control regions necessary to conduct the two steps of the QCD estimation in the

signal region. A separate control region requiring Nb-jet ≥ 2 and MT > 70 GeV is

used to check the normalization of the tt simulation, and no correction is found to

be necessary.

To measure the QCD portion of the data in the anti-isolated region, the SS/OS

method described by Eqs. (5.19) and (5.20) is applied, using the normalization

parameters rW and rτ . Figure 5.13 shows the MT (e,E/T) distribution in the same-

sign anti-isolated control region for the leptoquark search, with an overall excess in

the observed data indicating the presence of QCD. This method predicts 3026±210

QCD events after the leptoquark final selection and 152 ± 15 events after the top

squark final selection. In order to subtract the contribution of these events from the

reducible background estimation, the pT distribution of the hadronic tau candidates

in the QCD events is needed. Figure 5.11 shows that the QCD events in the eτh

anti-isolated region are found primarily in the single tau multiplicity bin. Therefore,

it is sufficient to subtract the simulated tau pT distribution from the observed tau

pT distribution to obtain the QCD tau pT distribution. A simplified version of Eq.

122



(5.18) can be used to weight these single-tau events:

N
(QCD)
misID τ = N

(QCD)
anti-iso

∑

pT

f(pT)

1− f(pT)
. (5.28)

Using Eq. (5.28), the QCD yield to subtract is found to be 38.5± 2.7 events in the

leptoquark search and 1.5 ± 0.1 events in the top squark search. The subtraction

of these QCD yields is already included in the results shown in Tables 5.12 and

5.12, with the statistical uncertainties on the QCD yields included as additional

systematic uncertainties on the final major reducible background estimation.
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Figure 5.13: The transverse mass of the electron and missing transverse energy
system for the same-sign anti-isolated control region, after the leptoquark final se-
lection. The overall excess in the observed data, not localized in a specific range of
MT values, indicates the presence of QCD events.

After applying the correction to account for the presence of QCD in the anti-

isolated region, the actual contribution from QCD, if any, must be obtained. Again,

the SS/OS method is used, now with the signal region. To decrease the statistical
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uncertainty in this estimation, the same-sign control region is defined before the final

selection. For the leptoquark search, this means that the cut M(τh, jet) > 250 GeV

is not applied. Figure 5.14 shows the E/T distribution in this control region, with

an excess in the observed data at low E/T indicating the presence of QCD. Using

the normalization corrections derived previously, the simulated yield in this control

region is found to be 474±18 events, while the observed yield is found to be 736±27,

which gives NSS
QCD = 262±32 and correspondingly NOS

QCD = 277±34. To extrapolate

this QCD yield to the region defined by the leptoquark final selection, the efficiency

of the cut M(τh, jet) > 250 GeV is measured in a same-sign control region which

vetoes events containing one or more b-tagged jets, enhancing the contribution from

QCD. The QCD yields before and after the mass cut are defined as the subtraction

of the simulated yields from the observed yields:

Nbefore
QCD = Nbefore

data −Nbefore
MC = (793± 28)− (469± 19) = 324± 34, (5.29)

Nafter
QCD = Nafter

data −Nafter
MC = ( 93± 10)− ( 66± 7) = 27± 12. (5.30)

The ratio of these two yields is the efficiency of the cut, εM(τh,jet) = 8.5% ± 4.0%.

Thus, Eq. (5.31) calculates the final yield from QCD in the leptoquark search:

Nfinal
QCD = NOS

QCD × εM(τh,jet) = (277± 34)× (8.5%± 4%) = 23.6± 12. (5.31)

To check this estimation, the SS/OS method is applied to the signal region after the

cut M(τh, jet) > 250 GeV. This check gives a less precise result N
SS/OS
QCD = 31.8±21.2,

which is fully compatible with the above result within uncertainties.

In addition to the yield, the ST distribution for the QCD process has to be

estimated from the observed data, as no simulated sample is available to produce
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Figure 5.14: The missing transverse energy spectrum for the same-sign control region
selected before the M(τh, jet) > 250 GeV requirement for the leptoquark search. The
excess of observed events at low E/T is an indication of the presence of QCD events.

it. The distribution is obtained by subtracting the simulated ST distribution of the

non-QCD backgrounds from the observed ST distribution in the same-sign control

region after the full leptoquark final selection, as shown in Fig. 5.15. The bins

with negative values, all of which are equivalent to zero within their statistical

uncertainties, are set to be zero to avoid unphysical values in the distribution. The

QCD ST distribution obtained from this method is then added to the major reducible

ST distribution for the eτh channel. The propagated statistical uncertainty on the

QCD yield, ±12 events, is added in quadrature with the systematic uncertainty

from the major reducible background estimation.

