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ABSTRACT

We discuss the problem of gauge and supersymmetry breaking
in both the fermionic and bosonic constructions of four—
dimensional strings.

{(a) We show how to construct consistent string models in the
Higgs phase of a spontaneously broken gauge symmetry. The
Higgs vacuum expectation value is classically a free para-
meter, due to the existence of flat directions in the scalar
potential. We find a simple rule which selects all such
directions and we derive the mass formula for all the string
states.

{b) We prove that the existence of a slightly massive gravi-
tino or gaugino implies the existence of an entire tower of
such states below the Planck mass, which is a signal of
decompactification of some internal dimension.
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1. INTRODUCTION

The problem of gauge and supersymmetry break-
ing in string theories 1is of great importance,
since it is related on one hand to long out-—
standing problems in particle physics such as
the generation of wmass hierarchies and the
smallness, if not zero, value of the cosmolo-
glcal constant, and on the other hand to the
study of the various string vacua and thelr pos-
sible connection. Here, we study these problems
in the context of "Gaussian” four-dimensional

modelsl 6, constructed with free world-sheet
fields but with complicated, in general, bound-
ary conditions.

We start, in Section 2, with a brief presen-~
tatlon of the fermionic construction of the 4d

1,3,5,6

string models In Section 3, we discuss

the Hliggs phenomenon in string theories7'8;
this 1is related to the existence of a "plethora”
of flat directions in the scalar potential.
Gauge symmetrles are broken by vacuum expecta-
tion values of Higgs fields sliding along such
flat directions. Their knowledge is essential
for the string model building since they lead to
the spontaneous breaking of the gauge group in
scales which are undetermined at the string tree
level and they could thus be hierarchically

smaller than the Planck mass, M_. Furthermore,

they determine the number of coﬁtinuous parame-—
ters of the 4d models at the lowest order in the
topological expaasion. We find a very simple
tule which selects out these directions and we

derive the general mass formula for all the

string states. It is quite remarkable that the
mass shifts are given in terms of the charges of
the corresponding states with respect to some
U{l) currents which in turn correspond to some
massless or massive gauge bosons.

In Section 4, we study the supersymmetry
breaking. We show that9 in string perturbation
theory, the supersymmetry breaking scale can be
small only 1f it 1s linked to the size of soue
internal dimension which is decompactified to a
scale, roughly of the same order of magnitude.
More precisely, we prove that the existence of a
slightly massive gravitino or gaugino (ms << MP)
implies the existence of an entire tower of such
states, with masses equal to (N+l)ms, (2N+l)ms,
++ey where N 1s some, not too large, integer.
This is a signal of decompactification, meaning
that one or more imternal radii become large or,
by duality, ianfinitesimal in units of M;l, 50
that the corresponding wmomenta become quasi-
continuous. This phenomenon seems to be a
characteristic stringy property and may suggest
the existence of some extra dimension at, say,
1-100 TeV. Although there is no direct experi-
mental contradiction, such a scenaric has the
serious difficulty thatlo, by naive dimensional
analysis, all couplings become huge very early
above the extra dimension scale, invalidating
the semi-classical string description and
creating a new hierarchy problea. However, a
study of the one loop cosmological constant in
such a scheme indicates that it might be expo-

nentially suppressedll and thus, below the



experimental 1limit even when the size of the

internal dimension is close to MP.

2. 4d MODELS: FERMIONIC CONSTRUCTION

The basic tool to construct consistent closed
string vacua is the requirement of (super) repa-
rametrization invariance on a general two-dimen-
sional surface. For a world sheet which has the
topology of a sphere, it leads to the condition
of conformal invariance, while for topologically
non~trivial surfaces, it gives the constraint of
multiloop modular invariance. Conformal
invariance implies that different string models
are characterized as unitary representations of
the Virasoro (super-Virasore) algebra with
central charge ¢ = 26 (¢ = 15) and, thus fixes
the 2dim field content. In four dimensions, it
can be satisfied if the space-time co-ordinates
XPZ {(and their fermlonie superpartners ¢p) are
supplemented by internal conformal field
theories contributing 22 (9) to the central
charge.

