
Jfit: a framework to obtain combined
experimental results through joint fits

E. Ben-Haim1, R. Brun2, B. Echenard3, T.E. Latham4

1Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE),
IN2P3/CNRS, Université Pierre et Marie Curie-Paris 6, Université Denis

Diderot-Paris 7
2European Organization for Nuclear Research (CERN), Geneva, Switzerland

3California Institute of Technology, Pasadena, California 91125, USA
4Department of Physics, University of Warwick, Coventry CV4 7AL, United

Kingdom

Abstract

A master-worker architecture is presented for obtaining combined exper-
imental results through joint fits of datasets from several experiments. The
design of the architecture allows such joint fits to be performed keeping the
data separated, in its original format, and using independent fitting environ-
ments. This allows the benefits of joint fits, such as ensuring that correlations
are correctly taken into account and better determination of nuisance param-
eters, to be harnessed without the need to reformat data samples or to rewrite
existing fitting code. The Jfit framework is a C++ implementation of this
idea in the Laura++ package, using dedicated classes of the Root package.
We present the Jfit framework, give instructions for its use, and demonstrate
its functionalities with concrete examples.

1 Introduction

In the vast majority of cases, high energy physics experiments obtain measurements
by performing a minimum chi-square or a maximum-likelihood fit to their data to
extract observables of interest. Combining results of different experiments is rou-
tinely performed, using different well-established methods and dedicated tools. In
the simplest approach, which is often used, measured observables are assumed to
be normally distributed and standard statistical prescriptions are readily applied.
However, there are situations in which the procedure is challenging even with the
simple normal-distribution hypothesis, in particular for measurements involving a
large number of parameters (including nuisance parameters). The size of the co-
variance matrices, when available, makes the procedure tedious and prone to errors.
When non-Gaussian uncertainties are taken into account the combination procedure
becomes much more complicated, as working with the actual likelihood or chi-square
functions is generally needed. This is indispensable in many complex measurements,
in cases with small sample sizes and combination of upper limits. Often only a par-
tial likelihood or chi-square function is considered, which is the projection of the full
function on particular parameters of interest, assuming that they are uncorrelated
with the other parameters. Ideally, combining measurements should be done by
fitting simultaneously the different data samples by means of a joint fit.

1

ar
X

iv
:1

40
9.

50
80

v4
 [

ph
ys

ic
s.

da
ta

-a
n]

 7
 A

pr
 2

01
8

The straightforward way to perform joint fits involves collecting data in a com-
mon format, and has been implemented, among others, in the RooFit package [1].
This solution could however be inefficient if dedicated fitting frameworks have al-
ready been developed, especially for complex fit models. It may also raise issues
with data access policies of each experiment. An alternative approach consists of
performing a joint fit while keeping the data separated. This can be achieved us-
ing a master-worker architecture, in which the master drives the fit by combining
the values of the likelihood functions returned by several workers, each of which is
specific to an experiment and accesses its own dataset.

In this paper we present Jfit: an implementation of this idea within the Laura++

package [2] that uses several classes from the Root framework [3]. In Sec. 2, we
revisit the general formalism of joint fitting, and briefly advocate its advantages.
In Sec. 3 we explain the concept of the master-worker architecture and describe in
detail the Jfit implementation of such an architecture in the C++ programming
language. We also provide details of how to minimally adapt existing fitting codes
in order to use them within the framework.

2 Joint fits and their benefits

The formalism to combine several measurements by performing a joint maximum-
likelihood fit1 of different datasets (e.g., from different experiments) is well known:
the likelihood L to maximise is given by the product of likelihoods from the different
datasets.2 In the case of two datasets A and B (the generalisation to a larger number
of datasets is straightforward), with individual likelihoods LA and LB, the combined
likelihood is written as:

L(θ, θA, θB) = LA(θ, θA)LB(θ, θB) =

 ∏
xi ∈xA

PA(xi; θ, θA)

 ∏
xj ∈xB

PB(xj; θ, θB)

 ,
(1)

where x is a random variable (or a set of several random variables) with correspond-
ing ensembles of independent observations, designated by xA and xB, in the two
datasets; PA(x, θ, θA) and PB(x, θ, θB) are the probability density functions followed
by x in the two datasets; θ denotes the parameters of interest that are shared by the
two datasets, and have to be simultaneously extracted from both (common parame-
ters); θA and θB are parameters that are specific for A and B (specific parameters).

