Construction of a sTGC Prototype for the **ATLAS Muon Upgrade**

Liang Guan, University of Michigan, for the ATLAS Muon Collaboration

Introduction: ATLAS muon New Small Wheel (NSW) Upgrade Project

- ▶ To profit from LHC high luminosity (2-7x10³⁴ cm⁻²s⁻¹) runs after LS2 in 2018, the innermost station (Small Wheel) at the end-cap of the ATLAS Muon Spectrometer will be replaced with the New Small Wheel. The NSW will:
 - provide a Level-1 segment pointing to the primary collision point, with an angular resolution of 1 mrad, to remove fake muons.
 - need to operate in high rate (up to ~15 kHz/cm²) radiation environment while providing Level-1 trigger and high precision muon tracking.

Two detector technologies: Micromegas (Primary tracking detector) + small-strip Thin Gap Chamber (sTGC, Primary trigger detector)

See poster "Design and Construction of Large Size Micromegas Chambers for the Muon Spectrometer Upgrade of the ATLAS Experiment" by P. Loesel

Primary Trigger Detector-sTGC

Single sTGC detector structure

sTGC basic parameters		
Cathode-anode spacing	1.4 mm	
Wire spacing	1.8 mm	
Cathode resistivity	100-200 kΩ/□	
Strip width/ pitch	2.7/ 3.2 mm	
Cathode-strip layers spacing	0.1 mm	

Cathode Boards and Cathode Spraying

Pad boards & precision strip boards

- Strip/pad board thickness deviation: ~ 30 µm RMS
- Strips machined with precision computer

Introduction: ATLAS Muon Spectrometer

Cross-sectional view of 1/4 ATLAS Detector

Present Muon Level-1 Trigger

ſ	End-Cap: (TGC1+)TGC2+TGC3	for low(high)
ι	Barrel: RPC1+RPC2(+RPC3)	p _T muons

Muon Tracking: Monitor Drift Tube (MDT)

Construction Precision Requirements for ATLAS Muon NSW Detectors

To maintain excellent reconstructed muon transverse momentum resolution, NSW detectors have to be constructed with an accuracy of ~ 40 μ m, including contributions from readout strip position accuracies and parallelism of electrode planes.

iffening honeycomb frame

Detector Layout Constructing a sTGC Prototype Module

- A 1.3 m x 1.1 m sTGC prototype is constructed to qualify materials, tackle construction problems and gain experiences for serious mass production of NSW sTGC detectors
- General procedures to construct a sTGC quadruplet:

One NSW Sector sTGC Quadruplet Cut View

sTGC operated at quasi-saturated mode is less sensitive to small gas gap deformations. Key requirements for achieving precision spatial measurement:

- Make very precise strip boards with strip ٠ position accuracies of 40 µm RMS.
- Machined reference at the outer side of • cathode boards which allows for precise strip alignment
- Use same composite material (FR-4) • everywhere to avoid mechanical deformations due to environmental parameter variations.

sTGC Quadruplet Assembling

Internal support spacers

Assembling on granite tables

"T" shape spacers to reduce field.

Machined flatness to 30µm precision.

Assembling a detector plane on a granite table

* Granite tables have flatness deviations of less than 20 μ m.

- numerical controlled (CNC) machines. Brass inserts machined in one-go with strips: for position reference and multi-layer alignment.
 - Cathode graphite mixture spraying

Cathodes are sprayed in the room with controlled environment ($\leq 25\%$ RH, ≥ 25 °C).

Tests of sTGC Prototype Quadruplet and Results

► Tests:

Results:

- Check whole detector flatness (Flatness of each layer within expected deviation of 50 µm RMS)
- Check gas tightness
- Check readout channels (no missing channels, excessive noisy channels)

Assembled 1.3 m x 1.1 m sTGC Quadruplet

A 1.3 m x 1.1 m sTGC quadruplet module was successfully constructed. Before moving to mass production of ATLAS NSW sTGC detectors, construction of a second prototype module is planned to further validate the constructional techniques and qualify materials.

> Beam test results of the first sTGC prototype: See the poster "Test Beam *Results with a Full Size sTGC*" by S. Rettie and D. Mori.

2014 IEEE Nuclear Science Symposium & Medical Imaging Conference, Seattle, USA

