PLEASE
MAKE A

PHOTOCOPY

or check out as

NORMAL
LOAN

DIVISION

ceERN — SPS

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

/ ny CERN - SPS
Wi b
@\)35 P
ety 1 5TV 00

e m%%

3736 HRCc
Cq

CERN SPS/87-36 (ACC)

DLX, THE MULTIPROCESSOR ASSEMBLY FOR LEP/SPS CONTROLS

P.D.V. van der Stok

Abstract

The computers composing the controls network for LEP are VME based
assemblies of Motorola 68000 microprocessors.
microprocessors is called DLX. The operating system (0/S), ELECTRE, running
on the processors is based on a real-time executive called SCEPTRE, which

has been standardized by the french BNI.

Two versions of the operating system exist:

monoprocessor.
intelligent controllers,
version;
real-time control Tasks.

token-ring,

the

additions required for LEP controls will be presented.

Presented at the Europhysics Conference on Control Systems
for Experimental Physics, Villars-sur-0llon, 28.9-2.10.1987

Geneva, November 1987

CERN LIBRARIES, GENEVA

(RN

CM-P00061408

A complete VME crate with

a multiprocessor and a
For LEP/SPS controls the monoprocessor version is ued to add

MIL-1553-B, to
while the multiprocessor version is used for the execution of
The main components of SCEPTRE, ELECTRE and the

multiprocessor

DLX, The Multiprocessor Assembly for LEP/SPS Controls

P.D.V.

van der Stok

European Organization for Nuclear Research
CERN 1211 GENEVA 23, Switzerland

Abstract

The computers composing the controls network for
LEP are VME based assemblies of Motorola 68000
microprocessors. A complete VME crate with
microprocessors is called DLX. The operating
system (0/S), ELECTRE, running on the processors
is based on a real-time executive called SCEPTRE,
which has been standardized by the french BNI.

Two versions of the operating system exist: a
multiprocessor and a monoprocessor version. For
LEP/SPS controls the monoprocessor version is used
to add intelligent controllers, token-ring,
MIL-1553-B, to the multiprocessor version; while
the multiprocessor version is used for the
execution of real-time control Tasks. The main
components of SCEPTRE, ELECTRE and the additions
required for LEP controls will be presented.

Introduction

In 1982 the decision was taken that the LEP
controls system and the SPS controls system should
be merged and that the control should be executed
from one control room [1]. An analysis of the SPS
control system in that period showed that very
little interaction existed between the individual
control processes and that many of them could be
executed in parallel as they did not share any
resources. The idea was put forward to replace the
then existing N100 computers by multimicro
assemblies, a less costly and more flexible
solution than the installation of a mini
computer{2]. In the assembly only standard
reusable modules will be used to configure an
assembly to the required needs. Also later
modifications of the assembly requirements can
more easily be integrated than would be possible
with a manufacturer controlled mini computer.

A first VME based prototype was contructed at CERN
in 1984. With the thus required experience a call
for tender was issued, which resulted in the
acquisition of the DLX system constructed by
THOMSON-SINTRA [3].

Additions have been specified for the DLX to make
it conform with the specifications of the controls
and especially to make it compatible with the SPS
control system [4],[5],[6].

Software development

However good your computer system, when the

development, modifications and testing of your
control procedures are prohibitively difficult
more complaints than enthusiasm will be generated.
Both the development requirements and the control
requirements influence each other and they are 1in
turn influenced by the DLX structure. A
description of the software development
environment gives consequently a first glimpse of
the DLX system and an idea of the place of the DLX
inside LEP/SPS controls. A first discussion of the
development cycle will certainly satisfy the
people who think that the usefulness of computer
system is completely determined by its development
environment.

For the development of DLX software two stages can
be discerned:

- The contruction of the complete ELECTRE 0/S
plus additional fixed applications.

- The incremental addition of applications during
the lifetime of the generated ELECTRE 0/S in a
particular DLX.

The DLX 1is explicitly intended for the execution
of the control procedures. The actual development
of the control procedures will be executed on a
more appropriate UNIX based host machine and
consequently all development is based on the host
target concept.

TCP/IP

Host

DLX target
UNIX

The host 1is a VAX, a ND500 or an equivalent UNIX
based host system, while the target is a complete
DLX assembly or one CPU in a DLX assembly. The
network connection is UDP and TCP oriented and the
physical medium for the DLX is token ring.

For the cross development, compilers (C,
FORTRAN-77 and MODULA-2) are available to compile
the individual files which constitute the
applications and the 0/S. The generated object
format 1is COFF 5.2 which contains the 68000 code
and the debug information. The generation of
ELECTRE is done on the host. ELECTRE is completely
written in the C language with a very small
machine dependent part written in assembler. Its
individual files are compiled separately on the
host and with a linker/loader they are merged to a
set of packages. A configurator utility will,
based on a configuration file, load all the
required packages into as many object files as
there are CPUs in a particular DLX assembly. The
latter objects are either loaded into Eprom or are

directly loaded into the RAM of the individual
CPUs.

