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Search for the Xb and other hidden-beauty states in the π+π−Υ(1S) channel at ATLAS
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Abstract

This Letter presents a search for a hidden-beauty counterpart of the X(3872) in the mass ranges 10.05–10.31 GeV and 10.40–11.00
GeV, in the channel Xb → π+π−Υ(1S)(→ µ+µ−), using 16.2 fb−1 of

√
s = 8 TeV pp collision data collected by the ATLAS

detector at the LHC. No evidence for new narrow states is found, and upper limits are set on the product of the Xb cross section and
branching fraction, relative to those of the Υ(2S), at the 95% confidence level using the CLS approach. These limits range from
0.8% to 4.0%, depending on mass. For masses above 10.1 GeV, the expected upper limits from this analysis are the most restrictive
to date. Searches for production of the Υ(13DJ), Υ(10860), and Υ(11020) states also reveal no significant signals.
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1. Introduction

The X(3872) is the first and the best-studied of the new
hidden-charm states seen in the last decade. Observed by Belle
in decays B± → K±X(→ π+π−J/ψ) [1], it was quickly con-
firmed by BaBar [2], CDF [3], and DØ [4]. In particular, CDF
and DØ found that the X(3872) is produced directly in pp col-
lisions; recently CMS has measured the product of the pp pro-
duction cross section and the π+π−J/ψ branching fraction to be
(6.56± 0.29± 0.65)% of the value for the ψ(2S ) [5]. The mass,
narrow width, JPC = 1++ quantum number assignment [6–10],
and decay characteristics of the X(3872) make it unlikely to be
a conventional quarkonium state, and there is an extensive liter-
ature discussing its structure. Weakly bound D0D∗0 molecular
models (for example, Refs [11, 12]) have been popular due to
the proximity of the X(3872) to the D0D∗0 threshold; various
[qc][q̄c̄] tetraquark (for example, Refs [13, 14]) and other mod-
els have also been proposed.

Heavy-quark symmetry suggests the existence of a hidden-
beauty partner — a so-called Xb state — which should be
produced in pp collisions [15]. The molecular model of
Swanson [12, 16] predicts an Xb mass of 10561 MeV, while
tetraquark predictions vary: for example, Ref. [14] predicts
masses of 10492, 10593, or 10682 MeV, depending on the
flavour of the light quarks.

The decay Xb → π+π−Υ(1S )(→ µ+µ−), analogous to the
decay mode in which the X(3872) was discovered, provides a
straightforward way to reconstruct an Xb. Any resulting mea-
surement or upper limit on the Xb production cross section then
depends on the branching fraction for Xb → π+π−Υ(1S ), which
is unknown.

The π+π−Υ(1S) channel also provides the opportunity to
measure the production of the Υ(13DJ) states. These have
not been observed at the Tevatron; their production cross sec-
tions in pp collisions are also unknown, but an early colour-
octet calculation [17] gives values comparable to that of the
Υ(2S). The Υ(13D2) has been observed in radiative transitions

by CLEO [18] and BaBar [19].
The production of Υ(10860) and some other hidden-beauty

states may also be studied using π+π−Υ(1S). The Υ(10860)
decay to π+π−Υ(1S) has a surprisingly large partial width [20–
22]: current world average results are (0.29±0.15) MeV for the
Υ(10860), to be compared with (0.89±0.08) keV for the Υ(3S),
and (1.7± 0.2) keV for the Υ(4S) [23]. Belle has also presented
evidence of exotic substructure in this decay [24]. The natural
widths of the Υ(10860), Υ(11020), and other states above the
open-beauty threshold are larger than the detector resolution,
and must be explicitly considered in any search.

In 2013, CMS reported [25] the results of their search for
Xb → π+π−Υ(1S)(→ µ+µ−), finding no evidence for nar-
row states in the 10.06–10.31 GeV and 10.40–10.99 GeV mass
ranges. They set upper limits on the product of cross section
and branching fraction at values between 0.9% and 5.4% of the
Υ(2S) rate.

This Letter presents a search for the Xb and other hidden-
beauty states at ATLAS, using a 16.2 fb−1 pp collision data
sample collected at

√
s = 8 TeV during the 2012 run of the

LHC. The analysis is performed simultaneously across eight
kinematic bins of varying sensitivity; the Υ(2S) and Υ(3S) →
π+π−Υ(1S) peaks are used to validate the measurement tech-
nique. Results are presented in terms of the product of produc-
tion cross section and π+π−Υ(1S) branching fraction, relative to
that for the Υ(2S).