In the fermionic construction the internal
degrees of freedom are free fermions whose
boundary conditions are severely restricted by
multiloop wmodular invariance. In the heterotic
case, for instance, one hasl an extra 18 lefe-~
moving and 44 right-moving fermions xa and Nyo
respectively. World-sheet supersymmetry is non-
linearly realized among the xa’ which must
transform in the adjoint representation of a
semi-simple Lie group G; the supercurrent isl

o 1 abe
TF o aX“ + 3 fabcx Y X (2.1}

where the structure constants are normalized
cd

uch that f £
s acd b

possible choices for ¢, namely SU(Z)G, SU(3)x
S0(5) and SU(4)xSU(2). Since modular transform—

= 5éab- There are just three

ations mix the boundary conditions, one must sum
over them in order to obtain an invariant
expression. 4 general boundary condition is

defined by a block-diagonal matrix i., according

to which the fermions transform

oty g " (2.2a)
2 A gb x> (2.2b)
fap (2.2¢)

when parallel transported around the string. §L
is the spin statistics fermion paricy, A‘R is an
orthogonal matrix, while (—Q/QG) must, in
addition, belong to the group of automorphisms
of G, Aut{G), which follows from the fact that
the supercurrent TF (2.1) must have well defined

periodicity conditions

T.+ =§, T

F y Tpe (2.2d)

and hence the transformation matrix (”@_i G) has
to leave invariant the structure constants of G.
When Q& = +1(~1), TF is antipericdic (periodic)
and corresponds to the Neveu=Schwarz (Ramond)
sector which leads to space-time bosons (fer-
mions). There 1s a technical simplification
when all boundary conditions A are commiting.
Allowing non-commitativity, it is probable that
fermionic and bosonic formulations are complete—
ly equivalent, in the sense that the fermionic
construction can describe any orbifold model and
vice versa. When they are commuting, they can
be diagonalized simultanecusly in a generally
complex basis and thus, can be represented by
vectors of phases, such that the complex fermion

f picks up a phase:
£+ —em(B)g (2.3)

restricted so that -1 < a(f) < 1.

In this context, a string model is defined by
specifying a set & of vectors of boundary condi-
tions. Its one-loop partition function takes

the forms'6



Z=L, o c(g) zF[g1 (2.4)
where ZF[gl is the contribution of the spin-
structure assignment [g] according to which the
fermions are twisted with the phases ¢ and B
[see (2.3)] along the two non-contractible loops
of the torus, i.e., in the ¢ and t-directions,
respectively. The coefficients c[;] are phases

which are constrained by wmmltiloop wmodular

invariance:
in

C{(I] _era.a [+4

a = c( l] (2-58)
-j:la-ﬁ

dg) =<t (D) (2:3%)
8 «

C(S+T) = 5& c(g) c(i). (2.5¢c)

(2.5a) and (2.5b) are a consequence of the one-
loop-modular invariance {(t » t+l and ©t » -1/t
respectively), while (2.5¢) 1s derived using a
two—loocp modular transformation together with
the coandition of factorization. The “dot”
product 1is Loreutzlan (left wminus right) and
counts each real fermion with a factor k.
Finally, 1 denotes the vector where all fermions
are periodic.

It can also be shown that5'6 the set & forms
an Abelian group under addition (mod 2} and can
be therefore generated by some “canonical” basis
B ={b = l,bz,...,bk}
there corresponds a sector }{a in the string
Hilbert space H

twisted according to a, and to every basls

. To every element g of =
where the 2d fermions are

element bi of B a fermion number GS50-type

projection:

k inb, F *
H= @ nf ('™ =6ac(ii)}){a,
(2.6)

where F 1is the vector of all two-dimensional

fermion numbers. The modular invariance con-

straints on the basis B and on the coefficieats
c's can be solved in a systematic way, for
generic rational boundary conditions, and
provide a well-defined set of rules to construct
all consistent four—-dimensional models, in the
above context5’6.

The string states of the sector H are
obtained by acting on the vacuum ]0>aawith
bosonic or fermionic oscillators with frequen-
cies integer or (l+u{f))/2 + iunteger which are
allowed by the fermlion number projections of Eq.
(2.6). The mass formula is

1
a

Z '8 tE v

L™ L

(2.7)
_ 1
= ltgagag Figvg
where aL(aR) is the left (right) part of the

vector ¢ and the v ) are frequencies.

