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ABSTRACT

360 GeV/c proton-proton elastic scattering data obtained at the
European Hybrid Spectrometer (EHS) are presented. The differential cross
sections of elastic and inelastic pp-interactions are studied as a
function of the impact parameter. The results are compared to those
obtained at other energies. They are interpreted in the framework of a
simple geometrical Monte-Carlo model of inelastic collisions considering
protons as composite particles having a definite effective radius with
valence gquarks inside. The model gcalculations indicate an increase of the
effective radii both of protons and of valence gquarks and an increase of
the proton opacity with increasing energy. Using this model a description
of the overlap function for the total cross section is obtained. A
mechanism involving interactlions of coloured quarks is proposed leading to
a splitting of the overlap function for the total cross section into

elagtic, inelastic and inelastic diffraction components.



INTRODUCTION

Elastic scattering data play an important role in understanding the
nature and energy dependence of strong interactions. Using these data one
can estimate the size of interacting particles and analyze their internal
structure [1]. The shape of angular or momentum-transfer distributions of
elastic scattering reflects the wave nature of the c¢olliding particles and

the effective radius of their interaction.

It is interesting to consider these interactions in a simple
geometrical picture using an impact parameter b, the Fourier transform of
the momentum transfer t. The unitarity condition in impact parameter space
provides a connection between the total, elastic and inelastic differential
cross sections and, consequently, provides an opportunity for studying the
properties of inelastic as well as elastic interactions. Using this
approach one can draw s number of interesting conclusions concerning the
spatial structure of the interaction region and its energy dependence.
These conclusions sre expressed in the geometrical scaling hypothesis [2],
from which it follows that the increase of total cross sections in the ISR

energy range reflects the increase with energy of the effective interaction

radius.

In the present paper, based upon experimental data for proton-proton
elastic scattering at 360 GeV/c (described in sect. 2), we pursue an
investigation of the geometrical properties of elastic and inelastic
interactions as functions of the impact parameter (sect. 3). The energy
range of our experiment is covered by similar investigations done at FNAL
and at ISR energies for pp-interactions, whose data we use for comparison.
A simplified geometrical picture of inelastic interactions taking into
account the quark structure of interacting particles is described in
sect. 4, The approximation of the total cross section with our geometrical
model and a tentative interpretation of the results in a framework of a
model with coloured quarks are desceribed in sect. 5. Conclusions are

presented in sect. 6.

. EXPERIMENTAL APPARATUS AND DATA ANALYSIS

The data used in the present analysis were collected with the Rapid

Cyeling Hydrogen Bubble Chamber (RCBC) coupled with a wide aperture multi-



particle spectrometer EHS exposed to a proton beam of 360 GeV/¢c momentum.
A detailed description of the experimental procedure has been published
[31.

A sketch of the trigger system used in this experiment is presented
in fig. 1. An event was recorded if the following trigger condition was

satisfied

BEAM * ({ITHK 2z 2} or [ITV 2 1 and ITV(2)]) with
BEAM =T * T * (V 4+ V)
1 2 1 2

where ITH and ITV are the interaction trigger hodoscopes lying in
horizontal and vertical planes respectively. ITH includes 26 horizontal
counters and ITV consists of 3 vertical fingers. The central finger was
narrow horizontally (6 mm) and extended over 25 cm vertically. The beam
focus was adjusted to coincide with the vertical axis of ITV(2) the

central ITV finger.

Elastic events were selected by cuts on the missing mass squared
MM to the event and on the difference A® between the measured angle of
the fast track and its value calculated from the measured momentum of the
slow track assuming an elastic collision. The cuts |A®]| £ 0.6 mrad and
IMM°] £ 0.1 (GeV/c)? were used. Thus we selected 2025 elastic events from

the total sample of ~ 4000 two-prong events.