2. The ATLAS detector

The ATLAS detector [26] is composed of an inner tracking
system, calorimeters, and a muon spectrometer. The inner de-
tector (ID) surrounds the pp interaction point and consists of
silicon pixel and microstrip detectors, and a transition radia-
tion tracker, all immersed in a 2 T axial magnetic field. The
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ID spans the pseudorapidity1 range |η| < 2.5 and is enclosed
by a system of electromagnetic and hadronic calorimeters. Sur-
rounding the calorimeters is the muon spectrometer (MS) con-
sisting of three large air-core superconducting magnets (each
with eight coils) providing a toroidal field, a system of precision
tracking chambers, and fast detectors for triggering. Monitored
drift tubes and cathode-strip chambers provide precision mea-
surements in the bending plane of muons within the pseudora-
pidity range |η| < 2.7. Resistive plate and thin gap chambers are
used to make fast event data-recording decisions in the ranges
|η| < 1.05 and 1.05 < |η| < 2.4 respectively, and also provide
position measurements in the non-bending plane and improve
pattern recognition and track reconstruction. MS momentum
measurements are based on track segments formed in at least
two of the three precision chamber planes.

The ATLAS detector employs a three-level trigger [27] to re-
duce the 20 MHz proton bunch collision rate to the few-hundred
hertz transfer rate to mass storage. This analysis is based on a
Level-1 muon trigger that searches for hit coincidences between
muon trigger detector layers inside pre-programmed geometri-
cal windows that bound the path of muon candidates above a
given pµT threshold, and provide a rough estimate of their posi-
tion, for |ηµ| < 2.4. There are two subsequent software-based
trigger stages, in which muon candidates incorporate, with in-
creasing precision, information from both the MS and the ID,
reaching position and momentum resolution close to that pro-
vided by the offline reconstruction.

3. Reconstruction and event selection

Events are selected using a trigger requiring two muons of
opposite charge, each with pµT > 4 GeV, successfully fitted to a
common vertex. The µ+µ− mass range accepted by the trigger,
8–12 GeV, includes the Υ(1S), Υ(2S), and Υ(3S) signal peaks.

In the offline reconstruction for this analysis, muon recon-
struction relies on a statistical combination of an MS track and
an ID track. The selected muons are restricted to |ηµ| < 2.3,
ensuring high-quality tracking and a reduction of fake muon
candidates. This restriction also removes regions of strongly
varying efficiency and acceptance.

The reconstruction of π+π−Υ(1S) candidates begins with
pairs of oppositely charged muon candidates that satisfy the
same kinematic conditions used by the trigger, and have ≥ 2
pixel and ≥ 6 silicon microstrip detector hits. Each pair is sub-
jected to a common vertex fit, and a loose chi-square selection
is imposed to exclude very poor candidates. Any dimuon with
an invariant mass within 350 MeV of the Υ(1S) mass [23], m1S,

1ATLAS uses a right-handed coordinate system with its origin at the nomi-
nal interaction point (IP) in the centre of the detector, the x-axis pointing to the
centre of the LHC ring, and the z-axis along the beam pipe; the y-axis points up-
ward. Cylindrical coordinates (r, φ) are used in the transverse plane; φ is the az-
imuthal angle around the beam pipe. Pseudorapidity and transverse momentum
are defined in terms of the polar angle θ as η = − ln(tan θ/2) and pT = p sin θ.
The (η, φ) distance between two particles is defined as ∆R =

√
(∆η)2 + (∆φ)2.

For a particle with momentum ~p = (px, py, pz) and energy E, the rapidity is
defined as y = 0.5 ln([E + pz]/[E − pz]).

is retained and considered an Υ(1S) → µ+µ− candidate. To
confirm that this pair is the same as that used in the trigger,
the reconstructed and trigger-level muons are required to match
with ∆R < 0.01.

In the remainder of the event, dipion candidates are formed
from oppositely charged pions with |ηπ| < 2.5, each required
to have ≥ 1 pixel hits, ≥ 6 silicon microstrip hits, and pπT >
400 MeV; no other requirements (such as lepton vetoes) are
imposed. The Υ(1S) candidate and the dipion system are com-
bined by performing a four-track common-vertex fit, with the
µ+µ− mass constrained to m1S, and tracks assigned µ or π
masses as appropriate. This significantly improves the mass
resolution: for example, in the Υ(2S) simulation, the RMS im-
proves from 142 MeV to 9.7 MeV. The π+π−Υ(1S) vertex fit is
required to have a chi-square less than 20; this is 95% efficient
for Υ(2S) decays but reduces background by a factor of ∼10.
All remaining π+π−Υ(1S) candidates with invariant masses up
to 11.2 GeV are retained.

For a state decaying to π+π−Υ(1S), the acceptance A is de-
fined as the fraction of decays where both muons have pµT >
4 GeV, both pions have pπT > 400 MeV, and all four particles
are within |η| < 2.5. States with pT < 5 GeV or rapidity |y| > 2.4
have very low acceptance, so candidates in these regions (which
also suffer from high background) are excluded.

