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1. INTRODUCTION

The first, and perhaps the simplest, viable candidate for a unified model
of gravity and all other interactions was the heterotic string. It can be compact-
ified from 10 to 4 dimensions on a smooth background M* x K provided K*
satisfies a simple topological condition; it must have vanishing first Chern class
[1]. Although it was historically important that such spaces, which are called
Calabi-Yau manifolds, admit a unique Ricci-flat metric (in each Kihler class),
this is not a solution of the string beyond lowest order in perturbation theory
{2] and it seems unlikely that it will be recovered as an exact, non-perturbative
solution. Fortunately this is of little practical importance since most, perhaps
all, properties of the low energy effective field theory relevant in all forseeable

future are determined only by the topology of the hidden space [3].

In the following we describe how to investigate a very large class of
Calabi-Yau manifolds [4]. We start by constructing all complete intersection
Calabi-Yau (CICY) manifolds. The technique displays all the magic of complex
algebraic geometry without any of its complications, and is by far the simplest
way to make a manifold. CICY manifolds are in fact so simple that their

topology can be thoroughly investigated, even by a machine.

However, all CICY manifolds are probably simply connected, so they
cannot by themselves serve as background solutions since we at some point
wish to break the GUT group by using the natural Wilson line mechanism. We
therefore search for more realistic vacua which are constructed by identifying
points on a CICY manifold which are related by a freely acting discrete group

(9. The new manifold CICY /Gy not only has Gy as fundamental group, but the



Euler number (which is a density integrated over the manifold) of the covering
space is also reduced by a factor equal to the order of (Gyp. This is important
because there are no CICY manifolds with Euler number +6, which is needed
to give three generations of massless particles (we assume here the standard
embedding of the spin-connection into the gauge-connection [1]). Thus any
CICY with Euler number +6& or +8% (k = integer > 2) is a viable starting
point for constructing a 3 or 4 generation model in this simple and elegant

manner.

Although this would seem to be good news for model builders, who often
regard Calabi-Yau manifolds as atiractive (because they are non-singular) but
hopelessly complicated, there are surprisingly few manifolds in this class which
admit 3 or 4 generations. In fact, as far as we can see there is only one three

generation model of this type [5].

This does perhaps increase the predictive power of this approach. But
it may also indicate that it is unlikely that a realistic model will be found in
the near future unless the string dynamics has chosen precisely this manifold
as the ground state. This is extremely unlikely since not only are there at least
thousands (perhaps even an infinite number) of smooth solutions, all of which
are of the Calab:t-Yau type as far as we know, but millions of orbifolds also seem
to be viable background spaces for strings. This ‘vacuum degeneracy problem’
is one of the most serious facing the string program. We hope that our partial
classification, perhaps in conjunction with results from conformal field theory,

will help in understanding the vacuum structure of the string.



2. CONSTRUCTION OF ALL CICY MANIFOLDS

The first thing to realize about complex manifolds [6] is that they despite
their name are much simpler than real manifolds, which do not have enough
structure to be usefully constrained. While any submanifold of R™ is a real
manifold, the only compact complex submanifold of C™ is a point. The natural
way to avoid this ‘no go’ theorem is to include the point at infinity and ‘com-
pactify’ C™ to the complex projective space F,,. Submanifolds of P,, are not in
general trivial, and easily constructed by intersecting hypersurfaces defined by
the vanishing set of polynomials in the homogeneous variables of the ambient

projective space.

The first remarkable property of complex geometry, which is not true
in the real case, is that any polynomial constraint has codimension one, i.e.
the dimension of the hypersurface is always precisely one less than the ambient

dimension.

Any manifold that can be realized by polynomial constraints in P, (or
a product of projective spaces, which is essentially the same thing) is called
algebraic. From Kodaira’s famous embedding theorem and the fact that three
dimenstonal Calabi-Yau mantfolds never have any nontrivial holomorphic 2-

forms, it follows that all Calabi- Yau manifolds are algebraic.

. 7
The common zero-locus of several constraints (p! = 0;p° = 0;...;p™ =

() does not necessarily have codimension m. When it does we have a complete
intersection (see I'ig.1) and all discrete topological properties of the manifold

are determined by the degrees of the defining polynomials alone! We restrict



attention in this section to to this ‘best of all worlds’, and construct all CICY

manifolds [4].