Joint fitting to combine results from two experiments has many advantages com-
pared to näıve averaging methods. These benefits mainly derive from the fact that
joint fits take into account the correlations between all fit parameters, not just those
of primary interest. The exploration of the full likelihood surface, rather than some
projection of it, can result in a more reliable estimation of both the central value
and the statistical uncertainties. These uncertainties can also be reduced because

1The formalism is discussed here in terms of likelihood, but the benefits of joint fitting also
apply when using a minimum chi-square fit.

2 A brief review of the maximum-likelihood estimation method is given in Appendix A.

2

common nuisance parameters can be better constrained, which leads to improved
precision on the parameters of interest.

The estimation of systematic uncertainties is also made more straightforward.
In particular, uncertainties originating from an external source, such as a measured
property of a background process, can be accounted for simply by repeating the joint
fits using a set of modified assumptions about that external input. Furthermore,
the need to assume a particular degree of correlation among the experiments is
eliminated. When performing näıve averages, systematic uncertainties are generally
taken to be either fully correlated or completely uncorrelated among the experiments
whose results are being combined. But in reality there can be differences in how
each experiment is affected. For example, when performing a fit to an invariant
mass distribution, different patterns of migration between event species in each
experiment may lead to quite different effects on the signal yield when varying the
rate of a particular background.

All of the benefits mentioned here are demonstrated by two examples from the
domain of high energy physics, which are presented in Appendix B. The joint fits
in the examples were realised by applying the Jfit implementation described in
Sec. 3. In addition, it is noted that there are other positive side effects of joint
fitting, besides those that are exemplified in the appendices, arising from obliging
collaborations to coordinate their models and conventions prior to performing their
analyses.

3 The master-worker architecture and the JFIT

framework

In the master-worker approach, the master drives the fit by sending sets of pa-
rameters to the experiment-specific workers. Each worker returns the value of the
likelihood function to the master, which in turn updates the parameters using an
optimisation routine, such as the MIGRAD algorithm of the MINUIT optimisation
package [4], which is widely used in the field of high energy physics. The procedure
is repeated until the fit has converged. This architecture keeps the calculation of the
individual likelihood functions LA and LB separate, allowing a flexible treatment of
any experiment-specific parameters, which can either be controlled by the master,
or declared only within the corresponding worker. In the second case, the workers
perform an additional minimisation with respect to their specific parameters at each
step of the procedure, keeping the common parameters fixed. The values of the min-
imised functions are then returned to the master. Performing joint fits using such
an architecture has several advantages:

• any fitting algorithm can be readily incorporated as a worker in this scheme;

• there is no requirement that the workers be homogeneous;

• the data do not need to be rewritten in any external format and can be readily
used;

• experimental collaborations can keep private their data and procedures.

3

The Jfit framework is an open-source implementation of a master-worker ar-
chitecture in the C++ programming language. It has been developed within the
Laura++ package [2], using elements from the Root data analysis framework [3].
While the main purpose of the Laura++ package is performing Dalitz-plot analyses
in high-energy physics, Jfit can be easily used in other contexts. The structure of
the Jfit implementation is based on the following steps:

• Initialisation: both master and workers initialise their internal structure to
either drive the fit (master) or calculate the likelihood given a set of parameters
(workers).

• Synchronisation: the master-worker communications are handled using several
classes in the Root framework.3 The master starts a server, by instantiating
a TServerSocket object with the number of the port to which it should be
bound, and waits for the worker nodes to connect. To establish a connec-
tion, each worker instantiates a TSocket object by specifying the hostname
and port number of the master. The master receives the connection in the
form of another TSocket object, which it stores in a TMonitor instance. The
connections can be secured, e.g. via ssh, if required. After successfully con-
necting, each worker awaits instructions from the master. There then follows
an exchange of information regarding the parameters known to each worker
and their initial values. All such communications in this and subsequent steps
are conducted using instances of the TMessage class, which is a I/O buffer into
which basic types and more complex objects can be serialised for transmission
via the network sockets.