4. Data and simulation samples

The techniques adopted in this analysis were developed us-
ing
√

s = 7 TeV data collected in 2011 and simulation samples
generated under the same running conditions, with particular at-
tention to Υ(2S) → π+π−Υ(1S) mass and (|y|, pT) distributions.
Backgrounds due to inclusive Υ(1S) production and combina-
torial µ+µ− sources were studied using µ+µ− sideband and µ±µ±

same-sign samples, and found to be featureless above 9.8 GeV.
The results presented here are based on data from the 2012

√
s = 8 TeV pp run at the LHC; standard data-quality crite-

ria are used to ensure efficient detector performance. The trig-
ger employed in the event selection was subject to an instan-
taneous luminosity-dependent prescale factor,2 and provided
an integrated luminosity of L = 16.2 fb−1. The resulting
data sample includes over 10 million µ+µ− combinations: a
fit to the sample finds (6.00 ± 0.01) × 106 from Υ(1S) decays,
(0.200 ± 0.002) × 106 from Υ(2S) decays, and the remainder
from combinatorial background. Given the reconstruction and
event selection choices described in the previous section, each
dimuon gives rise (on average) to 19.5 π+π−Υ(1S) candidates
with invariant mass below 11.2 GeV. A procedure to select at
most one candidate per event was considered. However, after
the adoption of the binning approach described in Section 5,
candidate selection was found to worsen the expected sensitiv-
ity to a hypothetical Xb signal. Therefore, all π+π−Υ(1S) candi-
dates are retained for analysis.

2 An un-prescaled trigger with a pµT = 6 GeV threshold on the muons was
also considered, but found to result in a lower sensitivity using the optimisation
procedure described in Section 5.
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Simulated samples are used to optimise the selections, model
signal decays, develop fitting models, and calculate efficien-
cies. Individual samples are used for the Υ(2S), Υ(3S),
Υ(13DJ) triplet, Υ(10860), and for two hypothetical Xb masses,
10233 MeV and 10561 MeV. Production is modelled with the
AU2 [28] tune of Pythia 8.170 [29] and the CTEQ6L1 [30]
parton distribution functions. In the decay to π+π−Υ(1S), the
three-body phase space is uniformly sampled. Isotropic spin
alignment of the parent is assumed: for Υ(2S) and Υ(3S) this
is supported by a recent CMS measurement [31]. Passage of
particles through the detector is simulated with Atlfast II [32],
supplementing Geant4 [33, 34] with a parameterised calorime-
ter response.

Simulated kinematic distributions of the final-state pions and
muons are sensitive to mismodelling of the pT and y distribu-
tions of the parent state. ATLAS has measured doubly differen-
tial production cross sections for Υ(2S) and Υ(3S) at 7 TeV in
pT bins up to 70 GeV for |y| < 1.2 and 1.2 < |y| < 2.25 [35].
These results can be extended to |y| < 2.4 assuming flat rapidity
dependence, and up to pT = 100 GeV using CMS measure-
ments [36]. The resulting Υ(2S) cross section is compared to
the production kinematics of a 7 TeV simulation using the 2011
ATLAS tune [37] of Pythia 6.4 [38]. The ratio of the two in
(|y|, pT) bins defines production weights, which are applied to
the 8 TeV Υ(2S) simulated sample, assuming that Pythia cor-
rectly models the increase in cross section with

√
s. The same

procedure is used for the Υ(3S); for other masses, linear extrap-
olation of the Υ(2S) and Υ(3S) weights is used. The simulated
Υ(2S) and Υ(3S)→ π+π−Υ(1S) samples are further reweighted
to match dipion mass distributions observed by CLEO [39, 40],
to allow comparison of simulation and data.

5. Fitting strategy

Due to the low pion momentum in the π+π−Υ(1S) rest frame,
and the reconstruction threshold of pπT = 400 MeV in the lab-
oratory frame, true π+π−Υ(1S) decays are preferentially recon-
structed if the parent has large pT or small θ∗ (defined as the an-
gle, in the parent rest frame, between the dipion momentum and
the lab-frame parent momentum). In background candidates,
the dipion and dimuon systems are unrelated, and the dipions
typically have low pππT in the lab; boosting to the π+π−µ+µ−

frame yields large values of θ∗, with a broad distribution around
cos θ∗ = 0. In the (pT, cos θ∗) plane, then, the ratio of signal to
background candidates is largest in the upper-right region, and
smallest in the lower-left.

The mass resolution and background shape differ at central
and forward rapidities, so the analysis is performed in bins of
|y| < 1.2 (barrel) and 1.2 < |y| < 2.4 (endcap). Several possible
ways to exploit the (pT, cos θ∗) discrimination were considered,
including further binning, a diagonal cut in (pT, cos θ∗), and a
requirement on the ∆R between the Υ(1S) and each pion (as
used by CMS [25]). The choice of method was based on opti-
mising the expected significance for a weak signal at a mass of
10561 MeV. In the final approach eight analysis bins of varying
sensitivity are used, formed from combinations of high and low
|y|, high and low pT, and high and low cos θ∗. The optimal bin
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Fig. 1. The π+π−Υ(1S) invariant mass distribution in the kine-
matic bin most sensitive to an Xb signal: |y| < 1.2, pT > 20
GeV, and cos θ∗ > 0. The only apparent peaks are at the masses
of the Υ(2S) (10023 MeV) and Υ(3S) (10355 MeV).

boundaries for pT and cos θ∗ were determined to be 20 GeV and
0, respectively.