In the top squark search, the QCD background is found to be 0 ± 13 using

the SS/OS method with an extrapolation of the efficiency of the cut Njets ≥ 5.
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Figure 5.15: The QCD ST distribution estimated by subtracting the simulated dis-
tribution from the observed distribution in the same-sign control region after the
leptoquark final selection. The negative values are set to zero when using the dis-
tribution.

Applying the SS/OS method after the final selection to check that prediction finds

0± 18. These predictions agree and are both equivalent to zero events, so no QCD

background is added to the eτh channel in the top squark search. This lack of

QCD background is expected due to the high jet multiplicity requirement in this

selection.

5.3.3 Other Backgrounds

The tt irreducible and major reducible backgrounds described above are the

major backgrounds for the signal processes considered in this dissertation. Some

background categories are not included in these data-driven estimations. These

backgrounds contribute only a small number of events after the final selections. They
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are estimated from the simulation, normalized using the cross sections listed in Table

C.2. The contributions from the diboson and single-top-quark processes are entirely

estimated using the simulation. Matching between the generator-level particles and

the reconstructed tau object is used to identify the irreducible contribution from

Z → τ+τ− + jets. The reducible contributions from tt with two light leptons and

Z → `+`− + jets, when a light lepton is misidentified as a hadronic tau, are also

estimated from the simulation.

5.4 Systematic Uncertainties

There are a number of systematic uncertainties associated with both the back-

ground estimations and the simulation of the signals. For the simulated backgrounds

and signals, these uncertainties arise from several sources, including discrepancies

between the observed data and the simulation in the performance of reconstruction

algorithms. Some sources of uncertainty affect both the ST distributions and the

simulated yields. Table 5.14 summarizes all of the systematic uncertainties in the

simulated samples. For the data-driven background estimations, variations and un-

certainties in the components of the methods used for the estimations are combined

to compute the overall systematic uncertainties, as discussed in Secs. 5.3.1 and 5.3.2.

The overall systematic uncertainties in the data-driven background estimations are

listed in Table 5.15.

The identification of light leptons can have systematic uncertainties associ-

ated with the efficiency of the HLT criteria, the identification algorithms, and the
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Source Uncertainty
Effect on:

Signal Z + jets Single t VV
(e, µ) ID, iso, HLT 2% 2% 2% 2% 2%
τh ID, iso 6% 6% 6% 6% 6%
b-tagging ∼4% 3% 1% 3% 1%
mistagging ∼10% 1% 4% 1% 2%
pileup 6% 3% 3% 3% 3%
luminosity 2.6% 2.6% 2.6% 2.6% 2.6%
cross section – – 2% 14% 5–15%
statistical – – 20–40% 20–40% 20–40%
ISR/FSR – 4% – – –
τh energy scale 3% 0–5% 5–19% 5–19% 5–19%
τh energy resolution 10% 1–9% 20% 20% 20%
jet energy scale ∼4% 1% 0–7% 0–7% 0–7%
jet energy resolution 5–10% 1% 0–5% 0–5% 0–5%

Table 5.14: The relative systematic uncertainties on the yields of the simulated
signal and the simulated backgrounds. The magnitude of the effects may vary within
indicated ranges for different signal masses, for different background processes within
a given category, or for the different searches.

Channel tt irreducible Major reducible

LQ
eτh 17% 16%
µτh 19% 16%

t̃
eτh 16% 24%
µτh 17% 23%

Table 5.15: The relative systematic uncertainties on the yields of the major back-
grounds estimated from the observed data for each channel of each search.

computation of the isolation. The contributions from these sources are measured

together using tag and probe methods to compare Z→ `+`− events in the observed

data and the simulation for electrons [108] and muons [109]. For both types of light

leptons, the systematic uncertainty is found to be 2%. The uncertainty in the iden-

tification and isolation of hadronic taus using the HPS algorithm is measured to be

6%, using tag and probe methods with Z → τ+τ− events [86]. The uncertainty in

the performance of the lepton-tau discriminators is negligible.
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The correction factors applied to the simulation for b-tagging and mistagging

efficiencies have associated uncertainties of ∼4% and ∼10%, respectively, with de-

pendence on pT and η. The effects of these uncertainties are propagated to the

yields estimated from the simulation by varying the correction factors. The rela-

tive systematic uncertainties in the simulated yields are 1–3% from the b-tagging

efficiency corrections and 1–4% from the mistagging efficiency corrections.