Due to the shape of ITV(2) elastic events having a projectile
deflected vertically are lost. This effect is clearly present in the
dN/d¢ distribution for slow tracks from elastic events (fig. 2). Here

2 2. 1/2
= /
) arccos[pz (py + pz)

] is the azimuthal angle where Py and pz are
the orthogonal projections of the recoil transverse momentum with the
Y-axis along ITV(2). The losses are concentrated around ¢ = »/2 and

& = 3/2 w. In fig. 3 we show a scatter plot of the azimuthal angles for
the fast and slow tracks (for this plot the fast track is rotated by an
angle ¢ = v around the beam axis). Events are clearly concentrated along
the line Prast = Pslow’

are strongly depopulated. Events contributing to these regions were

The regions affected by the trigger inefficiency

excluded from further analysis. The data presented below correspond to a
sample of 1825 elastic events having an azimuthal angle of the slow track

within the limits:



0£¢£1.0, 2.0 £ ¢ % 4.4 and 5.2 £ ¢ £ 2w rad.

The differential cross section do/dt for pp elastic scattering at
360 GeV/c as measured in our experiment is presented in fig. 4. The
combined effect of the trigger and scan losses is evident at smell |t]

velues: |t| £ 0.05 (GeV/¢c)?. To avoid |t]-dependent corrections only the
data with |t] > 0.05 (GeV/c)® were used in the fit.

We fitted our data for the elastic differential cross section with an
exponential of the form A * exp(Bt + Ctz) treating the optical point value
as an ordinary deta point. The input parameters for the calculation of
the optical point are the total cross section %ot = (39.8 * 0.5) mb
obtained by interpolation [3] end the ratio of the real to imaginary parts
of the elagtic amplitude p(s,0) = 0.025 * 0.015, as determined from
measurementg of pp elastic scattering in the Coulomb nuclear interference
region [4]. The results of the fit are given in table 1 together with the
results of gimilar fits for vs = 23 GeV and v¥ = 31 GeV data [5]. The
corresponding elastic cross section calculated for this experiment is

1 = (6.7 + 0.4 .
equal to del ( ) mb

. IMPACT PARAMETER REPRESENTATION

The elastic scattering amplitude in the impact parameter
representation hel(s,b) is usually defined as a Fourier transform of the
standard elastic scattering amplitude Tel(s't)' In the limit of negligible

spin effects the following relation can be used [6]:
hy,(s,b) = ITel(s,t)Jo(bJTE)dt/4w, (1)
where b is the impact parameter, Jo(bfff) is a zeroth order Bessel function

and the amplitude Tel(s,t) is related to the observable differential cross

gsection via the relation:

1 2
= e iTel(s,t)I . (2)

The asymptotic s—channel unitarity relation expressed in impact parameter

space [7-8] has the functional form (accurate to terms of order 1/s)

2
2Im h_,(s,b) = |h_j¢s,b)|" + G, (s,b) . (3)



Then the total, elastic and inelastic differential cross sections in

impact parameter space (overlap functions) will have the form:

49 ot

rdb?

d
del

wdbz

= ZImhel(s,b) = Gtot(s,b),

2
|hel(s,b)| = Gel(s,b) (4)

and
do,
in

xdb?

G. (s,b).
in

For the purpose of this work we used a numerical approach as described
in [9]. The ratio p(s,t) of the real to the imaginary part of the
elastic amplitude which is an essential ingredient of this approach, was
parametrized according to

pls,t) — p(s,0) Tt !

o

(5)

where to = 1.4 (GeV/c)? corresponds to the position of the first dip in
the differential elastic cross section at 360 GeV/c.

Since the impact parameter representation of the elastic amplitude is
obtained by integrating over all t-values we must take into account the
absence of data for |t| < 0.05(GeV/c)® and |t] > 0.6 (GeV/ec)? in this

experiment.