LR
A Regge trajectory corresponds to a pair
(@,F) of a sector ¢ and a vector F of allowed

fermlon numbers, consistent with the projections

(2.6). One wmay assign a momentum-winding
3,7
vector
p =% +F (2.8)

which can be shown to be the momentum of the
lowest lylng state of the corresponding trajec—
tory 1in the bosonic lattice formulation. In
fact, in the fermlonic counstruction, the lowest
lying state can be obtained by acting on the

vacuum |0>OL with the F({f) lowest-lying oscilla-~

tors of type f. Hence its "left-moving mass”

is

Loy + BEE 4
(2.9a)

1
Lo =6 £l

[ ]

+-1+°‘2—(fl+ F(£)-1] - 5 = + 92 -

and likewise its "right-moving mass”



= 1
o =5 pg = L. (2.9b)

Furthermore, acting on this state with the
integer-frequency currents f*f, we can build the
entire tower of states with the same momentum p-.
Finally, note that the components of p are at
the same time the charges with respect to the

U(l) currents
*
3d =f £ (2.10)

where & bosonizes the fermionic current f*f.
Defining I' the set of allowed momenta (2.8)
and using the properties of ® and the coeffi-
clents c¢'s described above, one can show that7,
for instance, 1in the simplest (bosonic) case, T
is a Lorentzian even and self-dual latticez.
The group structure of % is translated into the
lattice character of T. Conversely, given a
lattice [ with the above properties we may
always rewrite the Hilbert space of the string
model in the form (2.6}, by reconstructing the

set and the coefficients c¢'s. X turns out to

(zi

be the set of equivalence classes of lattice
momenta, two momenta being equivalent 1f they
differ by an integer vector. Thus, in the case
one 1is able to define a basis of complex
fermions the fermionic construction reproduces
the bosonic momentum lattices. However, in the
presence of real fermions, it is mot always pos—
sible to define fermionic currents which are
periodic under all boundary coonditions of &
simultanecusly, and the fermionic censtruction
reproduces orbifolds, as will become more clear

below.
3. HIGGS PHENOMENON IN STRING THEORIES

A first example of continuous defermations of
the string vacuum is presented in Ref. 2 and it
consists of Lorentz boosting the charge lattice
of string states. Considering, for instance, a

"Lorentzian"” lattice P(nL,nR) any “"Lorentez”

transformation A ¢ SO(nL,nR) of the lattice
leaves the modular invariance conditions wun-
changed, since inner products are preserved.
Thus, the traunsformed TA is the charge lattice
of a new consistent string model, in which the

masses of all states are shifred by
2 .1 2,27 = L 2,027,
éme = = [(Ap)i~ppl = 5 LAp)g-prgl (3.1

Clearly, these mass shifts do not wvanish only
for Lorentz boosts A ¢ SO(nL,nR)/SO(nL)XSO(nR).
For certain models obtained by compactification
of the ten~dimensional superstring, this freedom
amounts to changing radii and background gauge
and antisymmetric fieldslz. However, from the
four-dimensional point of view, it corresponds
to a standard Higgs phenomenon and gauge sym-—
metries are broken by vacuum expectation values
of scalar fields along flat directions of their
potential7.

An important question 1s to find and study
all possible flat directions of a given fermion-
ic string wmodel constructed with the rules
presented above. Obviously, these directions
correspond to some massless scalar fields which,
in the 2dim underlying conformal field theory,
are described with marginal operators. The
problem can then be rephrased to find which
from those marginal operators are integrablela.
For pedagogical reasons, we discuss firstly the
Zy-orbifold directions and then we give the

general rulesa.

A 4d massless scalar ¢ corresponds to a Zp-—
flat directiom 1iff 1its vertex operator at zero

momentunm is written in the form
¢ ~ [dzdz I (2)3,(2) (3.2)

L JR are two real U(lL) currents. When ¢
gets a non-zero vacuum expectation value, the

where J

mass-shifts are non-zero only for those string

states which correspond to boundary conditions



that leave JL and JR periodic; they are given
by7’8

&5M2 =-% (Qi+Q§)sh2e + Q Qgsheche (3.3a)

where QL, QR-are the charges of the states with
respect to the two U(l) currents JL, JR and

{¢> ~ she (3.3b)

In fact, by iotroducing @L’ @R which bosonize
the currents in (3.2) such that JL =3P,

(R) (R)

and completing the basis of the bosonization

appropriately, we can describe the same model in

terms of a Z;-orbifold, where Z, contains the

transformation ¢ > . Since the
L(r)

L
product JLJR is periodic under all boundary
conditions because it corresponds to the vertex
operator of the physical 4d scalar ¢ (3.2), in
the new bosonized basis the string states form
two sectors: the untwisted sector (UT) contain-
ing the states which correspond to boundary

conditions in (2.6) that leave J and JR (and

L
thus @L, @R) periodic and the twisted sector (T)

which correspond to J  and JR antiperiodic.