Pileup interactions at the LHC contribute additional energy to events beyond

the energy from the primary hard-scattering interaction. The uncertainty in the

modeling of pileup interactions in the simulation is estimated to be 6% [110]. This

can affect lepton isolation and the jet energy scale. However, the CMS reconstruction

algorithms for leptons and jets have approximately pileup-independent performance

after subtracting pileup contributions when calculating isolation and energy scales.

Therefore, the effect of the pileup uncertainty on the final event yields is expected

to be small. A conservative relative uncertainty of 3% is assigned to the simulated

signal and background yields.

The normalization of the simulated samples involves the calculated cross sec-

tions and the measured integrated luminosity for the observed data. As discussed

in Sec. 3.8, the uncertainty in the measured luminosity is 2.6%. The uncertainties

in the calculated cross sections of the simulated background processes are assessed

by comparison to measurements in observed data. For the Z + jets process, the

uncertainty is found to be 2% [111]. For the diboson processes, the uncertainty

varies from 5–14% depending on the process [112]. For the single top quark process,

the uncertainty is 14% [113]. An additional uncertainty of 20–40% is assigned to
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the simulated backgrounds, based on the statistical uncertainty due to the limited

number of events in the simulation. The uncertainty in the modeling of initial- and

final-state radiation in the simulation affects the signal yield at the level of 4% and

has a negligible effect on the background yields. The theoretical cross section for the

signal has uncertainties of 7–32% from the measurement of PDFs and 14–80% from

the variation of QCD renormalization and factorization scales, as shown in Sec. 2.3.

The uncertainty in the modeling of energy scales and energy resolutions for

reconstructed objects in the simulation can affect both the yields and the ST dis-

tributions. To account for this, the energy scale or energy resolution is varied inde-

pendently for each type of object, and then the whole analysis is repeated with the

varied quantity. This produces a varied ST distribution whose difference from the

nominal ST distribution is considered to be the uncertainty in the distribution. The

effects of these uncertainties on all of the ST distributions, which are estimated from

the simulation for both the simulation-based and data-driven backgrounds as well as

the signal, are considered. The effect of the light lepton energy scales is negligible,

as the disagreement between the simulation and the observed data is only 1%. The

uncertainties in the tau energy scale and energy resolution are 3% and 10% [102].

These lead to uncertainties in the signal yield of 0–5% and 1–9%, respectively, and

uncertainties in in the simulated background yields of 5–19% and 20%, respectively.

The jet energy scale uncertainty varies with pT and η, with a typical level of ∼4%;

the jet energy resolution uncertainty varies with η between 5–10% [81, 114]. These

both cause uncertainties in the signal yield of 1%, and in the simulated background

yields 0–7% and 0–5%, respectively.
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5.5 Results

The results of these searches are published in Ref. [115]. The numbers of ob-

served events and expected signal and background events after the final selections

for the leptoquark and top squark searches are listed in Tables 5.16 and 5.17, respec-

tively, and the selection efficiencies for the two signals are listed in Tables 5.18 and

5.19. The ST distributions of the selected events from the observed data and from

the background predictions, combining the eτh and µτh channels, are shown in Fig.

5.16 for the leptoquark search and Fig. 5.17 for the top squark search. The distri-

bution from the 500 GeV (300 GeV) signal hypothesis is added to the background in

Fig. 5.16 (Fig. 5.17) to illustrate how a hypothetical signal would appear above the

background prediction. There is good agreement between the observed data and

the SM background prediction.