To take into account the |t| regions outside the range 0.05 £ |t]
0.6 (GeV/c)z, we have extrapolated the doelldt distribution to
t = 0 (GeVse)? using a quadratic exponential as described above and to the
value [t] = 3 (Gev/e) using the experimental value of the slope defined
in the region 0.4 £ |t| £ 0.6 (CeV/e)” with a single exponential fit.
However it is well known that there is a dip at about |t| ~ 1.4 (GeV/c)~
followed by a secondary maximum; consequently the use of the above
procedure may give rise to systematic errors. To estimate the size of
these errors we have analyzed data at vE = 31 GeV (table 2) in two

different ways:



(1) Using the experimental data in the whole experimental t-interval
(0.06 £ |t| s 1.755 (GeV/c)” and extrapolating to t = 0 (GeV/c)~ with
8 quadratic exponent and to |t]| = 3(GeV/c)2 by approximating the data
above the gecond maximum (|t| ~ 1.8 (GeV/c)z)) with a single
exponential form whose slope was taken to be equal to b = 1.9 (Gev/e)?
[1(b)].

(2) Using only the interval 0.06 £ |t]| £ 0.56 (GeV/c)® and extrapolating
tot = 0 (GeV/c)” and |t| = 3 (GeV/c)® as was done for the present

experiment.

Then we have calculated the differences AG21 = G2 - G1 for elastic
and inelastic overlap functions, where G1 and 62 were obtained by

procedures (1) and (2) respectively. The ratios nGn/G1 as functions of
the impact parameter b are shown in fig. 5(a) (inelastic) and 5(b)
(elastic). We see from fig. 5(a) that the systematic error for the
inelastic overlap function is not more than 1% in the region
0£Db<£1.0fm. The systematic error for the elastic overlap function is

larger (fig. S(b)).

In fig. 6 we present the total, elastic and inelastic overlap
functions versus the impact parameter b calculated for this experiment.
The upper limit of the overlap function for inelastic diffraection is also
shown in the figure. This upper limit is known as the Pumplin bound {10]

and corresponds to the condition:

max

Gdiff(b) £ Gtot(b)IZ - Gel(b) = Gdiff(b)' (6)

In comparison with the elastic and total inelastic overlap functions, the
upper bound for inelastic diffraction exhibits a more peripheral behaviour,
having a maximum around b ~ 0.6 fm. Let us recall that the experimentally
measured inelastic diffraction cross sections satisfy the following

conditions [11}:

o (0.68 £ 0.05) * [1 + (36 £ 8)/s8] * 1n(0.6 + 0.1 s) mb (7)

Sp

and

2
= 4/3 oSD/Gel mb. (8)

Q
|

DD



Using these expressions we calculated the single and double diffraction

cross sections for the energy of this experiment. We found:

GSD = (6.1 £ 0,5) mb and UDD = (1.7 + 0.3) mb. Thus the total diffraction
. max
= + ~
cross section amounts to ddiff (7.8 * 0.6) mb compared to ddiff 13.4 mb.

Let us now consider the energy dependence of the overlap functions.

In fig. 7(a) we show the difference AG, (b) = G, (s ,b) - G, (s ,b) versus
in in 1 in 2

b, where f?: = 53 GeV and JE; = 26 GeV {this experiment). The input
information for Jﬁ: = 53 GeV data is taken from [5] and is listed in
table 2. We see from fig. 7(a) that AGin(b) reaches its maximum value
around b ~ 1 fm. At b = 0 fm the overlap function is approximately
constant, in agreement with ISR data [1]. Thus the increase of the

inelastic cross gsection comes mainly from peripheral inelastie collisions.

In fig. 7(b) we present the distribution of AGel(b) =
Gel(s1’b) —Gel(sz,b) which is peaked around b ~ 0.75 fm. This indicates
that the increase of the elastic cross section with energy comes from a
region which is more central than for the case of the inelastic cross

section.