The debugging is done with the aid of the symbolic
cross-debugger: SPY. Again it is host target based
and most of the DLX machine is visible to SPY. Its
main tasks are:

- (repetitive)
descriptions.

- (repetitive) visualisation of existing Tasks
and their state.

- (repetitive) visualisation of the values of
variables.

visualisations of all Task

Breakpoints can be set and the state of the total
machine can then be inspected. It should be noted
that a breakpoint freezes the state of all CPUs
which constitute the multi.

A second utility *dbx68" 1is more application
oriented. It allows the debugging of one process
at the time while all other processes inside the

assembly continue executing. The man machine
interface is menu oriented with displays of lists
of variables, with zoom facilities to visualise
the RECORD, struct or array contents. Also it is
possible to follow pointer structures to inspect
trees of RECORDS. Dbx68 knows about the syntax of
the three supported languages (must be explicitly
declared by user), while the semantics is taken
from the COFF 5.2 debug information.

Once a complete DLX is configured, its fixed
applications and the operating system can be
debugged with SPY. Additionally it is possible to
incrementally add applications which can be
debugged with dbx68, without interference with the
other already existing Tasks.

DLX hardware lay-out

A short introduction of the used DLX hardware will
be presented here. The DLX consists of a VME crate
which contains a certain number of “UTM10" cards.
They contain a MC68010 microprocessor, double port
memory visible form both the VME and the CPU,
local memory only visible from the CPU, a MMU, and
two serial interfaces. The ELECTRE multi 0/S can
run on a number of one till n CPUs. Standard VME
cards can be added under control of the multi 0/S.
One CPU on the multi will execute the driver for a
specific card. Intelligent cards, based on the
UTM10, can be added under the control of the
multi. They may contain a mono version (no MMU) of
ELECTRE and communicate with the multi through a
communication package. In the case of the LEP/SPS
controls intelligent controllers of this kind are
foreseen for .the token ring and the MIL1553b
connections (7],(8],[9].

ELECIRE basics
ELECTRE 1is based on a kernel (SCEPTRE), which is
defined by the french Bureau d'orientation de la
Normalisation en Informatique (BNI). The kernel
contains a set of basic primitives on which a more

elaborate operating system can be built. The basic
primitives are in short:

- Wait for event or send event to specified Task.
- Enter or extract an element to/from a FIFO.

- Enter or leave a protected Region.

- Start, stop or continue a Task.

In ELECTRE these primitives execute in the multi
version or the mono version in exactly the same
way. Once created the user does not need to know
on which CPU a Task is situated, neither does he
need to know on which memory the kernel objects
are located.

To allow a consistent and safe addition of
facilities on top of the kernel the concepts
AGENCE and DOMAIN are introduced. An AGENCE is a
package which contains® a certain number of
facilities (typically a set of PROCEDURE calls).
Inside the AGENCE a number of objects local to the
AGENCE are defined. Instances of these objects are
created inside the AGENCE and completely under the
control of the AGENCE. An AGENCE is allowed to
invoke the utilities of other AGENCEs or of the
kernel.

The DOMAIN defines the area which can be accessed
by a Task at a given moment during its execution.
In other words: when a Task has entered a Domain,
the code area and the data area of that Domain is
only accessible to the Task at that moment. One or
more AGENCEs can be qrouped 1in a DOMAIN. All

existing AGENCEs (which together constitute the
ELECTRE 0/S) can be groupd in one DOMAIN, while
new AGENCEs, which are not bug free, can be put in
different DOMAINS. Consequently the 0/S is

potected againts the errors of the newly created
0/5 features.

The distribution of the AGENCEs over DOMAINS and
the distribution of DOMAINs over the CPUs of the
multi are specified in the configuration file. The
latter file is used by the configure utility to
create the object files for the individuals CPUs.

The mono version of ELECTRE does not know about
DOMAINS (no MMU).

The main AGENCEs which contitute ELECTRE will be
enumerated and explained below. N.B All AGENCEs
use the facilities of the kernel mentioned above.

AGENCE of Tasks. This AGENCE provides the link
between the kernel primitives which act on
pointers and the Task primitives which act on Task
names. Additionally the dynamic creation and
elimination of Tasks is done here.

This AGENCE provides the
facilities needed for all timing needs of the
Tasks. Tasks can wait for delays or initialise
timers. The timers will send signals to Tasks when
their specified time period has passed.

AGENCE __of semaphores. This AGENCE provides
semaphore facilities which can be used over Domain
boundaries. In the C library additional semaphore
facilities are provided for semaphores which are
used locally in one Domain. They complement the
Region facility of the kernel, which may have
undesirable side effects if not used with caution.

AGENCE of mailboxes. This AGENCE may create and
suppress mailboxes which can be used over Domain
boundaries. They complement the FIFO concept of
the kernel which can only be used locally inside a
Domain.

This AGENCE provides a
homogeneous interface to all I/0 from ELECTRE. It
receives blocks of data and prepares blocks of
data from/to the user programs. The data are
picked up by the specific device drivers and
passed from or to the device. In this way data can
be driven to any Task independent of its CPU to
any device independent of the CPU to which the
device is physically attached.