It is known that éhe partition function of a
Zz—~orbifold takes the formlé

Z=%2 (I)+2 (3.4)

2 "UT T

where ZUT(F) is the partition function ¢of some
momentum Jlattice I' and the Z; transformation is
an automorphism of I'. The momentaz in the un-
twisted sector have the form (QL...;QR...) where
QL’ QR are the charges of the states with
respect to the U{l) currents JL’ JR’ the semi-
column separates left from right movers and

under Zp
(QL...;QR...) > (—QL...;—QR...); (3.5)

in the twisted sector the momenta become

(0...;0...}« Performing a Lorentz boost in the
hyperplane of (QL,QR)
( Qi } _( cho shé ) QL
Q | Tlshe  cho ( Q ) (3-6)

we obtain a new consistent string model for
every value of the angle 6, since inpner products
are preserved and (3.6) commites with the Zy
operation (3.5); thus, in the boosted lattice,
the modular imvariance conditions are satisfied
and the Z, (3.5) remains an automorphism. The
mass-shifts can be calculated from (3.6) using
(3.1) and are given by (3.3); they are clearly
non-zero only for states in the untwisted
sector. A physical understanding of this fact
is that in the twisted sector the currents J_,

L

JR are antiperiodic and they do not have zero

wmodes, therefore charge operators do not exist.
Note that multicritical points correspond to
various scalars ¢i of the type (3.2) such that

(J9 ,3% § = 0 and/or [JO ,J
L’y Ry

in this case wany inequivalent boostings of the

Rj] = 0, siunce
form (3.6) are allowed to be done.

When JL and JR are always periodic under a%l
boundary conditions of E (2.6) simultaneously’,
there is no twisted sector and the transforma-
tion (3.6) is reduced to an ordinary boosting of
a momentum lattice. In this case ¢ transforms
in the adjoint representation of the gauge group
since 1t has the same quantum numbers with the
gauge bosons obtained by replacing, in the
or JR by azx“ or a;x“

vertex operator (3.2), JL

respectively; thus QL and QR correspond to
massless gauge bosons and the rank of the gauge
group 1s not reduced. However, when some
boundary coaditions leave JL and JR anti-
periodica, the scalar ¢ transforms in another
non—adjoint representation of the gauge group
whose rank is reduced when <¢> # 0, and Qs Q
do not correspond to massless gauge bosons. One

can showa, though, that these massive gauge



bosons are not arbitrary, but they may become
massless at some particular points of wvarious
scalar expectation values with enhanced gauge
Symmetry.

It 1s interesting to observe that without
being referred to the massless spectrum, the
existence of two real world-sheet currents JL
and JR with the same periodicilty properties
(P,P) or {(AP,AP) under all boundary conditions
of ¥ in (2.6) is sufficlent to guarantee the
existence of a massless scalar, corresponding to
a vertex operator (3.2) which is a flat direc—
tion at the string tree level, if it is also
supplemented with the condition that the charge
operator J% commutes with the world-sheet super—
current TF

[}
(8,151 = 0 (3.7)

where T; are the Fourier coefficients of TF.
The last constraint ensures that world-sheet
supersymmetry is respected.