It was already noted [12) that the overlap functions Gel(s,b) and
Gin(s’b) have a kind of Gaussian shape. For the elastic overlap function,
this is expected from the Fourier transformation of the approximately
exponential behaviour of the elastic daelldt differential cross section.
However, the complicated shape of the overlap functions measured at
different energies shows that both Gin(s,b) and Gel(s,b) are not purely
Gaussian. Following [12] we fitted Gel(s,b) and Gin(s,b) with a sum of a
Gaussian and a so-called "edge"™ function:

2 2 2 2 2 2
do/ndb = GGauss + Gedge = Alexp(—b /Rl) + Azb exp(-b /Rz). (9)

The results of fits for our data are presented in table 3 together
with the results of fits of the overlap functions for pp-interactions in
the range v¥ = 9.8-62 GeV and for pp interactions at v = 546 GeV. For
this purpose we used information on the differential elastic cross sections
the values of the total and elastic cross sections and the values of
pls,t=0) (table 2) taken from [5]. It is seen from table 3 that for the

jnelastic overlap function the contribution of Gedge decreases with
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increasing energy and has a tendency to flatten in the ISR energy range.

For the elastic overlap function the fraction of Ge is approximately

dge
constant for the whole energy range up to the highest ISR energies. At

vE = 546 GeV the contribution of Gedge increases significantly for the

inelastic overlap function. It has been shown [8] that the difference 4Gy,

(b) between pp and pp at vE = 53 GeV is small (less than 2%). The

significant increase of G at v¥ = 546 GeV cannot therefore be explained

edge
by the difference of Gin (b) between pp and pp interactions. For the
elastic overlap function, it is comparable, within two standard deviations,

with those in the ISR energy range.

The s-dependence of the overlap function and of the elastic and
inelastic cross sections is closely related to the energy dependence of
the mean effective interaction radius squared which is calculated as

follows:

max max
b3G(b) bdbljz G(b)bdb . (10

<r®> = I:
The value of R = /:;;; will depend on the choice of bmax’ but it
should flatten at large bmax values. In figs 8{(a,b) we show values of R as

a function of bmax for elasti¢ and inelastic interactions calculated for
our data and for data at vF = 53 GeV. At v3 = 26 GeV the value Rel reaches
a plateau Rel = {(0.63 * 0.01) fm at bmax ~ 1.8 fm (fig. 8(a)). The plateau
at v8 = 53 GeV is reached at bmax ~ 2.0 fm and is equal to

R = (0.662 + 0.003)fm. For inelastic interactions the value Rin is
increasing with b up to the highest values of b ~ 2.4 fm for which data
are available. Atmg; = 2.4 fm we have obtained the lower estimates

Rin = (1.033 * 0.020} fm (v5 = 26 GeV) and Rin = (1.048 * 0.005) fm

(Ve = 53 GeV).

Using the results of the fits of the inelastic and elastic overlap
functions we calculated R with bmax = @, The results of our calculations
are presented in table 3. We see from this table that the effective
interaction radius is increasing with energy for both inelastic and
elastic interactions. The results clearly indicate that elastic
interactions are more central in impact parameter representation than

inelastic ones.
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4, A SIMPLE GEOMETRICAL MODEL OF INELASTIC HADRON-HADRON INTERACTIONS

It is a well-known experimental fact that in head-on collisions the
probability of inelastic interactions is less than the unitarity limit
G:im(b = 0) = 1 which corresponds to the collision of two absolutely
opaque discs. This means that protons are grey and have a non-zero
probability 1 - Gin(s,b = 0) ~ 0.06 (which is usually called transparency)
to pass each other without interacting. The same observation is wvalid for
#p and Kp inelastic interactions in which the transparency is of the

order of ~ 0.18 and ~ 0.25 respectively [13].

The difference of the transparency in pp, #p and Kp interactions
can be connected with the number of valence guarks inside hadrons as well
as with their effective gize. Following this idea we considered a simple
"reometrical™ Monte-Carle model (GM) of inelastic hadron-hadron collisions.
A schematic drawing of this model for pp interactions is given in fig. 9.
Here b is the impact parameter for protons and d is the one for a pair of
dressed quarks called valons. The condition for an inelastic interaction
in such a picture is dij £ 2rv for at least one pair of valons i and j
from different protons. Thus the model contains two parameters only: the
effective radius of theéhadron r, and of the valon Ty The position of
valons inside a proton Rv is generated randomly according to the

following conditions:
1 3 (11)

with the zero of the coordinate system at the centre of the hadron.