• Minimisation: the master starts the fitting procedure by sending a set of pa-
rameter values to the workers and waits for their replies. Upon receipt of the
parameters, each worker calculates the value of its corresponding likelihood
function and sends the result back to the master. The worker results are then
combined by the master and given to the optimiser, which updates the fit pa-
rameters and the master then sends a new request to the workers. This step is
repeated until convergence is achieved. The uncertainties on the parameters
are evaluated by a dedicated procedure that uses the same logic and tools for
the communication between the master and workers.

• Termination: the master returns the results of the fit and terminates the con-
nections with the workers.

The master routines are implemented within the LauSimFitMaster class [5] in the
Laura++ package, while the communication methods of the workers are imple-
mented in the LauSimFitSlave abstract base class [6]. The main tasks of the mas-
ter are to set up and provide the appropriate information to the minimiser, to keep
track of which fit parameters are associated with which of the workers, and to com-
municate with the workers so as to delegate the calculation of the likelihood and

3 This implementation is inspired by the Root macros:
http://root.cern.ch/root/html/tutorials/net/authserv.C.html
http://root.cern.ch/root/html/tutorials/net/authclient.C.html

4

http://root.cern.ch/root/html/tutorials/net/authserv.C.html
http://root.cern.ch/root/html/tutorials/net/authclient.C.html

other pre- and post-processing tasks. The worker communication methods respond
to the various messages from the master and call the appropriate pure virtual mem-
ber function, the implementation of which in the concrete derived classes should
then perform the required actions.

As a consequence, a large fraction of code developed by each experiment to
perform dedicated fits can be readily reused in this scheme; it requires only the
addition of a class that inherits from LauSimFitSlave. This class should implement
the functions that are pure virtual in the base class in such a way as to call the
appropriate parts of the pre-existing code to perform the actions required at each
stage of the fit (e.g., calculating the likelihood value). Internal changes in one
experiment (e.g. new data format or additional specific parameters) require only a
modification of this class and are otherwise completely transparent to the framework.
More specifically, to write a class that inherits from LauSimFitSlave involves writing
the implementation of the following eight pure virtual member functions:

1. initialise: perform any actions required to ensure that the fit model is ready
to be applied to the data;

2. verifyFitData: read the data to be fitted and verify that all required variables
are present; the name of the data file and (optionally) the name of a particular
structure within the file, e.g. a Root tree, will have been provided by the user
when calling the LauSimFitSlave::runSlave function and they are passed on
as arguments to this function;

3. prepareInitialParArray: the fit parameters that are to be varied in the fit
should be inserted, in the form of LauParameter objects, into the TObjArray

that is the argument to the function;

4. readExperimentData: read the data for the current experiment into memory;

5. cacheInputFitVars: allow the fit model to cache any information that it can
from the data;

6. setParsFromMinuit: update all fit parameters with the new values provided
by the minimiser;

7. getTotNegLogLikelihood: calculate the negative log likelihood;

8. finaliseExperiment: store the fit results, in particular the fit status, negative
log likelihood, covariance matrix and final parameter values and uncertainties;
perform any necessary post-processing (e.g. rotation of phases into a particular
interval) of the parameters and then return them to the master.

An example of such a derived class, which uses the RooFit framework to build the
fit model and evaluate the likelihood, is shown in Appendix C.

It is important to note that the Jfit framework can also be used to perform
simultaneous fits to different datasets within an experiment. For example, it has
been used in Ref. [7] to account for the different variation over phase space of the
signal reconstruction efficiency in different trigger categories. In addition, it has

5

been used in Ref. [8] to enable the extraction of both CP -violation and hadronic
parameters from a simultaneous fit to multiple decay channels.