The π+π−Υ(1S) mass distribution for the most sensitive bin
(|y| < 1.2, pT > 20 GeV, cos θ∗ > 0) is shown in Fig. 1. The
Υ(2S) and Υ(3S) peaks are clearly visible, but no other peaks
are apparent. The background in this bin decreases with mass
above the Υ(3S), whereas the fraction of signal events falling
in this bin is constant above the Υ(3S) in the simulation. Thus
higher sensitivity is expected at larger masses.

Based on the simulation samples, the fraction of signal in
the barrel region |y| < 1.2 is independent of mass with an av-
erage value of S |y| = 0.606 ± 0.004. Within the barrel, the
fraction of signal with pT < 20 GeV develops smoothly with
mass and can be characterised by an analytic turn-on curve
S b

pT
(m) = a/(1 + e−b(m−c)). In the endcap, the dependence

is described by S ec
pT

(m), which has the same functional form
as S b

pT
(m) with different values for the parameters. Similarly,

within each (|y|, pT) bin the fraction of the signal with cos θ∗ < 0
is modelled with a quadratic function, S (i)

cos θ∗ (m) = a+bm+cm2,
where i = 1–4 labels the bin. These S functions, seven in to-
tal, are referred to below as splitting functions. At any specified
mass, the signal yield fraction in any particular (|y|, pT, cos θ∗)
bin can be calculated from an appropriately chosen product of
three of these and their complements, (1− S ). For example, the
fraction in the bin (|y| < 1.2, pT > 20 GeV, cos θ∗ < 0) is given
by S |y| · (1 − S b

pT
(m)) · S (3)

cos θ∗ (m).
The shape of the signal peaks reflects the detector resolution,

which differs between the barrel and endcap, and varies as a
function of mass; in a given rapidity bin at a given mass, a single
function can be used across the whole (pT, cos θ∗) range. In
each rapidity bin, the signal is fitted using two Gaussians with
a common mean, a narrow component fraction f , and a ratio r
of broad to narrow widths. These parameters are found to be
independent of mass, and are fixed to the average values across
the simulation samples. The remaining parameter, the width
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of the narrow component, σ, depends linearly on the mass of
the parent state. Together with the splitting functions defined
above, this allows the signal shape and the fraction of the signal
falling in each of the analysis bins to be determined for any Xb

mass.
Searches for the production of the Υ(10860) and Υ(11020),

which have natural widths larger than the experimental reso-
lution, are also performed. Each of these states is modelled
as a Breit–Wigner convolved with the mass-dependent signal
shape described in the previous paragraph, representing the de-
tector resolution. The fractions of the Υ(10860) signal falling in
the eight analysis bins are extracted from the simulation, while
those for the Υ(11020) are determined by extrapolation.

All fits presented here are binned, extended maximum-
likelihood fits in a local region around the mass of interest. The
bin width is 2 MeV in all fits. The background is described by
a linear combination of Chebychev polynomials up to second-
order, with independent parameters in each analysis bin, unless
otherwise specified.

6. Results for the Υ(2S) and Υ(3S)

Fits to the π+π−Υ(1S) spectrum near the Υ(2S) are first per-
formed separately in barrel and endcap bins, across the full
(pT, cos θ∗) range, with signal mass and width parameters free
in the fit (Figs 2a and 2b). In both cases, the mass is consistent
with the world average for the Υ(2S), and the σ parameters are
within uncertainties of the values fitted to the Υ(2S) simulation.

Signal shape parameters are then fixed to simulated values
to reduce uncertainties, and a separate fit is performed on each
analysis bin. The fraction of signal decays falling in the barrel
is measured to be 0.67± 0.04, compared to 0.606± 0.004 in the
simulation; similar results were seen in 7 TeV data. The ratio
0.67/0.606 is used to rescale the barrel fraction in the simula-
tion.

The total fitted yield N2S = 34300 ± 800 is consistent with

Nexpected
2S = (σB)2S · L · A · ε = 33300 ± 2500, (1)

where the product of the cross section and branching frac-
tion, (σB)2S, is estimated from the extended cross-section
measurement (see Section 4) using world-average values for
the branching fractions B(Υ(1S) → µ+µ−) and B(Υ(2S) →
π+π−Υ(1S)) [23]. The shape of the doubly differential cross
section is also used to calculate the acceptance, A = (1.442 ±
0.004)%, assuming the CLEO dipion mass spectrum [39] and
isotropic signal decays. The reconstruction efficiency for de-
cays within the acceptance, ε = 0.283 ± 0.002, is taken from
the Υ(2S) simulation. To test kinematic distributions in the
Υ(2S) simulation, signal fractions in the eight analysis bins are
checked against their expected values, and are found to be con-
sistent within statistical uncertainties.

A simultaneous fit to the analysis bins is also performed at the
Υ(3S) mass, with reduced χ2 = 1.0 and statistical significance
(from the likelihood-ratio test statistic) z = 8.7. An individual
fit to the most sensitive bin (shown in Fig. 2(c), with larger bin-
ning to emphasise the peak) has significance z = 6.5. The total

Υ(3S) yield, 11600±1300, agrees with the prediction estimated
analogously to Eq. (1), 11400 ± 1500.