In fig. 10(a) we present the results of our Monte-Carle
parametrization (solid line} for the inelastic overlap function calculated
in this experiment. Radii of the proton and valons are determined by
minimizing:

2 11 exp GM 2 exp
2
2 o= 151 IGin (by) - Gin(bi)l /(BG (bi)) (12)
giving the values: rp = (0.98 * 0.03) fm and r, = {0.203 £ 0.003) fm

(table 4) in the interval b = 0-1 fm. It is seen from fig. 10(a) that GM

reproduces well the experimental values of Gin(b) up te b ~ 1.2 fm.
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If one assumes that the increase of the interaction radius with
energy is due to an increase of the size of both the proton and valon then
one can estimate the energy dependence of their radii in the framework of
GM. We used for this purpose the experimental dats for pp interactions at
c.m.s. energies equal to v§ = 9.78 GeV (p = 50 GeV/c), 13.8 GeV

lab
= 100 GeV/c), 19.4 GeV (plab = 200 GeV/c), 23, 31, 53 and 62 GeV

(plab 3
together with data for pp interactions at v§ = 546 GeV [5]. The effective
radii of proton (antiproton) and of valons in inelastic collisions were
estimated in the same way as for this experiment and the results are
presented in table 4. The value & in this table corresponds to
1 exp GM exp

& = igl IG.1n (bi) - Gin(bi)lz Gin (bi) . {13)
We note that for each energy an extrapolation into the || region below
the experimental limit is done with a quadratic exponential form using the
optical point value as a data point. The extrapolation into the |t| region
above the experimental limit {(up to |t} = 3 (GeV/e)?) is done with a

single exponential form with b = 1.9 (GeV/c)?.

A fit of the formr = A + Bln(s/so) (so = 1 GeV’) to the combined PP
and pp data in the energy interval v¥ = 23 - 546 GeV yields the results
Ap (0.86 * 0.04) fm, Bp = (0.024 * 0.005) fm and Av = (0,142 £ 0.005) fm,
Bv (0.0093 * 0.0006) fm for rp and L respectively (fig. 11).

H

It is evident that the resulting rp and r, values depend on the
relative distribution of the valons inside the proton. Therefore we also

considered the case when two valons are combined in a di-valon

-’
configuration. This is done with the condition Iﬁv - Rv | = 2rv. The
1 2
results are presented in table 4, and we find for the s-dependence of rp
and r_: 2%t = (0.857 + 0.042) fm, Bgl = (0.029 * 0.005) fm and

di

= (0.172 % 0.005) fm, Bv = (0.010 * 0.001) fm respectively.

Ad1

v
Both the fits of rp and T, for free valons and di-valon

configurations give approximately the same shapes of energy dependences:

B (free valons) ~ B {di-valon).
piv) pi{v)
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Using the previous results we estimated the "density" of valons inside
the proton by simply calculating the ratio Bri/r; which reflects the
opacity of the proton (antiproton) in inelastic collisions. In the energy
range vs = 23-546 GeV this ratio increases by 1.43 + 0.20 and 1.26 * 0.20
for the free valons and di-valon configurations respectively. Thus in the
framework of these two pictures the conclusion can be drawn that there is
some indication for an increase of the proton (antiproton) opacity with

increasing energy.

In fig. 7(a), where the difference AGin(b) between v8 = 53 GeV and
YE = 26 GeV is presented, the solid line shows the prediction of GM with
independent valons. The agreement with experimental data is good. Thus
the increase of the peripheral inelastic pp cross section with increasing
energy can be interpreted as a reflection of the increase of the radii of

the protons and valons.