An upper bound at the 95% confidence level (CL) is set on σB2. In the

leptoquark search, σ is the cross section for pair production of third-generation LQs

and B is the branching fraction for the decay LQ→ τb. In the top squark search, σ

is the cross section for pair production of top squarks and B is the branching fraction

for the decay t̃ → χ̃±b, χ̃± → ν̃τ± → qqτ±. The modified-frequentist construction

CLs [116, 117, 118] is used for the limit calculation. A maximum likelihood fit is

performed to the ST distribution simultaneously for the eτh and µτh channels, taking

into account correlations between the systematic uncertainties. Appendix A contains

more details on the computation of CLs limits using a distribution. The expected

and observed upper limits on σB2 as a function of the signal mass are shown in
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Fig. 5.18 for the leptoquark search and Fig. 5.19 for the top squark search.

We extend the current limits and exclude scalar leptoquarks and top squarks

decaying through the coupling λ′333 with masses below 740 GeV, in agreement with

the expected limit of 750 GeV. We exclude top squarks undergoing a chargino-

mediated decay involving the coupling λ′3jk with masses in the range 200–580 GeV,

in agreement with the expected limit in the range 200–590 GeV. These upper limits

assume B = 100%. Similar results are obtained when calculating upper bounds

using a Bayesian method with a uniform positive prior for the cross section.

The upper bounds for the leptoquark search as a function of the leptoquark

branching fraction and mass are shown in Fig. 5.20. Small B values are not con-

strained by this search. Results from the CMS experiment on a search for top

squarks decaying to a top quark and a neutralino [119] are used to improve the

constraints on B. If the neutralino is massless, the final state kinematic distribu-

tions for such a signal are the same as those for the pair production of leptoquarks

decaying to a tau neutrino and a top quark. Limits can therefore be placed on this

signal, which must have a branching fraction of 1−B if the leptoquark only decays

to third-generation fermions. This reinterpretation is included in Fig. 5.20. The

unexcluded region at MLQ = 200–230 GeV corresponds to a portion of phase space

where it is topologically very difficult to distinguish between the top squark signal

and the tt process, due to small E/T. A top squark excess in this region would imply

an excess in the measured tt cross section of ∼10%.
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eτh µτh

tt irreducible 105.6 ± 18.1 66.7 ± 12.6
Major reducible 147.8 ± 33.0 117.3 ± 18.9
Z(``/ττ) + jets 21.4± 7.4± 4.9 7.5± 4.6± 0.2
Single t 16.0± 2.8± 4.4 17.3± 2.8± 4.7
VV 4.1± 0.6± 1.3 2.6± 0.5± 0.8
Total exp. bkg. 294.9± 7.9± 39.1 211.4± 5.4± 23.4
Observed 289 216
MLQ = 500 GeV 57.7± 1.4± 5.9 51.6± 1.3± 5.3
MLQ = 600 GeV 20.1± 0.5± 1.9 17.7± 0.4± 1.6
MLQ = 700 GeV 7.1± 0.2± 6.3 6.2± 0.1± 5.5
MLQ = 800 GeV 2.7± 0.1± 0.2 2.3± 0.1± 0.2

Table 5.16: The estimated backgrounds, observed event yields, and expected number
of signal events for the leptoquark search. For the simulation-based entries, the
statistical and systematic uncertainties are shown separately, in that order. Only
the systematic uncertainties are shown for the data-driven background entries.

eτh µτh

tt irreducible 88.3 ± 13.7 55.0 ± 9.5
Major reducible 65.7 ± 16.4 59.8 ± 13.8
Z(``/ττ) + jets 4.9± 2.5± 1.1 11.6± 5.5± 2.7
Single t 3.9± 1.5± 1.1 3.5± 1.3± 0.9
VV 0.6± 0.2± 0.2 0.4± 0.2± 0.1
Total exp. bkg. 163.4± 2.9± 21.5 130.3± 5.6± 17.1
Observed 156 123
Mt̃ = 300 GeV 94.3± 8.5± 13.2 82.8± 8.0± 11.7
Mt̃ = 400 GeV 43.9± 2.6± 4.3 38.3± 2.3± 3.8
Mt̃ = 500 GeV 19.4± 0.8± 1.8 15.4± 0.7± 1.5
Mt̃ = 600 GeV 6.9± 0.9± 0.7 5.7± 0.3± 0.5

Table 5.17: The estimated backgrounds, observed event yields, and expected number
of signal events for the top squark search. For the simulation-based entries, the
statistical and systematic uncertainties are shown separately, in that order. Only
the systematic uncertainties are shown for the data-driven background entries.

