EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN-EP/88-50 12.4.1988

ONSET OF DEFORMATION IN NEUTRON-RICH KRYPTON ISOTOPES

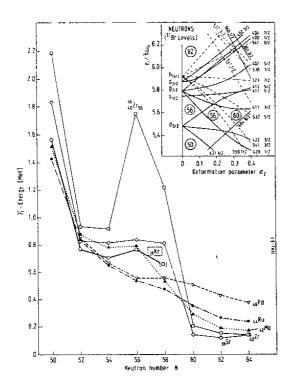
K.-L. Kratz¹, H. Gabelmann^{1,2}, B. Pfeiffer¹, and P. Möller³ and the ISOLDE Collaboration, CERN

- Institut für Kernchemie, Universität Mainz, D-6500 Mainz, Federal Republic of Germany
- CERN-ISOLDE, CH-1211 Geneva, Switzerland
- Department of Mathematical Physics, Lund Institute of Technology, S-22100 Lund, Sweden

Abstract: Beta-decay properties of neutron-rich saBr isotopes confirm the predicted smooth onset of quadrupole deformation for Z<37 already below N=60. The observed increase of the energy of the first 2+ state in the N=56 nucleus *2Kr may indicate octupole softness.

During the last decade, extensive studies have been devoted to the level structures of neutronrich nuclei around A=100. For ee-isotopes in this region, already the behaviour of the first 2+ levels (see Fig. 1) indicates the well-known transition from spherical to deformed shapes as neutrons are added beyond N=58, with an extremely sharp transition for 40Zr and 36Sr (see, e.g. [1,2]). The suddeness of this transition has been interpreted as an effect of the spherical Z=40 shell gap which can locally reinforce the N=56 spherical gap (see the 2+ peak for **Zr) to delay the shape transition until the Z=38, N=60 gaps at large deformation can reinforce each other. As the proton number moves away from 40, the influence of the spherical N=56 subshell should quickly disappear. While for the heavier elements (42M0 to 46Pd) the $E(2^+)$, indeed, decrease more gradually indicating a smooth onset of deformation, so far no experimental data were available for lighter elements (34Se, 36Kr) with N>54. The region around Z=36, N=56 is of particular interest because of the predicted octupole softness [2-4].

With the halogen beams available at the mass separators OSTIS (ILL-Grenoble) and ISOLDE (CERNGeneva), we have started a systematic investigation of β -decay properties of heavy Br isotopes in order to check the above predictions for Z<37 nuclei. At both facilities UC-graphite targets were used which were connected to negative-surface ion sources with a LaBs ionizer [5,6]. Spectroscopic information was obtained from multiscaling of delayed neutrons and β -particles to derive $T_{\rm L/2}$ and $P_{\rm TR}$ values, and from Y-singles and YY-coincidence measurements to establish partial decay schemes.


The most surprising result is the observation of an increase of $E(2^+)$ in 92 Kr by about 60 keV relative to 90 Kr indicating a gap at N=56 for Z=36 (see Fig. 1). On the one hand, this increase ap-

pears small compared to the 830 keV in the double semi-magic °CZr; on the other hand, however, the effect in °2Kr is remarkable when regarding the E(2+) trends in the isotones with Z=(40±2) and Z=(40+4). Already in °MO and °CSr the increase of the E(2+) has with 9 keV, respectively 22 keV become very small; and in the C(2+) by about 110 keV when going from N=54 to 56. Based on this behaviour the effective N=56 gap in °ZKr has to be considered even stronger than the apparent increase of E(2+).

One is now forced to question why a subshell gap exists in \$2Kr while it has more or less disappeared in the other N=56 isotones around °2r. For the double semi-magic **Zr there is consistent interpretation that the spherical gaps in both the proton and neutron systems give a particularly low shell energy for the spherical shape [1,2]. With the proton shell structure dominating over the neutron shell structure [2], already for isotopes in close vicinity to Z=40the spherical N=56 is not strong enough to resist a change to deformed shapes below N=60. As can be seen from the neutron SP levels for *2Br in Fig. 1, the spherical gap is now replaced by a deformed N=56 gap around ϵ_{2} =0.2. Hence, our original interpretation [7] was that the increase of E(2+) in *2Kr may be due to this locally occuring deformed gap.

We have compared the experimental β-decay properties of *1-94Br with shell-model predictions from the Lund RPA code [8]. The main results of this comparison are that (i) the observed changes in the shape of the β -strength function (S $_{\beta}$) as well as in $T_{1/2}$ and P_{n} confirm a smooth onset of deformation already below N=60, and that (ii) the latter properties seem to be very sensitive to deformation, thus allowing to limit ϵ_2 already from $T_{1/2}$ and P_n (see Tab. 1). When comparing the two odd-mass isotopes *1.*3Br and the two even-mass nuclei \$2.94Br, for both pairs a decrease of the experimental $T_{1/2}$ by about a factor of five is observed. This is - similar to the situation in the respective 37Rb isotones [9] - mainly due to the increase of the $vg_{7/2} \rightarrow$

Zeitschrift für Physik A - Atoms and Nuclei - Short Note

1: Systematics of E(2+) of heavy 36Kr to 46Pd isotopes. The insert shows the Nilsson neutron SP levels for *2Br as a function of quadrupole deformation.