This AGENCE
contains a large part of the UNIX 5.2 file system.
Not all facilities are included to gquarantee
response times, and to minimise the code size.
Drivers for RAM, floppy disk and winchester based
files are provided.

AGENCE of exceptions. This AGENCE allows the
continuation or controlled stop of control Tasks
in the event of an exception. Tasks can be
activated on a set of specified exceptions
provoked by a specific Task. After treatment the
provoking Task can be aborted or its execution can
be continued. The exception causes are memorized
in memory and can effaced at will by the treating
Tasks.

| additi

The major task of the DLX is to control equipment.
The connections between the DLX and the equipment

are implemented via MIL1553B. The instructions
from the main control room or from other consoles
to the DLX arrive over the token ring network. The
protocol on the network is TCP/IP and UDP/IP. On
top of UDP/IP a special file access and remote
- job access protocol (RATP) is implemented [4]. Per
DLX a set of 1 till 8 UTM10s are foreseen for the
equipment access and 1 UTM10 for the token ring
access.

The tasks to be executed by the DLX are'manyfold:

- Execute autonomous surveillance programs.

- Receive and execute Remote Procedure Calls.

- Receive and execute NODAL IMEX and EXEC calls
(SPS compatibility).

- send RPC, IMEX and EXEC commands to other DLXs.
- Send equipment access requests to correct
equipment interfaces.

All requests to the equipment are symbolic. The
Equipment Directory Unit (EDU) binds these
requests to the correct physical addresses on the
MIL1553B and dispatches them. The EDU guarantees
that only one transaction at the time is going on
with one particular piece of equipment.

Via the token ring two types of action can be done:

- Request remote job execution, execute remote
request.
- Ask for remote file access, execute remote file
request.

Further local file and device access can be done
through the file system (SGF). The AGENCE GFX
provides one OPEN call for remote job -, remote
file -, local file -, or local device access. GFX
will determine which package has to be invoked for
any particular request. Additionally it will be
possible to access the AGENCE of the mailboxes
through GFX to provide ‘“pipe” like accesses to
other Tasks.

Another addition required for the LEP/SPS closely
linked with the above requirements is the
possibility of dynamically loading and executing
Tasks. The DLX system was originally only foreseen
to execute fixed applications. An AGENCE for
dynamic loading has consequently been added.

A strict organization of the Tasks in the DLX is
needed to estimate its load at a given time and to
determine where new applications can be added. In
connection with the dynamic loader the Supervisor
AGENCE was introduced. The latter recognises
different types of Programs and Tasks. In our
nomenclature a Task executes a Program.

Applications
S |L |E Super- EDU G F X
e |1 |x visor
m (b |c RATP SGF
a |r |e T} C| L 1P
plalp lal 1] o
hir [t |s| o] a 1/0
o |y |i ki c} d
r o |s| k| e} Mil- T-R Ram|Winch|Flop
e n s|{ r| 1553
SCEPTRE kernel

The following combinations of Tasks and Programs
are handled by the Supervisor:

- Permanenlty loaded programs.

- NODAL interpreter programs resident on file.
- Dynamically loaded programs from a file.

- Repetitively executing Tasks.

- Tasks started by accelerator events.

- Tasks started on a clocks tick.

I;E;?sks started by a remote request (RPC, EXEC,

3elow a diagram of the ELECTRE software layout
including all AGENCEs discussed above is shown.

Conclusion.

The structure of the DLX multiprocessor assembly
has been presented. Its place inside the LEP/SPS
controls system 1is explained. In the immediate
future an analysis and tuning of the DLX behaviour
Wwill be needed to obtain the maximum benefit from
the multiprocessor capabilities.

Refer S.

[1] M.C. Crowley-Milling, The control system for
LEP, 1983 Particle Accelerator Conference,
21-23 march, 1983, santa-Fe, new-Mexico.

(2] J.Altaber, M.C. Crowley-Milling, P.G.
Innocenti, R. Rausch, Replacing
Mini-Computers by Multi-processors for the
LEP Control System, 1983 Particle Accelerator
Conference, 21-23 march,Santa-Fe, New-Mexico.

[3] P.D.V. van der Stok, Notions sur le systeme
multiprocesseur DLX et son executif
temps-reel ELECTRE, LEP Controls Note 77.

[4] J. Altaber, P.S5. Anderssen, K. Kostro,
D.Lord, Protocols for the LEP/SPS Control
System, SPS/ACC/Note 86-8.

[5] J. Altaber, P.D.V. van der Stok, DLX Agences
for the LEP/SPS Control System, SPS/ACC/Note
86-9.

(6] J.Altaber, A. Bland, P. Brummer, V.Frammery,
The LEP/SPS Access to Equipment from DLX,
SPS/ACC/Note 86-22.

(71 A. Bland, The Communication package for the
equipment network of the LEP and the SPS
Accelerators. This conference.

[8] R. Rausch, Real-Time control networks for the
LEP and SPS Accelerators, this conference.

[9] P.S. Anderssen, The new control room
infrastructure for the LEP and SPS
Accelerators. This conference.