MLQ (GeV) 200 250 300 350 400 450 500 550 600
eτh 0.1 0.3 1.0 1.9 2.4 3.0 3.6 4.0 4.4
µτh 0.1 0.2 0.8 1.5 2.3 2.9 3.2 3.3 3.8

MLQ (GeV) 650 700 750 800 850 900 950 1000
eτh 4.5 4.7 4.9 5.1 5.4 5.1 5.4 5.5
µτh 4.0 4.1 4.2 4.3 4.4 4.4 4.3 4.4

Table 5.18: Selection efficiencies in % for the signal in the leptoquark search, esti-
mated from the simulation.
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Mt̃ (GeV) 200 300 400 500 600 700 800 900
eτh 0.02 0.3 0.7 1.2 1.5 1.8 1.8 1.5
µτh 0.02 0.2 0.6 1.0 1.2 1.4 1.3 1.1

Table 5.19: Selection efficiencies in % for the signal in the top squark search, esti-
mated from the simulation.
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Figure 5.16: The final ST distribution for the leptoquark search with the eτh and µτh

channels combined. A signal sample for leptoquarks with MLQ = 500 GeV is added
on top of the background prediction. The last bin contains the overflow events. The
horizontal bar on each observed data point indicates the width of the bin in ST.
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Figure 5.17: The final ST distribution for the top squark search with the eτh and µτh

channels combined. A signal sample for top squarks with Mt̃ = 300 GeV is added
on top of the background prediction. The last bin contains the overflow events. The
horizontal bar on each observed data point indicates the width of the bin in ST.
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Figure 5.18: The expected and observed combined upper limits on the third-gener-
ation LQ pair production cross section σ times the square of the branching fraction,
B2, at the 95% CL, as a function of the LQ mass. These limits also apply to
top squarks decaying directly via the coupling λ′333. The green (darker) and yellow
(lighter) uncertainty bands represent the 68% and 95% CL intervals on the expected
limit. The dark blue curve and the hatched light blue band represent the theoretical
LQ pair production cross section, assuming B = 100%, and the uncertainties due to
the choice of PDF and renormalization/factorization scales.
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Figure 5.19: The expected and observed combined upper limits on the top squark
pair production cross section σ times the square of the branching fraction, B2, at
the 95% CL, as a function of the top squark mass. These limits apply to top squarks
with a chargino-mediated decay through the coupling λ′3kj. The green (darker) and
yellow (lighter) uncertainty bands represent the 68% and 95% CL intervals on the
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theoretical top squark pair production cross section, assuming B = 100%, and the
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limits on the branching fraction for the leptoquark decay to a tau lepton and a
bottom quark, as a function of the leptoquark mass. A search for top squark pair
production [119] has the same kinematic signature as the leptoquark decay to a
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assuming the leptoquark only decays to third-generation fermions.
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Chapter 6: Conclusions

This dissertation has presented a search for pair production of third-generation

scalar leptoquarks with each leptoquark decaying to a tau lepton and a bottom

quark. The search used 19.7 fb−1 of proton-proton collision data collected with the

Compact Muon Solenoid experiment during the 2012 run of the Large Hadron Col-

lider at a center-of-mass energy of
√
s = 8 TeV. The existence of these leptoquarks

is excluded at the 95% confidence level for masses up to 740 GeV. This mass limit

applies directly to pair production of top squarks decaying through the R-parity

violating coupling λ′333, which has the same final-state signature and kinematic dis-

tributions as the third-generation scalar leptoquarks. This limit is a significant

improvement over the previous limit of 530 GeV obtained using 7 TeV data [28,29].

Limits are also set for varying leptoquark branching fraction, with the area of low

branching fraction constrained by a reinterpretation of a search for top squarks

decaying to a top quark and a neutralino [119].

The search is extended to cover top squarks undergoing a chargino-mediated

decay involving the R-parity violating coupling λ′3jk, in which each top squark decays

to a final state including a tau lepton, a bottom quark, and two light quarks. Top

squarks undergoing this decay are excluded at the 95% confidence level in the mass

139



range 200–580 GeV. This is the first direct search for the top squark decay involving

the coupling λ′3jk.