Fig.1. A CICY manifold is the common zero-locus of polynomial constraints

in a projective ambient space W,

The number of CICY manifolds is finite because there are only a small
number of different ambient spaces W = P, x P,, x ... x P,, into which
the CICY manifolds can be embedded [7]. This follows from the fact that the
nmultidegrees d;; of the j’th constraint in the coordinates of the i’th ambient

factor must satisfy the condition for vanishing first Chern class:

m

Zdij:ni“*“la (1)
i=1

where m is the number of constraints and n; is the complex dimension of P,

and that a bilinear constraint in Py x Py is simply a P;, which we write as:

P [1] _p. (2)



Since a linear constraint in P, is just a P,_; we also require

F
dodi;>2 (j=1,2,...,m). (3)
=1

It is convenient to think of the degree matrix (d;;) as a ‘pillbox’ like the
one shown in Fig.2, where the nurber of marbles in compartment (7, ) is d;;.

The number of columns (constaint equations) must be

m=> n;—D (4)
in order to bring the (complex) dimension of the complete intersection manifold
down to D.

Fig.2. The construction of all possible CICY manifolds reduces to combina-

torics. The space represented by this picture has Euler number —8.




By playing with this picture you can now easily convince yourself that
the logistics of distributing marbles over a big pillbox while satisfying all the
above restrictions are such that it cannot be done when the size of the box
exceeds (F' xm} = (5D x6D). The ambient spaces range [rom Ppy; to (P;)F x
{(P;)?P, with 235 possible choices when D = 3. For each of these ambient spaces
we now instruct a computer to sprinkle the marbles in all possible (distinct)
ways so that each row sums to n; + 1. After also taking into account a number
of ‘reduction rules’ analogous to (2), the result is that there are 7868 distinct
degree matrices available to represent 3-dimensional CICY manifolds, with 70
different Euler numbers ranging from 0 to —200. Notice that each manifold may
be represented in many different ways in this list, so that we have not classified

them by this explicit construction.

The degree matrices contain all the information on the discrete topology
of these manifolds. In the following sections we shall see how to extract this

information.

3. THE SEARCH FOR THREE GENERATIONS

The CICY manifolds are not by themselves viable candidates for super-
string vacua, as explained in the introduction, but they are excellent covering
spaces (M) for realistic manifolds of the type M = M/Gy [5]. M is obtained
by identifying points on M which can be moved into each other by acting with
the group G, which must be fix-point free in order to avoid sigularities on A.

(If M is a flat torus and Gy has fix-points the variety M is called an orbifold.)

To actually exhibit such a group action is usually not easy. First a set of
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defining polynomials must be chosen for M with the required multidegrees given
by the degree matrix and sufficiently general so that the intersection is smooth.
This fixes the shape of the manifold which now may posess some discrete (but
not continuous) symmetries. If M has Euler number —6k or —8k, and we can
find a freely acting group Gy of order k, then the quotient manifold M will
have Euler number —6 or —8, which gives 3 or 4 generations of massless matter

particles after compactification.

A prototypical example is the Tian-Yau manifold [8], whose covering

space is the CICY:
14

Py(z) |3 1 0} (5)

Ps(y) |0 1 3

~18
which has Euler number —18 and 14 harmonic 2-forms. The ‘maximally sym-

metric’ realization

A=0
3
p’ = rays =0 (6)
A=0
3
=D yh=0
A=0

admits a freely acting Z3 symmetry which can be realized by cyclically permut-
ing the first three homogeneous coordinates of each space and multiplying the

fourth by cubic roots of unity {«® = 1,a # 1):

($0a$1:m27m3) x (yﬂ:ylyyzvy3) - (1“11323:203‘13:3) X (yl'}yZayOaazyS) (7)

The quotient manifold obtained by identifying points under this group action

has Buler number —86, corresponding to three generations.
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We know of no topological criteria that are sufficient for deciding
whether such a group action exists for soine choice of moduli (coefficients in
the polynomials), for a given degree matrix. Necessary conditions are how-
ever easy to find, and they turn out to be strong enough to eliminate all but
three matrices as representing candidate 3-generation vacua. The number of 4-
generation survivors is larger, as it should be since several different realizations

are known, but there are not many [9].