The overhead introduced by the Jfit framework itself is small. For instance, in
the example in Appendix B.2 the mean time for each individual fit to be performed
was 33 seconds (with an RMS of 6 seconds), while the joint fits using Jfit took 35
seconds (with an RMS of 5 seconds).

4 Conclusions

In this paper, we have presented Jfit: a software framework for obtaining combined
experimental results through joint fits of datasets from several experiments. The
primary goal of the Jfit framework is to permit experimental collaborations to
straightforwardly perform joint fits by allowing them to plug in their existing fitting
software and to use their data in its original format. It is implemented in the
Laura++ Dalitz-plot analysis package [2], using the network communication classes
(TMessage, TMonitor, TServerSocket and TSocket) from the Root framework.
The use of Jfit is not limited to the context of Dalitz-plot analyses.

Advantages of joint fitting have been discussed. Correctly accounting for corre-
lations between parameters in likelihood functions in different experiments, which
is an intrinsic property of such fits, results in improved combinations, and more
reliable uncertainties. Thus, these fits provide a means to better exploit data from
multiple experiments. The Jfit framework, based on a master-worker architecture,
allows joint fits to be performed keeping the data separated and using independent,
heterogeneous fitting programs. It simplifies the process with respect to data access
policies and allows existing code to be reused with minimal changes, thus saving
resources.

Acknowledgments

The work presented in this paper was started in the purpose of performing joint anal-
yses between the BABAR and Belle collaborations. We would like to thank François
Le Diberder both for initiating and generating interest in this project among the
BABAR and Belle collaborations and the authors of Root, and for fruitful discussions
concerning this paper. We would also like to thank Roger Barlow for his extremely
valuable advice and comments regarding the statistical aspects and examples, and
Tim Gershon and Matthew Charles for their very helpful input on the manuscript.
This work is supported by the Science and Technology Facilities Council (United
Kingdom), the European Research Council under FP7, and the US Department of
Energy under grants DE-FG02-92ER40701 and de-sc0011925.

6

http://arxiv.org/abs/de-sc/0011925

Appendix

A Maximum-likelihood estimation

Maximum-likelihood estimation is a widely-used method of fitting parameters of
a model to some data and providing an estimate of their uncertainties. Here we
briefly review this technique; more details can be found in statistics textbooks, and,
for example, in Ref. [9].

Consider a set of N independent observations x1, ..., xN of a random variable
x following a probability density function modelled by P(x; θ), where θ denotes
the unknown model parameter(s) that should be estimated. Both x and θ can be
multidimensional. The likelihood function L is defined as:

L(θ) =
N∏
i=1

P(xi; θ). (2)

Since the N observations xi are given, the likelihood is only a function of θ. The
resulting estimate θ̂ of the parameter θ is defined as the value that maximises the
likelihood, i.e.

θ̂ = maxθL(θ). (3)

It is often convenient to minimise the negative logarithm of the likelihood (NLL)
instead of maximising the likelihood, which yields the same value of θ̂. If the number
of observations is random, an additional term is usually included in the likelihood
to form the so-called extended likelihood:

Lext(θ) =
e−nnN

N !

N∏
i=1

P(xi, θ), (4)

where n denotes the expected number of events. Obtaining combined measurements
from several datasets is achieved by maximising the product of likelihoods from the
different datasets, as discussed in Sec. 2.

The minimisation of the NLL can be, and usually is, done numerically. Among
the packages available to perform this task, MINUIT [4] is one of the most popular
in the field of high energy physics. Its default algorithm, MIGRAD, is based on a
variable-metric method that computes the value of the function and its gradient at
each step of the procedure. If the functional form of the derivative is not, or cannot
be supplied by the user, the gradient is evaluated by finite differences. The minimi-
sation stops when the difference of the value of the function between two successive
steps reaches a specific threshold. Parabolic uncertainties on the parameters are es-
timated by inverting the matrix of second derivatives evaluated at the minimum of
the function. In the case of non-Gaussian likelihood, the uncertainties are estimated
by an algorithm that scans the likelihood for each parameter separately, minimising
the likelihood each time with respect to the remaining parameters.