 $\pi g_{\text{P/Z}}$ GT strength around 3.5 MeV beyond the $d_{\text{5/Z}}$ closure at N=56. The somewhat less pronounced drop of the $T_{1/2}$ for the Br isotopes compared to their Rb neighbours reflects the onset of the deformation-related fragmentation and reduction of the above GT strength in **Bras and **Bras. In the Rb isotopes this latter change of $S_{\mbox{\scriptsize B}}$ occurs only at N=60 [9].

Let us now have a closer look into the 92Br/92Kr system. From both, the experimental S_{β} and the combination of $T_{1/2}$ and P_n (see Tab. 1), the predicted deformation of $\varepsilon_2 = 0.2$ for $^{\circ 2}Kr$ [1,2] can be excluded. For this case our RPA calculations give the lowest GT strength at about 2.3 MeV with a log(ft)=3.6, whereas in experiment no $\beta\text{-branch}$ with a log(ft)<6.0 could be identified. Agreement with experiment is only obtained for a narrow near-spherical range, where $T_{\text{1/2}}$ and P_{n} are reproduced and the lowest GT strength is predicted at about 3.1 MeV with a log(ft)≈5.3. All other GT decay goes to levels above Bm = 5.4 MeV. The low-lying strength may correspond to a group of levels observed around 3 MeV with a cumulative log(ft)=5.9. Further support for a near spherical *2Br/*2Kr system may come from the theoretical ground state configuration of vs1/2, $\pi f_{5/2}$ for °2Br yielding a most probable $J^{\pi}=2^-$. This spin would be consistent with the experimental $log(ft)\approx6.0$ for first-forbidden β -decay to the first 2+ level at 769 keV in *2Kr. It would also be consistent with a log(ft)≈6.8 for the second 2+ level at 1447 keV and a log(ft)≈ 9.5 for a ff-unique transition to the 4* member of the 2-phonon-triplet at 1357 keV. Additional indication for a low *2Br spin (JS3) comes from the observation of a strong β-delayed-neutron branch to the 5/2+ g.s. of *1Kr.

Summarizing, we conclude that in contrast to our

Tab. 1: Comparison of experimental $T_{1/2}$ and P_n values for *1-** Br with RPA shell-model predictions for different quadrupole deformation.

Isotope	Experiment		RPA Shell Model		
	T _{1/2} [ms]	P _n [%]	T _{1/2} [ms]	P _n [%]	Def.ε ₂
91 35 ^{Br} 56	510 ± 20	25.5 ± 3.5	892 628 202 43	26.8 21.8 8.0 3.2	0 0,05 0.10 0.20
92 _{Br57}	310 ± 10	32 ± 4.5	1830 439 41 78	100 23.6 4.2 13.7	0 0.025 0.10 0.20
93 _{Br58}	102 ± 10	10 ± 5/3	19 92 41	2.9 10.7 5.4	0 0.10 0.20
94 _{Br59}	70 ± 20	30 ± 10	19 35 93 107	8.9 7.8 34.9 25.3	0 0,25 0,275 0,30

earlier belief [7] and most model predictions, the N=56 isotone 92Kr seems to be quasi-spherical. This now raises again the question about an interpretation of the observed increase of E(2+) in this nucleus.

Bengtsson et al. [2] noted that their Strutinsky type potential-energy calculations could not describe the properties of nuclei around Z=36, N= 56. They suggested to consider the octupole degree of freedom to obtain the required lowering of the g.s. energies. Although no octupole equilibrium deformation is predicted in this mass region [2-4], softness with respect to octupole distortions is expected which should be enhanced for spherical shapes [4]. Hence, octupole instability may be responsible for the observed lowering of the g.s. energy, i.e. the N=56 gap in 92Kr. A more convincing argument would, however, be the identification of low-lying $\pi\text{=-}$ states. And, indeed, we have evidence for a 3- level at 1805 keV. The spin assignment is based on the $E(3^{-})$ systematics in this region [3], as well as on $\beta-$ and $\gamma-branching$ arguments. In the N=56 neighbours ^{94}Sr and ^{96}Zr the lowest 3- level lies at about 1.9 MeV, close to the energy of our 3- candidate in *2Kr. Similar to the situation in ^{94}Rb decay (3- to 3- $\beta\text{-branch}$ with a log(ft)=7.0), the 2- to 3- β -branch is with a log (ft)=6.8 rather slow. Although the J* involved would suggest "allowed" β-decay, it does not occur as GT branch in our RPA model.

Further experiments - in particular a determination of the multipolarities of the Y-transitions deexciting the 3- level - are foreseen at CERN-ISOLDE in order to confirm our interpretation of octupole instability in *2Kr56.

References:

- 1. Ragnarsson, I., Sheline, R.K.: Physica Scripta 29, 385 (1984).
- Bengtsson, R. et al.: Physica Scripta 29, 402 (1984).
- Leander, G.A. et al.: Nucl. Phys. <u>A388</u>, 452 (1982).
 Nazarewicz, W. et al.: Nucl. Phys. <u>A429</u>, 269 (1984).
- 5. Vosicki, B. et al.: Nucl. Instr. <u>186</u>, 307 (1981). 6. Rabbel, V. et al.: Nucl. Instr. <u>B26</u>, 246 (1987).
- 7. Münzel, J. et al.: Verhandl. DPG (VI) 19, 997 (1984).
- 8. Krumlinde, J., Möller, P.: Nucl. Phys. A417, 419
- 9. Kratz, K.-L.: Nucl. Phys. A417, 447 (1984).