Our tests are generalizations of the criterion discussed above that the
Euler number must be divisible by the order of (4. This is because by the
index theorem any topological index on the manifold (M) can be expressed as
an integral over M of a density. The Euler number () is just one of the four
classical indices, which count various zero-modes on the tangent bundle Ty
of the manifold. On Calabi-Yau manifolds the only non-trivial information is
contained in x, but this changes drastically if we instead compute the indices
on T @ V, where the vector bundle V in our case will be built from Ty and
the bundle N normal to M inside the ambient space W. These ‘twisted’ indices

are given by

I(Ty V)= /M class(M) A ch(V), (8)

where class(M) = class(Thr) is either the Chern polynomial ¢(2f), the Hirze-
bruch polynomial L( M), the Dirac class fi(]’ﬂ) or the Todd class td{ M). These
caharacteristic classes are all simple polynomials in the Chern classes [10] which

we can compute very easily on complete intersection manifolds.

The Chern character ch(V) (which includes extra factors of 2 if

class(M}=L{M)) is extremely well behaved under addition and multiplication
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of bundles:
ch(A@® B) = ch(A) + ch(B)

(9)
ch(A® B) = ch(A) A ch(B)

and has the simple expansion
1 .
h(V)= Y LSV (10)
o
where 53,(V') is the trace of the k’th power of the curvature 2-form on V. The

Chern classes are also simply related to these elementary symmetric functions

through the formulee:

Sk~ 1 Sho1 + oo+ (=) erk = 0(k > 1). (11)

Now let z; denote the 2-form induced on A by the Kahler form on the

i'th ambient factor P,.. Then the symmetric functions on N and M are [4]

m F
Se(V) =) (D dijzi)* (12)
and
F
Se(M) = (i + Daf — Su(N). (13)
i=1

Setting £ = 1 in (12) and (13) we find the condition (1} for having

vanishing first Chern class.

Combining the above results we see that computing any index twisted
with any combination of Thy and N simiply boils down to integrating polyno-
mials in the z; with coefficients that depend only on the degree matrix (d;;).
Since the z; are easily lifted back to the ambient space where they came from,

and integrals over P, are trivial, we can compute a large number of indices in

9



this way. Actually, it turns out that the only independent indices are obtained
by restricting attention to V = Tf, ® N!, with (k,[) = (1,0),(2,0),(3,0) or
(0,1}.

After testing all these indices on the 7868 CICY manifolds for factors

appropriate to bring the Fuler number down to —6, only 189 survive.

Further tests involving the normal bundles N; to the individual hyper-
surfaces p* = 0 can be devised if extreme caution is exercised. We must for
example allow for the fact that the group action in soine cases may permute
factor spaces or polynomials, in which case the N!s involved cannot be used
separately but must be combined into larger bundles. This process can to some
extent be automated, and when these tests are implemented on the list of 189

only 21 survive.

A final and extremely laborious weeding niust now be performed partly
by hand. At this point it is essential to employ a beautiful diagrammatic rep-
resentation of complete intersection manifolds which was introduced by Green
and Hiibsch [11]. Let black and white balls represent the constraints and am-
bient factors respectively, and connect each black ball (7) with each white hall
(1) with as many links as the corresponding element d;; of the degree matrix

dictates. For example, one of the 21 survivors is:
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]

o
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T
fomr i B e B s B s B s T s BN v R T o T 28

~-12
whose diagram may be drawn as shown in Fig.3. Clearly the human brain would

prefer the latter representation.

Fig.3. One way to draw the diagram for the manifold with degree matrix (14).

By massaging the diagrams for the 21 survivors into conve-
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nient symmetric shapes one may deduce the optimal allowed com-
binations of N;-bundles, whose indices may then be tested for di-
visibility by the order of the required group. The final analysis
leaves only the Tian-Yau manifold (5) and the following two manifolds

with Euler number -48 as possible candidate three generation vacua:

(15)
Pro 1 11°¢
Plo 1 1
P11 0
Pi1 1 0
Pl1 o1
Pl oo 1l
(16)
Prr 1 0 01°®
Pl1 o 1 o0 O—9
Polo 0o 0 2
Pl2 0 0 0
Ppslo 11 20_,

We have been unable to find freely acting groups of order eight on these
manifolds despite vigorous efforts, and do not believe any exist. This leaves the

Tian-Yau manifold as the only three generation model of this simple type *.