The transition from pp to wp inelastic collisions is rather simple
in the framework of the GM model: the number of valons in a w-meson is
taken equal to two and the values of r: and r1r can be obtained in a
gsimilar way as for pp interactions. As an example we show in fig. 10(b)
the results of such a fit for ﬂ+p interactions at Plab = 200 GeV/c [14].
The total and elastic cross sections we take to be dtot = (23.78 * 0.04) mb,
del = (3,17 * 0.06) mb with p{(t = 0) = 0.05 + 0.06. The experimental values
of the elastic differential cross section dcelfdt were taken in the
interval 0.08 £ |t] £ 1.35 (GeV/e)®. The extrapolation to t = 0 (Gev/e)?
is done with a quadratic exponential form and to t = 3 (GeV/c)2 with a
single exponential form as defined in the region 0.8 £ |t| £ 1.35 (Gev/e) ™.
We used in the fit the values of rp and rg for a configuration of free

valons from table 4 for an incident momentum of plab = 200 GeV/c (Vs =

19.4 GeV). The fit yields: r1r = (0.74 * 0.06) fm and r: = (0,16 £ 0.01) fm.

THE GEOMETRICAL MODEL WITH COLOURED QUARKS

In the previous chapter there are two motivations for using our
geometrical model for the description of the inelastic overlap function

Gin' The first onme is that the unitarity limit Gin(s’b=0) = 1 provides an
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absolute normalization of G, in at a given energy. With respect to the value
Gi;m( ,b=0) = 1 the experimental value G p(s b=0) can be considered
simply as the probability for wvalons to have at least one interaction for
& head-on collision. The second motivation is that the incresse of the
total cross section at moderate energies is mainly due to the increase of

the inelastic cross section.

Within the GM framework it is interesting to consider the overlap
function corresponding to the total cross section. Neglecting the real
part of the elastic amplitude we can rewrite the expressions for Gtot and

G ags (eqs (3} and (4)):
el

il

G, p(5:b) = 201 - Y1 - G, (s,b)]

(11)

2
Gel(s,b) = [1 - V{.— Gin(s,b)]

It follows that if the un1tar1ty limit is satisfied for G n’ then
11m(s b=0) = 1 and G (s b=0) = 2. This is the black d1sk limit for
el to t

lim, 1lim

which S.1 lctot = 0.5. We obtain for the proton opacity in head-on

hadronic collisions G (s b=0} = 0.75 at v¥§ = 26 GeV.

Now we can use GM to approximate G (b) in the same way as was

tot
done for the inelastic overlap function. This approximation is shown in

fig. 12 (solid curve) with values rp = 0.91 fm and r, = 0.14 fm.

In an attempt to split the overlap function for the total cross
section into inelastic, elastic and inelastic diffractive components, we
congider in a first step one gluon exchange between coloured valence
quarks. With this assumption if a collision of two wvalons containing
valence quarks of different colours (red and blue for example) occurs then:
ql(red) + qz(blue) 2 ql(blue) + qz(red). Then we assume: if after all the
collisions of valons which occurred during the hadron interaction these
hadrons remain neutral in colour this interaction must be considered to be
elastic or inelastic diffraction. If this is not the case then such a
collision must be considered to be purely inelastic (without inelastic
diffraction). 1In the last case the colour string should be stretched

between coloured hadrons initiating a hadronization process.
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If only one pair of valons is involved in the collision we assume
that it leads to an inelastic interaction. The reason for this is the
more central shape of the elastic overlap function in comparison to the
inelastic one (fig. 6) and thus the difference Gin(b) - Gel(b) has a
peripheral shape which is compatible with the shape of single collisions
of valons. As is seen from fig. 6 the Pumplin limit for inelastic
diffraction has a peripheral shape too. We therefore expect that
inelastic diffraction comes mainly from single collision of valons.

To summarize, to split G (b) into elastic, inelastic and inelastic

tot
diffraction components we define:

— Elastic collisions: multiple collisions of valons (more than 1 hit)

after which protons remain colourless;

— Inelastic diffraction: single collision of valons after which protons

remain colourless;

— Purely inelastic: Collisions after which protons are coloured.