7. Results for the Xb search

7.1. Hypothesis tests
A hypothesis test for the presence of an Xb peak is per-

formed every 10 MeV from 10 GeV to 11 GeV, assuming a nar-
row state3 that has a differential cross section with a (|y|, pT)
distribution similar to that of the Υ(2S) or Υ(3S), decaying ac-
cording to three-body phase space. The signal shape and bin
splittings are treated as described in Section 5. At each mass,
a simultaneous fit to the analysis bins is performed in a range
m ± 8σec, where σec(m) is the width of the narrow signal com-
ponent in the endcap: the window varies from ±72 MeV at
10 GeV to ±224 MeV at 10.9 GeV; near 11 GeV, m − 8σec <
m < 11.2 GeV is used. When fitting near the Υ(2S) and Υ(3S)
regions, the lineshapes for these signal components are added to
the background model, with normalisations governed by Gaus-
sian constraints to the values obtained from the fits given in
Section 6. In the immediate vicinity of the peaks, m2S,3S ± 4σb,
no search is performed; the width of the narrow signal com-
ponent in the barrel, σb, is 5.66 MeV (9.37 MeV) at the Υ(2S)
(Υ(3S)) mass. This reduces the analysis range to 10.05–10.31
and 10.40–11.00 GeV.

At each mass, the p-value is extracted using the asymptotic
formula [41] for the q0 statistic, a modification of the standard
likelihood ratio (see Fig. 3). No evidence for new states with
local significance z ≥ 3 is found.

The expected number of Xb events can be written as

N = N2S · R ·
A

A2S
·
ε

ε2S
, (2)

where R ≡ (σB)/(σB)2S, the production rate relative to that
of the Υ(2S). The efficiency, ε, as a function of mass is deter-
mined by fitting a function a + b/(1 + e−c(m−d)) to the values
from the simulated samples. The acceptance increases with the
mass of the parent state due to the increased energy available
to the pions and muons. Additionally, the measured production
spectra of the Υ(1S), Υ(2S), and Υ(3S) states [35] are progres-
sively harder in pT with increasing mass. The acceptance for
a hypothetical Xb state of arbitrary mass is estimated here by
linear extrapolation of calculations performed at the Υ(2S) and
Υ(3S), using the measured production spectra of these states.
The ratio (Aε)/(Aε)2S rises from 1.1 at m = 10 GeV to 7.5 at
m = 11 GeV.

Using Eq. (2) and the formalism from Ref. [41], the expected
significance for a relative production rate R = 6.56% (the value
of the analogous quantity for the X(3872) [5]) is calculated as a
function of mass, shown as the dashed blue line in Fig. 3; it ex-
ceeds 5σ for m & 10.12 GeV. Expectations for a weaker signal
with R = 3% are also shown (long-dashed red line). Given the
null result, upper limits are calculated on R after modifying the
fit to include systematic uncertainties.

3 Here, a narrow state refers to one whose natural width is much smaller
than the experimental resolution.
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Fig. 3. The solid curve shows the observed local p-value for the
background-only hypothesis (left scale), and the corresponding
significance, z, of a peak in π+π−Υ(1S) (right scale), as a func-
tion of the mass of a hypothetical Xb parent state. Also shown
are the expected values for the case of a signal with relative pro-
duction rates (σB)/(σB)2S of 3% (red, long-dashed) and 6.56%
(blue, dashed curve).

7.2. Systematic uncertainties

The upper limit calculation depends indirectly on signal and
background fitting parameters, including the fraction of the sig-
nal falling in each of the analysis bins. From Eq. (2), the upper
limit on R is proportional to the inverse fitted Υ(2S) yield, N−1

2S ,
and the ratios A2S/A and ε2S/ε. For each source of systematic
uncertainty, the impact on these factors is quantified to find the
maximum shift across the mass range. These are then summed
in quadrature and included in the fit as Gaussian-constrained
nuisance parameters.

The X(3872) → π+π−J/ψ dipion mass distribution favours
high mass [6, 9]; for a potential hidden-beauty counterpart this
distribution is unknown. For ψ(2S) → π+π−J/ψ [42], and both
Υ(2S) [39] and Υ(4S) → π+π−Υ(1S) [43, 44], the dipion mass
distributions are concentrated near the upper boundary; those
for Y(4260) → π+π−J/ψ [45] and Υ(3S) → π+π−Υ(1S) [40]
are double-humped. The results quoted here assume decay ac-
cording to three-body phase space; Υ(2S)- and Υ(3S)-like dis-
tributions change the splitting functions by up to 35%, decrease
the efficiency ratio by up to 17%, and produce modest changes
in other parameters.

The next largest contribution is due to the linear extrapola-
tion of the acceptance between the Υ(2S) and Υ(3S) values.
Alternative extrapolations between the Υ(1S) and Υ(2S), and
between Υ(1S) and Υ(3S), are also tried; the greatest change in
the acceptance ratio, 12%, is assigned as the uncertainty.