In 2015, Run 2 of the LHC will begin at approximately the design center-of-

mass energy
√
s = 13–14 TeV. This increase in energy corresponds to an order-

of-magnitude increase in the pair production cross section for leptoquarks at high

masses. The cross section for MLQ = 1000 GeV will increase from 4.01× 10−4 pb at

√
s = 8 TeV to 8.36×10−3 pb [27]. With this significant increase in the cross section,

the exclusion of leptoquarks at the TeV scale will be in reach with only a moderate

amount of data [24]. Additionally, searches for single production of leptoquarks will

become feasible, as the limits on the leptoquark Yukawa coupling only extend to

the TeV scale [21,22,23].

The searches for R-parity violating supersymmetry were motivated by the

existing limits on R-parity conserving supersymmetry from searches requiring large

missing transverse energy. The limits set in these searches, which are the most

stringent to date for the selected couplings, similarly approach the high edge of the

conditions for naturalness [32]. However, supersymmetry is not fully excluded yet;

significant regions of the parameter space remain unexamined. Run 2 of the LHC

will have a high potential for either the discovery or more complete exclusion of

supersymmetry [120].
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Appendix A: Full CLs Shape-Based Limits

To set limits using the modified frequentist CLs procedure [121], two hypothe-

ses are defined. The first is the null or background-only hypothesis H0 or b, and the

second is the alternate or signal plus background hypothesis H1 or s+ b.

P(θ;NHi) is defined as the Poisson probability to observe θ events in data

given the hypothesis Hi which predicts NHi events. This probability can be defined

generally for the whole sample, but also per bin for a histogram of some quantity,

e.g. ST, and/or per channel.

To obtain this probability, it is necessary to integrate over all of the nuisance

parameters:

P(θ;NHi) =

∫
Poisson(θ;NHi , η)f(η)dη (A.1)

where f is the probability density function for the nuisance parameter η.

With those definitions, the test statistic Q is written as a ratio of likelihoods

for a basic counting experiment:

Q =
P(θ;NH1)

P(θ;NH0)
(A.2)

Splitting into ST bins and two channels (eτh, µτh) gives:

Q =
∏

i=eτh, µτh

nbin∏

j=0

Pi,j(θ;NH1)

Pi,j(θ;NH0)
(A.3)

141



For simplicity of computation, another form of the test statistic can be defined using

the log likelihood ratio:

q = −2 lnQ (A.4)

To evaluate the test statistic as a function of the number of observed events θ,

many simulated pseudo-experiments are performed. For each hypothesis, θ is varied

according to the probability distribution of that hypothesis, and the value of Q (or

q) is kept for each θ value. To get Q for the actual number of observed events,

Qobs, the same procedure is followed using θ = Nobs. The CLs+b and CLb variables

correspond to the probability for Qobs to be greater than the Q values obtained

for the hypotheses H1 and H0, respectively. When using q as the test statistic,

the observed value should be smaller than the value for the hypothesis. A visual

example of these variables is shown in Fig. A.1.

CLs+b = P(QH1 ≤ Qobs) = P(qH1 ≥ qobs) (A.5)

CLb = P(QH0 ≤ Qobs) = P(qH0 ≥ qobs) (A.6)

CLs = CLs+b/CLb (A.7)

To set a mass limit on the signal hypothesis, the calculation of CLs is repeated

for different signal masses. Masses with CLs < 1−α are excluded at the α confidence

level, typically 95%.
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Presentation of search results: the CLs technique 2695
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Figure A.1: Comparison of the observed value (red line) to the probability densities
for H0 (background only, blue line) and H1 (signal + background, brown line) as
a function of the log likelihood ratio. Green area: CLs+b, yellow area: 1 − CLb.
From [116].
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Appendix B: Event Displays

B.1 Leptoquark Search

Figure B.1 shows the two-dimensional display in the transverse (r-φ) plane and

the three-dimensional display for the highest ST observed event in the µτh channel

of the leptoquark search. Figure B.2 shows the same displays for the second-highest

ST observed event. The kinematic properties of the selected particles in those events

are listed in Table B.1.