7

B Examples demonstrating the benefits of joint

fitting

All the fits performed within the two examples described in this appendix have been
realised by applying the Jfit framework.

B.1 Resonance mass and rate measurement

As a first example, we examine the problem of combining the results of two experi-
ments that found a resonance in an invariant mass spectrum, at a mass of 126 GeV/c2.
The parameters of interest are:

• the mass of the resonance, mRes;

• its observed rate in the final state under study, which results from the prod-
uct of the production cross section, σ, and the decay branching fraction, B,
normalised to its expected value, e.g., that predicted by a particular model,
R = σ×B

σExp.×BExp.
.

These are obtained from a one-dimensional maximum-likelihood fit to the distribu-
tion of invariant mass, m, of the final-state particles.

Samples corresponding to the datasets of experiments 1 and 2 are generated in
the invariant-mass range [100, 160] GeV/c2 according to a model containing three
events species: signal, peaking background and combinatorial background. Signal
events are generated from a sum of two Crystal Ball (CB) functions [10]: core and
tail, with different peak positions. Peaking and combinatorial background events
are generated from a Gaussian and a fourth order Chebyshev polynomial function,
respectively. This model is roughly inspired by the search for the Standard Model
Higgs boson from ATLAS [11] and CMS [12], although, with rather different event
yields and signal to background ratios. For simplicity, the same signal and back-
ground models are used to generate events for both experiments. Hence, both the un-
derlying physics and some experimental factors, such as the resolution, are assumed
to be unique. However, to emulate in a simple way different overall efficiencies and
event-selection strategies, the datasets corresponding to the two experiments have
significantly different numbers of signal and background events. In both cases, the
mean value of the signal yield corresponds to R = 1.0. Five hundred pairs of datasets
are generated, where the numbers of events of each species are Poisson-distributed,
using probability density functions (PDFs) that are summarised in Table 1. The
invariant mass distribution of experiment 1 is shown in Fig. 1.

The maximum-likelihood fits are performed in the same invariant-mass range,
[100, 160] GeV/c2. Again, the same model is used for the two experiments. How-
ever, the fitted model differs slightly from that used to generate events in order to
account for the lack of knowledge of the underlying physics. The invariant mass of
the signal is modelled by the sum of a Crystal Ball function, describing the core
distribution, and a Gaussian describing the tails. Backgrounds are modelled by the
same functional forms used to generate events. The signal peak position and all the
combinatorial background parameters are varied in the fit, as well as the yields of

8

Table 1: Summary of the model used to generate events. The average number of events
of each species generated per experiment is denoted N . The peak positions and Gaussian
widths of the CB and Gaussian functions are denoted µ and σ, respectively, with the
superscript core or tail, and with the subscript CB, as appropriate. The CB tail parameters
are α and n. The coefficient of the ith power term in the polynomial is denoted ci.

Event species Function Parameter Value

Signal
Sum of two
CB functions
(core and tail)

N (experiment 1) 3000

N (experiment 2) 10000

µcore
CB 126 GeV/c2

σcore
CB 1.6 GeV/c2

αcore 1.5

ncore 3.0

Fraction of tail 10%

µtail
CB 120 GeV/c2

σtail
CB 4.0 GeV/c2

αtail −1.0

ntail 4.0

Peaking
background

Gaussian

N (experiment 1) 1000

N (experiment 2) 7500

µ 122 GeV/c2

σ 5.0 GeV/c2

Combinatorial
background

4th order
Chebyshev
polynomial

N (experiment 1) 60000

N (experiment 2) 500000

c1 −0.682

c2 0.122 [GeV/c2]−1

c3 −0.013 [GeV/c2]−2

c4 −0.003 [GeV/c2]−3

9

]2
c [GeV/m

100 120 140 160

A
rb

it
ra

ry
 U

n
it

s

0

200

400

600
3

10×

Figure 1: The invariant-mass distribution of a sample generated for experiment 1. The
solid (blue) curve shows the full sample. The dash-dotted (black) curve corresponds to the
distribution of signal events, while the dotted (red) and the dashed (green) curves show
the distributions for the combinatorial and total background, respectively.

the three events species. All the other parameters are fixed. The PDFs used in the
fits are summarised in Table 2.