The parameters of the efficiency, the splitting functions, and
the widths of the narrow signal components σb and σec as func-
tions of mass, are varied by the uncertainties on their fitted val-
ues; alternative functional forms are also tried. In each case,
the largest deviation is assigned as the systematic uncertainty.
The use of production weights (described in Section 4) relies on
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assumptions regarding rapidity dependence, and evolution from
√

s = 7 TeV to 8 TeV. Removing these weights produces a ∼1%
change in efficiency ratio (most of the differences cancel), but
changes the values of the splitting functions by up to 8%.

Data versus simulation differences in the Υ(2S) width param-
eters in the barrel and endcap (1.9% and 4.2%, respectively) are
incorporated as a source of uncertainty, as is the statistical un-
certainty on the averages used for signal shape parameters f
and r (0.5–1.4%). The background shape model is also altered,
allowing a third-order term comparable in size to typical values
of the second-order terms. Finally, uncertainties on N2S and the
barrel/endcap scaling factor are assigned based on uncertainties
from the Υ(2S) fits.

7.3. Upper limit calculation

Upper limits are evaluated at the 95% confidence level using
the CLS method by implementing asymptotic formulae for the
q̃µ statistic [41]. The results (Fig. 4, solid line) range between
R = 0.8% and 4.0%. Median expected upper limits assum-
ing background only (dashed line), and corresponding ±1σ and
±2σ bands are also shown. These limits include the effect of
systematic uncertainties: their inclusion increased the observed
limits by up to 13% and inflated the ±1σ band by 9.5–25%,
depending on the Xb mass.

As a check, upper limits are recalculated with modified fit-
ting ranges (m ± 7σec and m ± 9σec) and doubled bin widths in
the π+π−Υ(1S) mass distributions: shifts are small compared to
the ±1σ bands. If an Υ(2S)-like mπ+π− distribution is assumed
(cf. CMS [25]), expected upper limits increase: the fractional
change is +17% at 10.1 GeV, and ∼+5% for m > 10.4 GeV.

These results exclude Xb states with R = 6.56% for masses
10.05–10.31 GeV and 10.40–11.00 GeV. The expected up-
per limits are more restrictive than those from CMS above
m∼10.1 GeV, and improve as a function of mass; the discrim-
ination in (pT, cos θ∗), exploited by the binning method, be-
comes increasingly important as mass increases.

If an Xb state exists and lies within the range of masses
to which this analysis is sensitive, its production cross sec-
tion and/or its branching fraction must be lower, relative to the
Υ(2S), than that of the X(3872) relative to the ψ(2S). There
are arguments that the decay Xb → π+π−Υ(1S) should be sup-
pressed, in the absence of the strong isospin-violating effects
that are present for X(3872) → π+π−J/ψ [46, 47]. In this
case the Xb would have more prominent decays to π+π−χb1,
π+π−π0Υ(1S), and other final states which are relatively diffi-
cult to reconstruct.

All results to this point assume that any hypothetical
Xb production is unpolarised. Angular distributions of the
Υ(1S,2S,3S) states in pp collisions are consistent with unpo-
larised production [31], but the Xb spin-alignment is unknown
and can have a strong impact on the efficiency ratio, acceptance
ratio, and bin splitting fractions. Rather than including this
as a systematic uncertainty, upper limits are recalculated under
longitudinal (‘LONG’) and three transverse (‘TRPP’, ‘TRP0’,
‘TRPM’) spin-alignment scenarios [48]. Shifts in the upper
limits (either up or down) depend only weakly on mass; the
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Fig. 4. Observed 95% CLS upper limits (solid line) on the rel-
ative production rate R = (σB)/(σB)2S of a hypothetical Xb

parent state decaying isotropically to π+π−Υ(1S), as a function
of mass. The median expectation (dashed) and the correspond-
ing ±1σ and ±2σ bands (green and yellow respectively) are
also shown. The bar on the right shows typical shifts under al-
ternative Xb spin-alignment scenarios, relative to the isotropic
(‘FLAT’) case shown with the solid point.

shift is smaller at large masses. In Fig. 4 the effect of each hy-
pothesis is represented by a single number, chosen as the max-
imum difference in the median expected significance from the
unpolarised (‘FLAT’) case.

8. Results for the Υ(13DJ ) triplet, Υ(10860), and Υ(11020)

The search described above does not account for the closely
spaced Υ(13DJ) triplet or the broad Υ(10860) and Υ(11020).
To fit for the Υ(13DJ), two extra peaks are added to the sig-
nal model. CLEO [18] and BaBar [19] have measured the
Υ(13D2) mass, with an average of (10163.7 ± 1.4) MeV, but
the mass splitting within the triplet is unknown. Averaging
over several models [49] leads to triplet masses 10156, 10164,
and 10170 MeV (at 1 MeV precision). A fit is performed using
these values, assuming independent normalisations but com-
mon signal shapes and bin splitting fractions. A significance of
z = 0.12 is found, with fitted yields −1000 ± 3100, 600 ± 1800,
and 800 ± 2300 for J = 1, 2, and 3. Reasonable changes
to the mass splittings do not appreciably increase the signif-
icance, so there appears to be no evidence for Υ(13DJ) pro-
duction. Assuming that J = 2 production dominates, or that
the mass splitting is larger than the experimental resolution,
the upper limit on R can be read from Fig. 4; combined with
the measured Υ(13D2) → π+π−Υ(1S) branching fraction [19],
this yields an upper limit on the relative cross section σ(pp →
Υ(13D2))/σ(pp→ Υ(2S)) ≤ 0.55.