ST [GeV] Particle pT [GeV] η φ
1444.6 µ 92.0 −0.84 −0.16

τh 87.8 0.43 1.76
b-jet 125.2 1.63 1.57
jet 1139.6 −0.60 −2.72

1012.1 µ 293.6 −0.49 −0.13
τh 57.0 0.37 −1.03
b-jet 77.4 1.92 −1.98
jet 584.1 −0.06 3.08

Table B.1: The kinematic properties of the selected particles for the two highest ST

observed events in the µτh channel of the leptoquark search.
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Figure B.1: A two-dimensional display in the transverse (r-φ) plane (top) and a
three-dimensional display (bottom) for the highest ST observed event in the µτh

channel of the leptoquark search. The red line represents the muon, and the asso-
ciated red rectangles represent the muon chamber hits. The purple cone represents
the hadronic tau, and the yellow cones represent the jets. The black arrow indicates
the E/T in the event, while the ECAL and HCAL energy deposits are represented as
red and blue towers, respectively.
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Figure B.2: A two-dimensional display in the transverse (r-φ) plane (top) and a
three-dimensional display (bottom) for the second-highest ST observed event in
the µτh channel of the leptoquark search. The red line represents the muon, and
the associated red rectangles represent the muon chamber hits. The purple cone
represents the hadronic tau, and the yellow cones represent the jets. The black
arrow indicates the E/T in the event, while the ECAL and HCAL energy deposits
are represented as red and blue towers, respectively.
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B.2 Top Squark Search

Figure B.3 shows the two-dimensional display in the transverse (r-φ) plane and

the three-dimensional display for the highest ST observed event in the µτh channel

of the top squark search. Figure B.4 shows the same displays for the second-highest

ST observed event. The kinematic properties of the selected particles in those events

are listed in Table B.2.

ST [GeV] Particle pT [GeV] η φ
1586.2 µ 92.0 −0.84 −0.16

τh 87.8 0.43 1.76
b-jet 125.2 1.63 1.57
jet 1 1139.6 −0.60 −2.72
jet 2 63.5 −0.05 −2.77
jet 3 42.9 1.10 −2.87
jet 4 35.2 −1.69 −2.19

1136.3 µ 313.1 −0.09 −1.18
τh 53.7 1.83 0.89
b-jet 156.0 −0.09 1.52
jet 1 325.3 0.00 2.49
jet 2 123.1 −0.67 −1.57
jet 3 103.0 −0.59 1.93
jet 4 62.2 −0.62 −2.32

Table B.2: The kinematic properties of the selected particles for the two highest ST

observed events in the µτh channel of the top squark search.
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Figure B.3: A two-dimensional display in the transverse (r-φ) plane (top) and a
three-dimensional display (bottom) for the highest ST observed event in the µτh

channel of the top squark search. The red line represents the muon, and the asso-
ciated red rectangles represent the muon chamber hits. The purple cone represents
the hadronic tau, and the yellow cones represent the jets. The black arrow indicates
the E/T in the event, while the ECAL and HCAL energy deposits are represented as
red and blue towers, respectively.
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Figure B.4: A two-dimensional display in the transverse (r-φ) plane (top) and a
three-dimensional display (bottom) for the second-highest ST observed event in
the µτh channel of the top squark search. The red line represents the muon, and
the associated red rectangles represent the muon chamber hits. The purple cone
represents the hadronic tau, and the yellow cones represent the jets. The black
arrow indicates the E/T in the event, while the ECAL and HCAL energy deposits
are represented as red and blue towers, respectively.
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Appendix C: Table of Monte Carlo Datasets