After fitting each of the individual samples, we obtain combined results for the
mass of the resonance and its rate by two different methods:

1. a näıve average of the individual results, taking into account the parabolic
uncertainties of the fits to the individual samples;

2. a joint fit to the two samples in the Jfit framework, using the full likelihood
function.

As the likelihood functions are fairly Gaussian, asymmetric uncertainties have not
been considered for the näıve averaging. The typical statistical uncertainty obtained
by the two methods is 0.027 (corresponding to a ∼ 3% relative uncertainty) for the
normalised rate and 0.054 GeV/c2 for the mass of the resonance. Moreover, no bias
has been observed in the extraction of the mass of the resonance by the two methods,
while they both show a negative bias in the extraction of the rate, as expected from
the different signal models used to generate and fit the data samples: the former
has a wider signal peak than the latter. The results of the two methods for the
resonance rate are compared in Fig. 2. In this particular case, the bias induced
by the two methods is similar and thus the central values are in good agreement.
There is a small effect on the statistical uncertainty, which is very slightly larger
in näıve averages. This behaviour may differ, in size and direction, in other cases.
However, as the joint fits correctly take into account all correlations, they provide
more reliable results.

We expect larger differences between the two combination methods to arise when
systematic uncertainties are evaluated. Parameters of the peaking background are

10

Table 2: Summary of the model used to fit events. Parameter notations are the same as
in Table 1. Values of fixed parameters are given in the “Value” column; “Gen.” means
that the fixed value is identical to that used for generation. The parameters µtail and µcoreCB

are constrained to take the same value.

Event species Function Parameter Value

Signal

Sum of a core
CB function
and a Gaussian
tail

N varied

µcore
CB varied

σcore
CB 1.5 GeV/c2

αcore, ncore Gen.

Fraction of tail Gen.

µtail = µcore
CB

σtail 3.8 GeV/c2

Peaking
background

Gaussian

N varied

µ Gen.

σ Gen.

Combinatorial
background

4th order
Chebyshev
polynomial

N varied

c1, c2, c3, c4 varied

0.1− 0.05− 0 0.05 0.1
)ITFJ − (Avg. R

0

20

40

A
rb

itr
ar

y
U

ni
ts

0.4− 0.2− 0 0.2 0.4

3−10×

)ITFJ − (Avg. Stat.
Rσ

0

20

40

60

80

A
rb

itr
ar

y
U

ni
ts

Figure 2: The distribution of the difference between the results of combinations performed
by näıve averaging and by joint fits performed in the Jfit framework, for the (left) central
values of the resonance rate, and the (right) corresponding statistical uncertainties. The
former shows that in this particular case there is no difference in the bias induced by
the two methods, and the latter shows that the statistical uncertainty (typically 0.027) is
larger by ∼ 1% in näıve averages.

11

considered to be badly known and, as such, to be sources of systematic uncertainties.
To evaluate the effect from the width of the distribution, the corresponding PDF
parameter is fixed to values 2 GeV/c2 above and below its nominal value, namely
3.0 GeV/c2 and 7.0 GeV/c2. The variations of the resulting resonance mass and rate
are considered as systematic uncertainties. The same procedure is applied in individ-
ual and joint fits. Figure 3 shows a comparison between the systematic uncertainties
obtained in näıve averages, where the individual systematic effects are considered to
be 100% correlated, and in joint fits. Differences are due to the fact that correlations
are correctly taken into account in joint fitting. The comparison shows clearly that
the effect on systematic uncertainties can be large (in some cases around 50% of
the statistical uncertainty or 10% of the systematic uncertainty), and they may be
either underestimated or overestimated by näıvely averaging the results.

]2
c) [GeV/ITFJ − (Avg. Sys.