It is finally amusing to try to rewrite the
transformed theory in terms of free fermions.
In the case of an ordinary boosting of a momen-

tum lattice (JL and J_  always periodic), it was

shown that this is p;;sible at the expense of
introducing arbitrary, in general irrational,
phases for the 2d fermionsT. In the case of a
Zpy=direction, however, although the 1initial
model 1s expressed in terms of a Zy-orbifold at
some particular point, after the "boosting” it
cannot any more be re-expressed back in terms of
free fermions with commuting boundary condi-
tions. It can be fermlonized only at the
expense of introducing non~commuting boundary
conditions between the various sectors. To
understand this phenomenon, comnsider a boson

which is fermionized in terms of twe real

fermions, 3% = ¢i1¢2. In the untwisted sector
the momentum p of & is related to the phase of
the complex fermion ¢)+i¢s according to
Eq. (2.8) or equivalently:

-sin2np ) (¢1) (3.8a)

¢ . - cos2np
‘ cos2np ()

P sin2np

In the twisted sector the boson & being anti-

periodic, ¢; is, for instance, periodic and ¢2
antiperiodic:

(o) - Lo ) (4] G-ow)
Clearly the matrix in Eq. (3.8b) does not com
mute with an arbitrary rotation (3.8a).

The generalization of the above rule to
include flat directiomns corresponding to arbi-
trary ZN—orbifolds lines is straightforwards. A
complex massless 4d scalar field ¢ corresponds

to such flat direction 1ff its vertex operator

at zero momentum has the form
dzdz *z 3.9
¢ ~ [dzdz J) (2)Jp(z) (3.9)

where J.. and JR are two complex U(l) currents.

L
Introducing complex 2d scalars &_, @R which

bosonize these currents and completikg the boso-
nization basis appropriately, one fiands a des-
cription of the model in terms of a ZN—orbifold.
The string states form In this case several
twisted sectors depending on the periodicity
properties of J and J  which are now various

L R
The transformation which generalizes

phasges.
the 0(l,1) "Lorentz=boost”™ (3.6) of the Zp-case,
and which at the same time leaves the modular
invariance conditions wunchanged and commites
with the ZN-operation, is a two-parameter
SU(L,1)/U(l} rotation;

with (3.6) but the angle & becomes complex

it has the same form

since, in this case, the momenta or charges of



the states with respect to JL and JR are
complex. This transformation leads to the fol-

lowing mass-shifts

M2 = ¥ (lehe i2-1)1Q 12 +1st0 |12 1Q, |2

(3.10)
* * k *
+choshe Q Qo +shoche Q Q.

for the states corresponding to boundary condi-
tions that leave the currents periodic (un-
twisted sector)}; the mass—-shifts are zero for
all the remaining states. The above rule could
-formally be generalized to any conformal field
theory and 1n particular to include possible
flat directions corresponding to orbifold
twisted sectorsls, although we have no direct
proof of this statement.

Flat directions may play an important role in
the string model building. Aﬁong other things,
they were recently applied to explain fermion
mass hierarchies in a flipped SU(5)xU(l) model
constructed using the fermionic formulation of
four-dimensional superstringslé. Moreover, in
the same model, they play an essential role to
get rid of all extra gauge factors so that the
low-energy group is given by the standard model

SU(B)CXSU(Z)LXU(I)Y-

4. SUPERSYMMETRY BREAKING

The breaking of space-time supersymmetry in
string theories, at a scale hierarchically
smaller than the Planck mass, seems to be a very
hard, if not impossible, problem in perturbation
theory. A first indication is that the method
of gauge symmetry breaking described above
cannot be applied7 to break supersymmetry spon~
tanecusly because all U{l) charges that do not
vanish for the massless spin-3/2 states, and
one would 1like to boost precisely in theilr
direction in order to give them masses according
to (3.3), do not commute with the world-sheet
supercurrent [see Eq. (3.7)]. Our basic result

is that the scale of supersymmetry breaking 1s

necessarily linked to the size of some internal
dimensiong-

Similar conclusions are found in the parti-
cular case of string solutions with supersym—
metry breaking by a Scherk-Schwarz mechanisml7.
Furthermore, recent parallel results18 based on
unitarity properties of N = 2 superconformal
theories show that supersymmetry cannot be
broken continuously by sliding the vacuum
expectation wvalue of a scalar field at an
analytic point and in a flat direction of its
potential. This does not, however, rule out a
numnber of interesting possibilities: for
instance, there could exist vacua with hierar-
chically suppressed supersymmetry breaking which
cannot be continuously connected to supersym—
metric ones. Or, the scale of supersymmetry
breaking could be proporticnal to some intermal
radii, but with a constant of proportionality of
the order, say, of 10716, o0r, broken supersym—
metry could characterize only the nearly mass-
less, but not all of the massive string modes.
Finally, it is not clear that the only conti-
nuous string parameters are vacuum expectation
values of scalar flelds; it 1s, in fact, note—
worthy that in many interesting supergravity
models19 the scale of supersymmetry breaking is
not tuned by a Higgs field. In contrast to
these, our proof would, if extended to arbitrary
string compactifications, exclude all of these
possibilities, since we make no assumption about
the mechanlsm producing a slightly massive
gravitino or gaugino.