Tables C.1 and C.2 list all MC samples for the LQ signal and SM background

processes, respectively. These samples are centrally produced by the CMS collab-

oration and stored in a database called the Data Aggregation System (DAS). The

location of each sample in DAS is given by the “Dataset Name” field in the tables.
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Signal Processes
MLQ [GeV ] Dataset Name σ [pb] αs order
200 /LQToTauB M-200 beta-1 TuneZ2star 8TeV-pythia6 17.4 NLO
250 /LQToTauB M-250 beta-1 TuneZ2star 8TeV-pythia6 5.26 NLO
300 /LQToTauB M-300 beta-1 TuneZ2star 8TeV-pythia6 1.89 NLO
350 /LQToTauB M-350 beta-1 TuneZ2star 8TeV-pythia6 0.77 NLO
400 /LQToTauB M-400 beta-1 TuneZ2star 8TeV-pythia6 0.342 NLO
450 /LQToTauB M-450 beta-1 TuneZ2star 8TeV-pythia6 0.163 NLO
500 /LQToTauB M-500 beta-1 TuneZ2star 8TeV-pythia6 0.082 NLO
550 /LQToTauB M-550 beta-1 TuneZ2star 8TeV-pythia6 0.0431 NLO
600 /LQToTauB M-600 beta-1 TuneZ2star 8TeV-pythia6 0.0235 NLO
650 /LQToTauB M-650 beta-1 TuneZ2star 8TeV-pythia6 0.0132 NLO
700 /LQToTauB M-700 beta-1 TuneZ2star 8TeV-pythia6 0.00761 NLO
750 /LQToTauB M-750 beta-1 TuneZ2star 8TeV-pythia6 0.00448 NLO
800 /LQToTauB M-800 beta-1 TuneZ2star 8TeV-pythia6 0.00269 NLO
850 /LQToTauB M-850 beta-1 TuneZ2star 8TeV-pythia6 0.00164 NLO
900 /LQToTauB M-900 beta-1 TuneZ2star 8TeV-pythia6 0.00101 NLO
950 /LQToTauB M-950 beta-1 TuneZ2star 8TeV-pythia6 0.000634 NLO
1000 /LQToTauB M-1000 beta-1 TuneZ2star 8TeV-pythia6 0.000401 NLO

Table C.1: The full list of MC samples for the LQ signal used in the analysis. Each dataset name should be followed by
/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM. Cross sections σ are given at the specified perturbative order in αs
for each process.
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Background Processes
Process Dataset Name σ [pb] αs order
tt̄ /TTJets MassiveBinDECAY TuneZ2star 8TeV-madgraph-tauola 234 NNLL
tt̄→ b`νb`ν /TTJets FullLeptMGDecays 8TeV-madgraph-tauola 24.56 NNLL
tt̄→ b`νbqq′ /TTJets SemiLeptMGDecays 8TeV-madgraph-tauola 102.51 NNLL
tt̄→ bqq′bqq′ /TTJets HadronicMGDecays 8TeV-madgraph 106.96 NNLL
t→ b`ν (s-channel) /T s-channel TuneZ2star 8TeV-powheg-tauola 1.76 NNLL
t→ b`ν (t-channel) /T t-channel TuneZ2star 8TeV-powheg-tauola 30.7 NNLL
t→ X (tW ) /T tW-channel-DR TuneZ2star 8TeV-powheg-tauola 11.1 NNLL
t̄→ b`ν (s-channel) /Tbar s-channel TuneZ2star 8TeV-powheg-tauola 3.79 NNLL
t̄→ b`ν (t-channel) /Tbar t-channel TuneZ2star 8TeV-powheg-tauola 56.4 NNLL
t̄→ X (tW ) /Tbar tW-channel-DR TuneZ2star 8TeV-powheg-tauola 11.1 NNLL
W + jets /WJetsToLNu TuneZ2Star 8TeV-madgraph-tarball 37509.0 NNLO
W + 1 jet /W1JetsToLNu TuneZ2Star 8TeV-madgraph 6440.58 LO
W + 2 jets /W2JetsToLNu TuneZ2Star 8TeV-madgraph 2087.225 LO
W + 3 jets /W3JetsToLNu TuneZ2Star 8TeV-madgraph 619.0113 LO
W + 4 jets /W4JetsToLNu TuneZ2Star 8TeV-madgraph 255.2378 LO
Z + jets /DYJetsToLL M-50 TuneZ2Star 8TeV-madgraph-tarball 3503.7 NNLO
Z + 1 jet /DY1JetsToLL M-50 TuneZ2Star 8TeV-madgraph 666.3 LO
Z + 2 jets /DY2JetsToLL M-50 TuneZ2Star 8TeV-madgraph 214.97 LO
Z + 3 jets /DY3JetsToLL M-50 TuneZ2Star 8TeV-madgraph 60.69 LO
Z + 4 jets /DY4JetsToLL M-50 TuneZ2Star 8TeV-madgraph 27.36 LO
WW /WW TuneZ2star 8TeV pythia6 tauola 55.47 NLO
WZ /WZ TuneZ2star 8TeV pythia6 tauola 33.59 NLO
ZZ /ZZ TuneZ2star 8TeV pythia6 tauola 8.27 NLO

Table C.2: The full list of MC samples for the SM background used in the analysis. Each dataset name should be followed by
/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM. Cross sections σ are given at the specified perturbative order in αs
for each process.
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