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ABSTRACT

We re-examlne supersymmetry breaking in the observable
sectors of superstring—inspired supergravity models by
computing Goldstone fermion couplings at the ome~loop
level. We find that a single global U{l) phase
invariance is sufficient to forbid wmasses for gauge
non-singlet chiral scalar bosons, and that Heisenberg
symmetry is not necessary.
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The most interesting supergravity models are those whose effective scalar
potential has one or more flat directions at the tree level. These so-called no~
scale models [l] have no holes in the potential with cosmological constant of
O(m;), which would be cosmologically catastrophic, and offer the possibility of
dynamical generation of low mass scales by radiative corrections creating a non-
vanishing effective potential along the flat direction. Moreover, no-scale models
appear naturally in the low-energy effective field theories obtained from string
theories [2]. Supersymmetry maust be broken in such theories, and a 1likely
mechanism appears to be gaugino condensation in a hidden sector of the low-energy
effective field theory [3,4]. The question then arises how this supersymmetry
breaking feeds through to the observable sector of the theory. It is well known
that no supersymmetry breaking squared scalar masses appear at the ome-loop level
[5], whereas gaugino masses may appear at the one-loop level [6,7], and there are
two—loop contributions to squared scalar masses [8]. These results were initially
derived in the minimal superstring-imspired no—scale supergravity model whose

Kdhler potential is [2]
G = b (S+S) + 3l [T (Cic)- (WO W8]

with
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where $ and T are gauge-singlet fields, and the Ci are non—singlet fields. The
vanishing of the one-loop squared scalar masses was obtained by looking directly at
the effective scalar potential [5]. Both this result and the non-vanishing ome-
loop gaugino mass were found in vacua which did not have a vanishing cosmological
constant in general. Moreover, the reason for the vanishing omne-loop squared
scalar masses is not clear. A deeper understanding of this result would indicate
whether it is more general than the simple model (1) in which it was initially
derived, and so might be true in a more genexal class of superstring-inspired
supergravity models. It has been suggested that the reason for the vanishing of

the squared scalar masses at the one-loop level is a Heisenberg § ymmetry [9]
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of the Kdhler potential (1).

In this paper we argue that the Heisenberg symmetry (2) is not necessary for

the squared scalar masses to vanish at the one-loop level. Iunstead, we show that
: i e 1

the one-parameter global U(l} transformation C + e C
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is sufficient to guarantee their absence. This means that the specific form (1b)
of the function g(C C+) in the Kihler potent1a1 (la) is not necessary for the
scalar masses to vanish. Any function g{C C+) would do equally well, and such

functions do not in genmeral have the Heisenberg symmetry (2).

These results are derived by cowputing the one-loop corrections to the
Goldstone fermion couplings, and using the results that (i) the one-loop effective
action for a supergravity theory may be characterized by a Kihler potential with
one—loop corrections [10], and (ii) all supersymmetry-breaking mass splittings
within supermultiplets (X,r)\i) are proportional to the X-')v(—goldstino couplings.
Although the sufficiency of our custodial U(l) symmetry could perhaps be derived in
other ways, our technique of calculating the Goldstone fermion couplings may be

useful in a broader context.

We start by reviewing the argument linking Goldstone fermion couplings to
supersymmetry-breaking mass splittings within supermultiplets. We consider the
matrix element of the supercurrent J¥ between a boson B and a fermion F in a chiral
supermultiplet: <B,pBIJplF,pF>. Assuming parity conservation, and using the on-
shell condition pFu = mpu for the fermion spinor, the matrix element may be written
as [11]

<8 be|3,. \F b= {[ﬂ (Pe¥e), B, +C¥, T+ [Dlrerbe), +Eq, ryﬂﬁu

(4)
where q“’ = p;—pp. Current conservation qp<B’pBlJulF’PF> = 0 imposes the following

on-shell condition

[A(PE- 1) « B O+ F(2 )] [t D(mgmid)+ Eom 81, =0

(3)

We now study the Goldstone fermion contribution to Eq. (4), which is
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where f is the Goldstone fermion decay constant: <0|JUIE> = qu' This tells us

about the singular pieces of the form factors A, B, C, D, E, F in expression (4):
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Retaining only the leading terms at small q? 1n Eq. (5), we find

PE(r-n2) + Yo (791,
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Substituting the Goldstome fermion expressions (7), we finish up with

POY(wig-w) = ~ falo) )

Therefore, since A(0) # 0, Am? = m%—m% #Z 0 if and only if a0} = 0. In

perturbation theory, we have

2
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and so
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A om = - fa

2
Hence, to see if Am; = 0, we need only to see Lf aj; vanishes on mass—shell, i.e.,

if al((PB_pF)2=O)Ip =0. Moreover, it is consistent to use tree—level

%:Q’p%zo

masses in evaluating this one-loop quantity.