The 1dea of our proof is that world-sheet
supersymmetry severely restricts the form of
massless, or infinitesimally massive space—time
spinore. Together with modular invariance, this
places strong constraints oun the allowed super-
string spectra. In fact, 1t follows from the
super-Virasoro algebra alone that im a Ramond

sector

2 = -5
Tz () Ly -7 (4.1)



where c is the central charge of the Virasoro
algebra. One concludes that the conformal
dimensions h = (hL,hR) of the Ramond primary
fields are bounded from below

o

7Y (4-2)

and, thus, in any consistent string theory there
are no tachyonic fermions. The minimm value of
{4.2) corresponds precisely to zeroc “left-

moving” mass [see Eq. (2.7)]:
L 1
m,i stgth {4.3)

where the factor 1/8 is the contribution of the
two real, or one complex, transverse fermions ¢“
which are periodic, since we are considering a
Ramond sector and the "internal™ central charge
c = 9. Thus, a massless gravitimo or gaugino
corresponds to the vertex operator

(Lglz ~ ¢ (2) o -¥* (4.4a)

or

o ~ o0 (2) 3%(2) (4.4b)
where J? are gauge curreats and ¢; is a Ramond
primary field of the underlying 2d superconfor-
mal field theory with conformal dimension by =
(c/26,0).

A slightly massive gravitino or gaugino is
obtained by replacing ¢3 in Eqs. (4.4) with some
¢ with conformal dimension h = lg+3h. The
precise statement is then the following: if in
a 2d superconformal fileld theory there exists
such a Ramond primary fileld ¢, world-sheet
supersymmetry and modular invariance imply the
existence of a sequence of Ramond primary fields
¢ K
h, = hyg +(Nk+1)5h, where N is some, mnot too

k
large, integer.

1,2,... with conformal dimensions

These will give rise to an

entlre tower of gravitinos or gauginos, which is

a signal of decompactification of some internal
dimension. We have not a general proof of the‘
statement; we can prove it only for “Gaussian”
modelsg. As an illustration, in what follows,
we will present the proof in the fermlonic case.
It can easlily be extended9 to the bosonic formu-
lations with generalized 2d supercurrents and to
orbifolds.

In the fermlonic comstruction a space~time
spinor belongs to a Hilbert-space sector hg' ,
where ,L is some boundary condition matrix
defined in Eqs. (2.2) with §& = =-l. Moreover,
the conformal dimension h, in Eq. (4.3) is

L

replaced by (1/8)“c'ac [see Eq. (2.7)], where g

is the phage vector which corresponds to the
diagonalization of the boundary condition matrix
A'G of Eq. (2.2b) according to the convention
(2.3).

morphisms of G, G being the group of realization

Since A‘G belongs to the group of auto-

of world-sheet supersymmetry, one has to examine
the phase-vector length aG-aG as A’G ranges over
Aut(G). This 15 uwinimized for some special
automorphisms A,% with the following two crucial
propertiesﬁ:

(1) a%- a% = 1/6 diwG = 3, which is precisely
the value necessary to make the left-moving

vacuum in the sector } 6 massless, and

A

(11) Na% = 0 (mod2) for scome even integer N
(N < 12 for the groups that interest us), which
means that A'% is some small root of the
identity.

Here we will restrict ourselves to inner
automorphisms, the generalization to outer ones
being straightforward. An inomer automcrphism 1s
a group element ia the adjoint representation;

up to a conjugation it can be written as:

}L - eiﬁé?ﬁ

G » (4.3)

with Hl the mutually commuting Cartan genera-

tors. The eigenvalues of the matrix (4.5) are

one for each of the rank(G) commuting genera-



inbep
tors, and e ™ P for every generator correspon-—

ding to the root vector_z. Thus, we find:’

agrag = % Tank(G) +I Beo-1)2  (4.6)

G roots

Normalizing the length of the long roots to two,

i3
+vel P G
tic Casimir of the group G [cG = n for S$U(n) and

one has I = ccdij where ¢ is the quadra-

n~2 for 50(n) with n » 5]. Defining

1 >
= 4.7
60 CG +ve P ( )

and using the Freudenthal-de Vries strange

formula:

dimG
Bo-bo = 3 (4-8)
G

we may rewrite Eq. (4.6) as

1
@,

dimG + ¢ (88 )2 (4.9)
% = 3 m cG( g )- . .