* A similar conclusion was reached in [12] using an erroneous argument.
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4. ZERO-MODES AND COHOMOLOGY

Elementary particles as experienced in four dimensions are all massless
compared to the compactification scale, and some of the massless fields on
Calabi-Yau manifolds may be represented by harmonic forms [1]. These are
unique representatives of the Dolbeault cohomology classes in HD(Af) and
HEU(M). HOD(M) is the group of closed modulo exact (1,1)-forms which
represent matter superfields transforming as (27,1} (families) under the gauge
group F¢ x Es, while H(z‘l)(ﬂ’f) is the group of (2,1)-forins which represent the

matter superfields transforming as (27*,1) {anti-families).

The number of generations accessible in accelerators is h'! — k%!, where
Al = dim H(Y) and A?! = dim H®') are the only nontrivial Hodge numbers—
on a three-dimensional Calabi-Yau manifold. This number is easily obtained
fromn any of several topological indices on the manifold, the simplest being the

Euler number x = 2(h'* — ).

In addition there is in general a large number of scalars labeling the
gauge supermultiplets [13}, which are parametrized by the group H'({EndThs),
i.e. the 1-forms which take values in the bundle EndTas >~ Thr @ Ty In other
words 1-forms which transform as mixed rank-2 tensors (octets) under SU(3).
Clearly the numbers 2!}, h?! and hapy = dimH'(EndTar) are needed in order

to understand the low energy theory, as well as to classify the spaces.

At first sight the problem seems deceptively simple. Start by consider-
ing the simplest Calabi-Yau manifolds, originally called ‘the Y-series’ by physi-

cists [1], which are the only five that can be embedded in a single projective
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space by complete intersection. They are Fa[5]' 500, P5[4,2] 176, Ps[3,3]1 1445
Pe(3,2,2]1 1,4, and P7[2,2,2,2]' ., where the sub- and superscripts denote x

and h*!| respectively. There are several ways to derive these numbers.

The Euler number is easily computed using the expression for the third
Chern class given above, since it is always just the integral of the top Chern
class. Also, the naive expectation that the only 2-form on the hypersurface is
the restriction of the Kihler-form on the ambient space can be verified in these

cases by using the Lefschetz hyperplane theorem.

We can also use Kodaira’s deformation theory to compute h?! directly.
This approach is based on the fact that on Calabi-Yau spaces in D dimensions

there is an isomorphism relating the tangent bundle Ths to its dual Tj,:
Tar =~ (Th)P 77, (17)
which together with Serre duality:
HY((Ty)?) =~ H'PD(M) (18)
gives the important relation:
HY(Twr) ~ H'P=1D (A1), (19)

This means that {D — 1,1)-forms on M can be represented by 1-forms which
take values in the tangent bundle (i.e. they carry an extra tangent space index).
Furthermore, the group H'(Ths) parametrizes the space of deformations of the
complex structure on M. Since the shape of the manifold, and therefore its

complex structure, is determined by the coeflicients in the polynemial chosen
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to define the manifold, the dimension of H'(Ts) is under certain circumstances
just the number of independent ways to choose these coefficients. For a manifold
Ppimldy,da, ..., dn] the count gives [14]:

D d; D i — d;
ILD!"I:Z[( + m + J).._.. Z ( +Tn+d J)]—(D+m+1)2+1,
i=1

duJ d;zdj di - dj‘
(20)

which can also be verified by rigorous methods when D # 2.

In two complex dimensions the only non-toroidal Calabi-Yau is K3,
which has A'! = 20, while the formula (20) gives only 19. This is a warning
that deformation theory in general may fail, due to socalled ‘obstructions’, and

a more rigorous technique must be applied.