The signal model for Υ(10860) and Υ(11020) is described
in Section 5. Due to the large natural widths of these states,
the fitting range is extended to 10.498–11.198 GeV and the
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background polynomial order increased to three. Significances
z = 0.6 and z = 0.3 are found for Υ(10860) and Υ(11020), for
masses and widths fixed to world-average values [23]. As these
parameters have large uncertainties, the significance is also cal-
culated in a grid of m ± 20 MeV and Γ ± ∆Γ, where ∆Γ is
the uncertainty on the world-average width [23]. The largest
significance for the Υ(10860) is z = 1.1 at m = 10856 MeV
and Γ = 55 MeV. For the Υ(11020), the largest significance is
z = 0.6 at m = 11039 MeV and Γ = 95 MeV. Thus, no evidence
for Υ(10860) or Υ(11020) production is found.

9. Conclusions

A search for a hidden-beauty analogue of the X(3872) is
conducted by reconstructing π+π−Υ(1S)(→ µ+µ−) events in
16.2 fb−1 of pp collision data recorded at

√
s = 8 TeV by AT-

LAS at the LHC. To optimise the sensitivity of the search, the
analysis is performed in eight bins of rapidity, transverse mo-
mentum, and the angle (in the rest frame of the parent state) be-
tween the dipion system and the laboratory-frame momentum
of the parent. At each mass, the presence of a signal is tested
by performing simultaneous fits to the nearby π+π−Υ(1S) mass
spectrum in these bins; no evidence for new narrow states is
found for masses 10.05–10.31 GeV and 10.40–11.00 GeV. Up-
per limits are also set on the ratio R = [σ(pp → Xb)B(Xb →

π+π−Υ(1S))]/[σ(pp → Υ(2S))B(Υ(2S) → π+π−Υ(1S))], with
results ranging from 0.8% to 4.0% depending on the Xb mass.
The analogous ratio for the X(3872) is 6.56%: a value this
large is excluded for all Xb masses considered. Separate fits
to the Υ(13DJ) triplet, Υ(10860), and Υ(11020) also reveal no
significant signals, and a CLS upper limit of 0.55 is set on
σ(pp→ Υ(13D2))/σ(pp→ Υ(2S)).
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J.M. Butler22, A.I. Butt3, C.M. Buttar53, J.M. Butterworth77, P. Butti106, W. Buttinger28, A. Buzatu53, M. Byszewski10,
S. Cabrera Urbán168, D. Caforio20a,20b, O. Cakir4a, P. Calafiura15, A. Calandri137, G. Calderini79, P. Calfayan99, R. Calkins107,
L.P. Caloba24a, D. Calvet34, S. Calvet34, R. Camacho Toro49, S. Camarda42, D. Cameron118, L.M. Caminada15,
R. Caminal Armadans12, S. Campana30, M. Campanelli77, A. Campoverde149, V. Canale103a,103b, A. Canepa160a, M. Cano Bret75,
J. Cantero81, R. Cantrill125a, T. Cao40, M.D.M. Capeans Garrido30, I. Caprini26a, M. Caprini26a, M. Capua37a,37b, R. Caputo82,
R. Cardarelli134a, T. Carli30, G. Carlino103a, L. Carminati90a,90b, S. Caron105, E. Carquin32a, G.D. Carrillo-Montoya146c,
J.R. Carter28, J. Carvalho125a,125c, D. Casadei77, M.P. Casado12, M. Casolino12, E. Castaneda-Miranda146b, A. Castelli106,
V. Castillo Gimenez168, N.F. Castro125a, P. Catastini57, A. Catinaccio30, J.R. Catmore118, A. Cattai30, G. Cattani134a,134b,
J. Caudron82, V. Cavaliere166, D. Cavalli90a, M. Cavalli-Sforza12, V. Cavasinni123a,123b, F. Ceradini135a,135b, B.C. Cerio45,