Introducing these criteria in GM we find that the elastic and
diffractive cross sections at the energy of this experiment are lower than
the experimental values. Therefore if dvv £ .250 fm (here dvv is the
impact parameter for valons) double gluon exchange ig introduced. It
leads to a good approximation of Gel(b) (fig. 12). To reproduce the

experimental ratio o = 0.24, we attribute to diffraction the

ool O,
diff "in
peripheral single collision of valons with dvv 2 .215 fm. The resulting

profile of G {b) is shown in fig. 12. Note that a purely inelastic

diff
interaction will now include single collision of valons with dvv < .215 fm,

the protons remaining colourless.

This simple Geometrical Model reproduces well:

— The experimentally observed increase of delldtot from ISR to collider

energies.

— The experimentally observed increase of OGifE at ISR.
The predictions of GM for the total cross section for the 2-40 TeV
region are in agreement with theoretical predictions of C. Bourrely and

A. Martin [15].
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6. CONCLUSIONS

(a) We have presented experimental data on pp elastic scattering at
360 GeV/e¢ in the t-region 0.05 £ |t| £ 0.6 (GeV/e). The differential
cross section do/dt was parametrized by the gquadratic exponential form
A exp(Bt + Ct25 using the optical point value as a data point. The
results of the fit are: A = (80.9 % 1.9)(mb/(GeV/c)2),
B = (13.2 + 0.5)(GeV/c) ~ and C = (6.9 + 1.3)(GeV/c) . The

corresponding elastic cross section is equal to o = (6.7 % 0.4) mb.

{b) The results of an impact parameter analysis of our data are in agreement
with those published in the FNAL-ISR energy range and can be sunmarized

as follows:

-~ Both the elastic and inelastic overlap functions Gel(b) and Gin(b)

have a maximum at the value b = 0 fm of impact parameter.

- The effective interaction radii R for inelastic and elastic
interactions increase with increasing energy. R for inelastic

interactions is approximately 1.5 R for elastic ones.

— The profile of the upper limit for inelastic diffraction GE::f(b)

has a peripheral behaviour. The total diffractive cross section
from the parametrization (7) and (8) is approximately 1.7 times

smaller than the Pumpling bound.

{¢) A simple geometrical Monte-Carlo model (GM) was proposed for
inelastic collisions based on the assumption that the value of the
transparency 1 - Gin(b = 0) in head-on collisions of hadrons
reflects the number of valence quarks inside hadrons and the
effective ("inelastic") radii of both hadrons and quarks. From
comparisons of the model predictions with data for pp and wp

interacticns the following conclusions can be drawn:

— Assunming independent valons inside the proton the profile of the
inelastic overlap functions in pp and wp interactions is reproduced

up to impact parameter values b ~ 1.2 fm and b ~ 1 fm respectively.

~ At the energy of this experiment the effective radii of proton and

valons are equal to rp = (0.98 * 0.03) fm and rs = (0.203 £ 0.003}) fm.

- In ﬂ+p interactions at Plab = 200 GeV/c the effective radii of

pion and valons inside the pion are .= (0.74 £ 0.06) fm and

r: = (0.160 * 0.01) fm.
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The effective radii of proton and valons in pp{p) inelastic
collisions increase logarithmically in the energy interval

vE ~ 20 - 546 GeV.

For pp(p) inelastic collisions a similar conclusion is also valid
- >
for a di-valon configuration inside the proton (IRv - Rv | = 2rv).
1 2
For such a configuration the values of rP and rv are systematically

higher than the ones obtained in the case of the independent valons.

For both configurations one finds indications for an increase of

the proton opacity with increasing energy.

