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gluonic operator using 5CD—dua11ty sum rules. We
also evaluate its mixing with the 'standard"
digluonium. Then, we conclude that one cannot
interpret both the O (0.5) and the G(l1.6) as

lowest mass gluonia.
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There is increasing evidence that quantum chromodynamics (QCD} is the best
candidate for describing the dynamics of hadrons. Due to the self-interac—
tions between the eight gluons which mediate strong interactions, ome might
expect  to have gluonia or glueball bound states of the gluon field strengths.

There is a growing interest in the study of .the gluonia properties from the
thecretical point of view (lattice Monte Carleo simulationsl), effective

)

LagrangianZ), QCP sum rules3), bag and potential models4 ). However, various
predictions are less accurate than the ones for the quarkonia. The .ones of
some models based on the notion of constituent quarks suffer from the diffi-
culty in introduciﬁg the notion of coanstitwent gluons. Lattice Monte Carlo
results are expected to be much affected by various technical uncertainties,
like for instance the lattice size effects, The effective Lagrangian method
based on the constraints from the U(l) anomalies (the so-called low-energy

. theorems) should be affected by the chiral symmetry-breaking term55) and pre-

sumably by the high-dimension gluon operators. Comparatively, QCD sum rules

6)

?

3 la svz based on the duality between a possibly measured spectral func-
tion and the QCD-approximate evaluation of a gluonic two-point correlation,
are controlled by high- dimension gluon condeﬁsates which are poorly
determined either by the use of an instanton-dilute gas model or the factor-
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ization hypothesis
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associated to the local and unique operator of dimension six:
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which has the quantum numbers of the 0  trigluonium. We also study the mix-

. In this paper, we study the two-point correlator:

ing of the trigluonium with the digluonium associated to the two-gluonic

current:
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from the off-diagonal two-point correlator:
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1. Trigluonium sum rule

We study the two-point correlator in Eq. (1), using an operator product
expansion (OPE)} & la SVZ. The evaluation of the Wilson coefficient is
standard though very tedious. The contributions of each Feynman diagram are
given in Table 1, where the calculation has been done in the convenient
Schwinger gauge and by wusing dimensional regularization, The sum of
different contributions gives:
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with the notation given in Table 1. 1In order to estimate the trigluonium

mass which can be introduced via the matrix element:

<0/~75'»2/6>=/~?-/'@4y; > (4)

we use the global duality sum rule:
LAy fT i,
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which has given interesting predictions for the mass of some other bound
states due to its direct sensitivity to the resonance mass squared as well as
due to the exponential factor which depresses the continuum and finite width

*
effects into the sum rule. The QCD behaviour of Rg(<t) 1is )
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which is given in Fig. 1. The positivity of the sum rule in the region where
the OPE makes sense provides the optimal upper bound of the lowest ground

state mass. At the minimum of the sum rule, we obtain (Fig. 1):

*) We have worked for n = (. One should notice that for n < 0, the sum
rule might be affected by the low-energy behaviour of dq {q?) which is
of non-perturbative origin. For n » 1, the moments will be much more

welghted by the high states continuum, so we can lose the optimal
informatien on the lowest ground state,
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which is higher than the usual hadronic scale of the order of 1 GeV. The

£ 376V | )

position of the minimum is controlled by the value of the triple gluon con-
7)-8)

densate which is not known accurately except for its absolute value
which we take to be gfabc<GaGch> = ] GeV2<aSG2> = .04 GeVG. We have used
the results of Ref. 7) for our analysis which is consistentin sign with the
one coming from am OPE analysis of the mixed quark-gluon condensateG). In
the second stage of our analysis, we parametrize the spectral function by
using the simple duality ansatz 'one resonance” plus a "QCD continuum' where
the new pafameter is the threshold J?;, in addition to the ones in Eq. (4).

Therefore, the phenomenological expression of the moments reads:
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The asymptotic consistency of the two sides of the sum rule gives the finite
energy sum rule (FESR) local constraint:
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which helps for reducing the number of free parameters in the analysis. One

can either confront the two sides of the moments using a least-square fit

program or write an equatien for M%g. Using the latter method here, we show
our results pjgg, 2-3 versus the changes in £ and in Taax: A6 the minimum

of the curves where we expect to have the optimal information from the

moments, we obtain:



/'/3, ~ 3.4 GV~ ; /4-_—;-.5’.460/- (10a)
and from Eq. (9):

%/ﬂ ~ 62 MYV (1ob)

Finite width effects might be incorporated by noticing that the lowest inter-
mediate states which can dominate the spectral function are the Goldstone and
n-like pair productions. However, there is a large uncertainty for control-
ling ‘the threshold behaviour of the associated form factor as the so-called
low-energy theorem can only tell about its t-—behaviour but not its exract
normalization. It can become clear that once we have such a contrel, one can
relate the decay amplitude f3g to the hadronic width which behaves as
M%g/f3g' In this case we would\expect a broad state. One should notice that
the mass of the trigluoniun:;. ig much heavier than the one of the digluonium

which is known via QCD sum rules to bes):

-/vi’; ~ £ éey- . (11)

Therefore we might a priori expect that the mixing of the two states will be

small as we shall see later on.

2. Trigluonium - digluconium mass mixing

The expected gluonia candidates should be eigenstates of the unmixed
tri- and digluonia. We use a two-component mixing formalism in order to get

®
the "physical™ gluonia states ):
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*) We ignore, for the moment, the mixing with quark states which will be
commented later on.



We follow the procedure used in Ref. 9). The QCD expression of the off-

diagonal two-point correlator defined in Eq. (2) (see Table 2) is:
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It is easy to derive the global-duality constraint:
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where we have parametrized the "continuum" from the discontinuity of ¢p3(q?).
A variation of the sum rule versus 1 shows a stability for T = (2~3) Gev~2
which is quite a low value of the Q2-scale. This is due to the relative
weight of the perturbative and gluon condensate effects to Eq. (14). At this

value of the optimization scale, the effects of high-dimension condensates

might be important. At the approximation, inm Eq. (l4), we obtain the
estimate:
o
g ~ o2 (15)
2

where we have used f = 100 MeVS), i x 2 MeV; t = 2 GeV2

28 o) 38 N

= 500 MeV and MG = 1.6 GeV .

Equation (15) shows a tiny mixing between the two states as intuitively

expected because of the large splitting of the two resonances.



We can conclude from the previous analysis that the existence of both
the o(0.5) and G(l1.6) as gluonia candidates in the 0"" sector cannot be
explained from the probable mixing of di~ aﬁd trigluonia states. The attempt
to explain the ¢ and G from the quarkonium-gluonium mixing also failed. It

is likely that the G(1.6) is the "excitation" of the c.ll)
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TABLE 1

QCD contributions to the two-point correlator: #
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TABLE 2

QCD contributions to the off-diagonal two-point correlator:
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FIGURE CAPTIONS

Fig. 1 Behaviour of the QCD moments R (1) versus the sum
rule scale 1 for g fabc<G3> = 0.04 GeVb.

Fig. 2 Behaviour of the triglonium mass versus t_  for a
given value of the fit interval [0, Ty,y].

Fig. 3 Behaviour of the set (M3 , /tc) of the optimal
values versus the changes of TMAX -
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