OQur next step is to extract from the Kihler potential (la) with arbitrary
g(C,C"') the propagators needed to evaluate aj. We start with the fermionic kinetic
terms which are
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where Gi = 62G/6¢i’6¢j as usual is given by
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and we denote dg/aC = gC, dg/lac = gC, etec. The following matrix
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has the property that aat = 671, and so can ?e used to diagonalize the kinetic
* =1s =
terms (12): the transformed fermions fi = (A )j lxﬁ have canonical kinetic terms
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In this new fermionic basis, the fermion mass terms are
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and in the tree—level vacuum
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If we denote f = (EL,"‘I'L,'EL), the matrix (16) tells us that the EL fermion is
massless, whilst the EL fermion has a mass 21113/2 and can be identified as the
Goldstone fermion. It is indeed the only fermlon with a bilinear coupling to the
gravitino:

-1
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Hence, after redefining

/
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we recover the expected feature that the orthogonal Ti field is massless.

ul

One-loop contributioms to a) can be divided into two categories: those
containing gravitinos and those without. To evaluate the latter, we need the
interactions contained in (14) and (15), and others which do neot involve the

gravitino, and come from the following Lagrangian terms:

B B o (ARTENA I G LR R T A 4ty

(18)

When extracting vertices from (l4), (15) and (18), we assume that g(c,ct) is
invariant under the global U(l) transformation C+ eiaC, so that g = g(¢,Ct) and
that

o> = <3(_5 - Lq7> = <‘3CC>I=O | (19)

in the tree—-level vacuum. These latter conditions are automatic if g{(cCt) is

*
analytic and the tree-level <C> = 0 as we expect ). Under these assumptions, the

*) The tree—level potential for such a model [4] is p051tive semidefinite 1f S+5F,
>0 as required for the positivity of the kinetic terms, leading naturally to
<8> 0 at the tree level.
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interaction terms relevant for the calculation of non-gravitinc loop contributions
to a; are (in two—component notation and using the Minkowski metric):
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They give rise to the Feynman diagrams in Fig. 1l: the first six terms give graphs
(a) to (e), the seventh term comes from the scalar kinetic energy term G‘lauz bu
and is needed for graphs (f) and (g), and the eighth term gives graph (h). We have
denoted g'(x) = 3/3xg(x) and TR,I are the real and imaginary parts of the scalar
component of the T superfield: T = (1//2)(TR+1'I'I). Explicit evaluation of the

graphs gives couplings
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where we have indicated in each case the result of taking the limit Py = p% =

(pB-pF)2 = Q0 and using the fact that mB = mF = (0 at the tree level. It is

transparent from adding together the mass—shell limits of (2la) to (2lg) that
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The vertices needed for the calculation of the one-loop gravitino dlagrams

shown in Fig. 2 are
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where C and $u are two—component spinors, and we agailn use the Minkowski metyic.

The graphs in Figs. 2a through 2h give couplings
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where Spk(k) is the gravitino propagator. In every case the coupling is propor-

tional to aHC and hence vanishes in the mass—shell limit. We therefore conclude

that

a (O)l =0 = A )(24) = O 25)

(29)

It follows that there are no supersymmetry—breaking squared scalar masses at
the one-loop level in the effective potential derived from the tree-level Kihler
potential (la), under the assumption that g has a global U(l) symmetry: C+ eiaC
and is an analytic function of ¢¢t. The multi-parameter Heisenberg symmetry (2) is
sufficient but not necessary Lo prove that Ami = (. Qur U(l) symmetry does seem to
be the minimal necessary: it is easy to write down additional interaction vertices
and one-loop diagrams which appear if the U(l) symmetry is relaxed, and in general
contribute to aj) (0) and hence Ami. These could of course be cancelled by some
other symmetry, but it is unlikely to be more minimal than the global U(l) symmetry
that we have identified.

The approach to evaluating supersymmetry-breaking mass splittings that we have
adopted in this paper may be useful for other applications. We have in mind the
exploration of other superstring~inspired no—scale supergravity models, and the
extension to two~loop effects. The advantage of thls approach, combined with the
results of Ref. [10], are that one can in principle proceed to construct systemati-
cally higher-loop approximations to the full effective action for any N = 1 super-

gravity theory, including those inspired by the superstring.
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FIGURE CAPTIONS

Fig.

1 : One-loop contributions to the Goldstone fermion vertex which do not

involve gravitinos.

Fig. 2 : One—-loop contributions to the Goldstone fermion vertéx which do

‘involve gravitinos.
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