This is provided by something called ‘spectral sequences’, which have
recently been used to compute all Hodge-numbers on all CICY manifolds [7,15]
in three dimensions. We shall not repeat the construction here, but just point
out one curious feature. It turns out that the manifolds divide into classes which
must be freated separately, depending on whether the associated diagram is
‘one-particle reducible’ or not. More precisely, if the diagram after cutting a
single leg separates into two pieces, one of which represents a one-dimensional
manifold, then the spectral sequences are not useful. An example is provided

by the Tian-Yau manifold (5), whose diagram

“«—0——O0—>
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has two links of this type. However, when such 1-legs are present the manifold
may be realized as a hypersurface in the product of two complete intersection
2-folds with positive first Chern class, so that the Lefschetz hyperplane theorem

may be applied [16].

The final result is that there are 264 distinct choices of Hodge-numbers
(h'*, h*!) possible in the CICY class, which is therefore a lower bound on the

number of topologically distinct manifolds.

The computation of hgpy has not yet been completed, but again the
results for the Y-series are readily available. In the absence of obstructions, a

deformation count analogous to the one described above gives [14]:

= D —-1+4+4d; D -+ d;
hADJ=Z[(D+m+1)( m * J)—( tm J)
j=1

dj—l dj

Z D +m + di - d_; ]
d; — d; '
d; >d;

(21)
K3 has three representations of the ‘Y-type’ (P3[4]; P4[3,2]; Ps(2,2,2]}, all of
which have h 4ps == 45 according to this formula. That this is the correct answer
can be checked by computing the Dirac index on K3 twisted with an SU(2)
vector bundle in the adjoint representation, and using the standard embedding
of the spin-connection into the gauge-connection [17]. It is unfortunate that
this argument does not go through in higher dimensions, so that brute force

seems to be required also in this case. On CICY manifolds there will always be

many Fg-singlets since k41 s is larger than h%? [18].
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5. CONCLUDING REMARKS

As explained in the introduction the motivation for studying Calabi-
Yau mantfolds is both phenomenological and theoretical. We collect here some

remarks relevant to both.

The method which was actually used for compiling the list of all CICY
manifolds was somewhat different from what was described above, and much
more efficient. The list of all CICY manifolds whose ambient spaces do not
contain Pp-factors is rather short (a few hundred) and easy to make. We then
generated all other CICY manifolds from these by a technique we called ‘split-
ting’ [4], which turns out to be a special case of what mathematicians call
‘small resolutions’. By using small resolutions Schoen [19] has recently con-
structed new Calabi-Yau manifolds with Euler number 46 which may be viable

3-generation vacua, although it is not yet clear if they are non-simply connected.

We still do not know lLow many of the CICY manifolds are distinct,
whether it be as real or complex manifolds. Simply connected real spin-
manifolds with torsion-free cohomology can be uniquely labeled [20]| by the

Euler number, the ‘intersection numbers’ of 2-forms w;:

Bk = / wi A wj A wg, (22)
S A
and the numbers obtained by ‘evaluating’ the second Chern class on these 2-

forms:

v; :] ca(M) A wy. (23)
M

It is curious that for the CICY manifolds in our list the v; seem to only

contribute information about the ‘connectivity’ or ‘one-particle reducibility’ of
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the diagram representing the degree-matrix. Namely, let #Z(p = 0,1) be the
number of p-legs in the diagram which are attached to the i’th factor space P, .
A p-leg is a link which when cut leaves the diagram disconnected with one piece

representing a p-dimensional manifold [11]. Then
vi = deeii + 24{n; + 1+ #] — #{). (24)
Work on the classification proper is in progress [21].

The best way to address the vacuum degeneracy problemx may be by
studying conformal field theories on the world sheet, which is complementary
to the space-time approach pursued above. The classification of conformal field
theories would presumably include both orbifolds and Calabi-Yau manifolds,
and 1t 1s perhaps in this context that our classification will prove most useful.
For instance, it seems likely that the ‘solvable’ super-conformal field theories

discussed by Gepner [22] elsewhere in these proceedings are closely related to

the CICY class.

Whether one is interested in searching for phenomenologically interest-
ing models {bottom-up approach: does the string admit our world as a solu-
tion?}, or in solving the much more ambitious vacuum degeneracy problem on
the string’s own terms (top-down approach: does the string predict our world?),

the vacua discussed here seem destined to play a major réle.
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