A simplified interaction mechanism was proposed: The overlap
function for the total cross section was approximated with GM, and
coloured valence quark collisions were considered. Within this
framework the overlap function could be decomposed into elastic,
inelastic and inelsstic diffractive components. With the specific
criteria which are described in sect. 5 we obtained a good
approximation of the elastic, inelastic and inelastic diffractive
cross sections measured and calculated (for inelastic diffraction)

in this experiment.
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TABLE CAPTIONS

TABLE 1

TABLE 2

TABLE 3

TABLE 4

The results of the fits of the quadratic exponential form
A exp(Bt +Ct2) to the do/dt distribution, for this experiment
and for v¥ = 23 GeV and vE = 31 GeV.

Input data to the impact parameter representation for pp

interactions at various energies and for ps interactions at
¥S = 546 GeV,

The results of the approximation of elastic and inelastic
overlap functions with the expression: G . (b} =

2 2 2 2 2 el(ln)
Alexp(—b /Rl) + Azb exp(-b /Rz). The effective interaction

radius R and the ratio ¢ /(g + o } are also given.
edge Gauss edge

The results of GM approximation of inelastic overlap functions
for pp and pﬁ (VS = 546 GeV) interactions for independent

valon and di-valon configuration inside the proton. Here

a exp GM exp
§ = zlc.m (bi) - Gin(bi)llz G (bi)'
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FIGURE CAPTICONS

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

A sketch of the interaction trigger system used in the NA23

experiment.

The distribution of the azimuthal angle (in the plane orthogonal

to the beam direction) of the recoil protons in elastic events.

Scatter plot of azimuthal angles of fast (Y-axis) and of slow
(X-axis) tracks for elastic events (fast tracks are rotated by

180° around the beam direction).

The differential cross section do/dt for pp elastic scattering

= 360 .
at plab 360 GeV/c

The ratio AGZl(b)/Gl(b) = [Gz(b) - Gl(b)]/Gl(b) at vs = 31 GeV
where Gl(b) and Gz(b) are calculated by the two different

procedures discussed in the text.

(a) For the inelastic overlap functions;

{(b) For the elastic overlap functions.

The total, elastic and inelastic differential cross sections
{(overlap functions) and the Pumplin limit for imnelastic
diffraction in pp interactions at 360 GeV/c as functions of the

impact parameter.

The difference between the overlap functions measured at

different energies(black points):

It

(a) G, (¥§
in

(b) Gel(fg

The solid line gives the GM predictions.

53 GeV) - Gin(JE'z 26 GeV};

53 GeV) - Gel(f§'= 26 GeV).

The variation of the effective interaction radius R computed for
elastic (fig. 8(a)) and inelastic (fig. 8(b)) pp interactions as
a function of the integration limit bmax for this experiment

{black points) and for vs = 53 GeV (p1ab = 1480 GeV/c) (crosses).
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FIGURE CAPTIONS (Cont'd)

Fig. 9 The geometrical picture of proton-proton inelastic collisions as
viewed in the geometrical Monte-Carlo model {GM). Here rp and rz
are the radii of the proton and of the valons and b and d are
the impact parasmeters for proton-proton and valon-valon

collisions resgpectively.

Fig. 10 (a) Comparison of the inelastic overlap function Gin(b) with

the prediction of the GM model in this experiment.

{b) Comparison of the inelastic overlap function Gin(b) with

the prediction of the GM model for w+p interactions at

Plab = 200 GeV/c.

Fig. 11 The energy dependence of rs and rp for a configuration with
independent valons inside the proton. The straight lines are
fits with the expression r = A + Bln(s/so) (s0 =1 Gevz), where
A (0.860 *+ 0.042) fm, Bp = (0.0240 £t 0.0005) fm and

P
A (0.142 % §.005) fm, Bv = (0.0093 * 0.0006) fm.

v

Fig. 12 Predictions of GM with coloured quarks for the inelastic, elastic
and inelastic diffraction overlap functions in comparison with
the experimental distributions (this experiment) of elastic and
inelastic overlap functions. The GM approximation of the

overlap functions for the total cross section is also shown.
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