9



K. Cerny128, A.S. Cerqueira24b, A. Cerri150, L. Cerrito75, F. Cerutti15, M. Cerv30, A. Cervelli17, S.A. Cetin19b, A. Chafaq136a,
D. Chakraborty107, I. Chalupkova128, P. Chang166, B. Chapleau86, J.D. Chapman28, D. Charfeddine116, D.G. Charlton18,
C.C. Chau159, C.A. Chavez Barajas150, S. Cheatham86, A. Chegwidden89, S. Chekanov6, S.V. Chekulaev160a, G.A. Chelkov64,g,
M.A. Chelstowska88, C. Chen63, H. Chen25, K. Chen149, L. Chen33d,h, S. Chen33c, X. Chen146c, Y. Chen66, Y. Chen35,
H.C. Cheng88, Y. Cheng31, A. Cheplakov64, R. Cherkaoui El Moursli136e, V. Chernyatin25,∗, E. Cheu7, L. Chevalier137,
V. Chiarella47, G. Chiefari103a,103b, J.T. Childers6, A. Chilingarov71, G. Chiodini72a, A.S. Chisholm18, R.T. Chislett77, A. Chitan26a,
M.V. Chizhov64, S. Chouridou9, B.K.B. Chow99, D. Chromek-Burckhart30, M.L. Chu152, J. Chudoba126, J.J. Chwastowski39,
L. Chytka114, G. Ciapetti133a,133b, A.K. Ciftci4a, R. Ciftci4a, D. Cinca53, V. Cindro74, A. Ciocio15, P. Cirkovic13b, Z.H. Citron173,
M. Citterio90a, M. Ciubancan26a, A. Clark49, P.J. Clark46, R.N. Clarke15, W. Cleland124, J.C. Clemens84, C. Clement147a,147b,
Y. Coadou84, M. Cobal165a,165c, A. Coccaro139, J. Cochran63, L. Coffey23, J.G. Cogan144, J. Coggeshall166, B. Cole35, S. Cole107,
A.P. Colijn106, J. Collot55, T. Colombo58c, G. Colon85, G. Compostella100, P. Conde Muiño125a,125b, E. Coniavitis48, M.C. Conidi12,
S.H. Connell146b, I.A. Connelly76, S.M. Consonni90a,90b, V. Consorti48, S. Constantinescu26a, C. Conta120a,120b, G. Conti57,
F. Conventi103a,i, M. Cooke15, B.D. Cooper77, A.M. Cooper-Sarkar119, N.J. Cooper-Smith76, K. Copic15, T. Cornelissen176,
M. Corradi20a, F. Corriveau86, j, A. Corso-Radu164, A. Cortes-Gonzalez12, G. Cortiana100, G. Costa90a, M.J. Costa168,
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J. Goncalves Pinto Firmino Da Costa137, L. Gonella21, S. González de la Hoz168, G. Gonzalez Parra12, S. Gonzalez-Sevilla49,
L. Goossens30, P.A. Gorbounov96, H.A. Gordon25, I. Gorelov104, B. Gorini30, E. Gorini72a,72b, A. Gorišek74, E. Gornicki39,
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F. Rühr48, A. Ruiz-Martinez30, Z. Rurikova48, N.A. Rusakovich64, A. Ruschke99, J.P. Rutherfoord7, N. Ruthmann48,
Y.F. Ryabov122, M. Rybar128, G. Rybkin116, N.C. Ryder119, A.F. Saavedra151, S. Sacerdoti27, A. Saddique3, I. Sadeh154,
H.F-W. Sadrozinski138, R. Sadykov64, F. Safai Tehrani133a, H. Sakamoto156, Y. Sakurai172, G. Salamanna135a,135b, A. Salamon134a,
M. Saleem112, D. Salek106, P.H. Sales De Bruin139, D. Salihagic100, A. Salnikov144, J. Salt168, D. Salvatore37a,37b, F. Salvatore150,
A. Salvucci105, A. Salzburger30, D. Sampsonidis155, A. Sanchez103a,103b, J. Sánchez168, V. Sanchez Martinez168, H. Sandaker14,
R.L. Sandbach75, H.G. Sander82, M.P. Sanders99, M. Sandhoff176, T. Sandoval28, C. Sandoval163, R. Sandstroem100,
D.P.C. Sankey130, A. Sansoni47, C. Santoni34, R. Santonico134a,134b, H. Santos125a, I. Santoyo Castillo150, K. Sapp124,
A. Sapronov64, J.G. Saraiva125a,125d, B. Sarrazin21, G. Sartisohn176, O. Sasaki65, Y. Sasaki156, G. Sauvage5,∗, E. Sauvan5,
P. Savard159,e, D.O. Savu30, C. Sawyer119, L. Sawyer78,n, D.H. Saxon53, J. Saxon121, C. Sbarra20a, A. Sbrizzi20a,20b, T. Scanlon77,
D.A. Scannicchio164, M. Scarcella151, V. Scarfone37a,37b, J. Schaarschmidt173, P. Schacht100, D. Schaefer30, R. Schaefer42,
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91 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
92 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
93 Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States of America
94 Group of Particle Physics, University of Montreal, Montreal QC, Canada
95 P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
96 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
97 National Research Nuclear University MEPhI, Moscow, Russia
98 D.V.Skobeltsyn Institute of Nuclear Physics, M.V.Lomonosov Moscow State University, Moscow, Russia
99 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
100 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
101 Nagasaki Institute of Applied Science, Nagasaki, Japan
102 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
103 (a) INFN Sezione di Napoli; (b) Dipartimento di Fisica, Università di Napoli, Napoli, Italy
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