It follows immediately that the minimum phase
vector length is (1/6)dimG and it 1is obtained

for the special automorphism

+ >
A = o100l (4.10)
G

which is called "Coxeter element" and, among
inner automorphisms, is unique modulo the choice
of the subset of positive roots. Furthermore,

o th

A G is an n G
for a sinmply laced group, while n = 6 for SO(5);

root of the identity with n = ¢

a is therefore a small integer, and the adver-
‘tigsed integer N = 2n.

"Coxeter elements” (4.10) play then an
important role in the fermionie construction of
string models, since they can yield to massless
space—time splnors. For instanoce, a massless

gravitino corresponds to the state:

2R 10>, (4.11)

where the boundary condition vector § = (I,a%;
aR=0), the three positions of the vector being
in correspondence with the twists of the three
types of 2d fermions [see Eqs. (2.2) and (2.3)],
in a self-explanatory notation. Using the mass
formila (2.7), and the fact that near § there
are no almost periodic fermions with infinite-
simal frequency oscillators, it is easy to see
that the only candlidate of a slightly massive

gravitino is of the form:

a;x¥|o>s+6s, (4-12)

where 85 = (0,6aG;5aR) << 1, and the mass is

m2
3/2

1 2 1 2
E-(éac) = (éaR) (4.13)

]

The absence of a linear term in (4.13) is due to
the fact that a%-éac = Q0 since a% ainimized
Suppose now that this state

vector length.
belongs to the Hilbert space of a four—-dimen—
slonal string model. This means that $+55 1s in
the group ¥ of allowed boundary conditions, and
the state (4.12) survives the fermion-number
projections (2.6)

GTBF X (5H0S) { 1 4if § =1

b +1 1if 5E=—1 (4.14)

for every element b of the basis B. Equation
(4.14} follows from the fact that on the state
(4.12), eib.F acts respectively as the identity
or as a chirality operator.

Because & 1is a group under addition (mod2),
and NS = 0 (mod2), we conclude that S+(Nk+1)5S
with k = 1,2,... are also in E. We therefore
have an entire tower of candidate low-mass
gravitines

a;xﬁi0> k=1,2,000 (4.15)

S+(Nk+1)885°

with mass differences equal to Nm These

3/2°
states satisfy left-right level matching due to

the absence of a linear term in Eq. (4.13).
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They also survive all fermion-number projections

(2.6). Indeed, using relations (2.5) one has

G SHOIFLISS) _ (4n/2)Nkbe S C*(s+5s]Nk+l

b b
(4.16)

from which one concludes that the coefficients

in the left-hand side of (4.16) satisfy
Eq. (4.14) using that
O(mod2) 1if 6, =1
AN S+ b {O(modl) if 5b=—1 (417
which helps get rid of the extra phase.

Equation {(4.17) follows from the fact that a%+bc
+1, or o:%+bG are the phase vectors of an auto-
worphism, i1if bG 1is an automorphisa (6b=—l) or
antiautomorphism (6b=1), respectively, and that
Na% = 0 (mod2), and finally that d% minimizes
vector length over the group of automorphisms.
This then completes our proof.

Note that if supersymmetry is not broken at
tree level, then non-renormalization theoremszo
that it

guarantee will not

break through
radiative correctiouns. A possible exception
could occur 1f the gauge group contains an
anomalous U(l) factor21, but cone can also show9
that the chiral charge asymmetry is bounded from
below by a not too small number. This makes it
unlikely that supersymmetry will break, if at

all, at the "weak"” scale by such a mechanism,

leaving non-perturbative effects as the final
alternative, if one excludes the idea of having
an extra dimenslon at relatively low energies.
These difficulties in breaking space-time super-
sympetry should, among other things, make us
rethink about the necessity of having it as an
approximate low-energy

syametry din string

theories.
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