Res
m

σ

0.02 0.015 0.01 0.005 0 0.005

A
rb

it
ra

ry
 U

n
it

s

0

10

20

30

]2
c) [GeV/ITFJ − (Avg. Sys.

Res
m

σ

0.02 0.015 0.01 0.005 0 0.005

A
rb

it
ra

ry
 U

n
it

s

0

20

40

0.02− 0.015− 0.01− 0.005− 0 0.005
)ITFJ − (Avg. Sys.

Rσ
0

10

20

30

A
rb

itr
ar

y
U

ni
ts

0.005− 0 0.005 0.01 0.015
)ITFJ − (Avg. Sys.

Rσ
0

50

100

150

200

A
rb

itr
ar

y
U

ni
ts

Figure 3: The difference between the systematic uncertainty values obtained in näıve
averages and in joint fits performed in the Jfit framework. The systematic uncertainty
considered is that arising from the width of the peaking background component. The
näıve averages assume that the systematic effects are 100% correlated between the two
experiments. The effect on both (top) mRes and (bottom) the normalised rate, is shown
for a peaking background Gaussian width of (left) 3.0 GeV/c2 and (right) 7.0 GeV/c2. In
most of the cases the uncertainty is underestimated by näıve averaging. The exception is
the uncertainty on the rate obtained by increasing the width to 7.0 GeV/c2 (bottom right
plot). The typical statistical uncertainty on the resonance mass is 0.054 GeV/c2, while that
of the rate is 0.027.

12

B.2 Amplitude analysis of a hadronic three-body B-meson
decay

A second example is from the domain of flavour physics. It involves a larger num-
ber of parameters in the fit, and illustrates other advantages of joint fitting. For
simplicity, we consider signal events only.

A key part of the physics programme of the B-factories, BABAR and Belle, con-
sisted of amplitude (Dalitz-plot) analyses of 3-body B-meson decays [13]. More
recently such studies are performed by the LHCb experiment (see, for example,
Refs. [14–16]), and, in the near future, will be also undertaken by Belle-II. These
analyses provide measurements of CKM angles and access to observables sensitive
to physics beyond the Standard Model of particle physics as well as information on
the resonant structure of decays.

In general, Dalitz-plot analyses are limited by the sample size, and they usually
have a strong dependence on model assumptions. Due to these characteristics, a
joint analysis, profiting in a coherent way of all the available data, could be a partic-
ularly fruitful approach compared to a simple combination of results from separate
analyses. One of the first steps in Dalitz-plot analyses consists of determining which
resonant or non-resonant intermediate states should be included as components of
the signal model. It is important to notice that minor, poorly determined signal
components are a major source of the so called model uncertainty that is often a
large systematic effect in such analyses. A joint analysis provides a more powerful
determination of the components to be included in the signal model, and allows
setting better limits on minor components. Another source of model dependence
comes from the choice of particular parameterisations of intermediate decay modes
in the signal model (e.g., resonance lineshapes and phase conventions). The fact
that different collaborations often use different parameterisations can lead to diffi-
culties in comparing their results. In some cases a direct comparison of such results
can be less meaningful; they are less useful for the community, and averaging them
becomes non trivial. Besides the benefit of grouping the expertise of the different
collaborations, the coordination of signal models, which is a sine qua non for a joint
fit, is therefore beneficial. These advantages of joint fits are not explicitly illustrated
in this work.

To exemplify direct advantages of joint fitting, we use the result of the BABAR
Dalitz-plot analysis of B± → K±π∓π± decays [17]. This analysis provided CP -
averaged branching fractions and direct CP asymmetries for intermediate resonant
and non-resonant contributions. It reported evidence for direct CP violation in
the decay B± → ρ0(770)K±, with a CP -violation parameter ACP = (44 ± 10 ±
4+5
−13)%, where the first quoted uncertainty is statistical, the second is systematic,

and the third is the model uncertainty mentioned above. The Belle collaboration
also reported evidence of direct CP violation in the same decay mode [18] with a
similar significance. In such a situation, being able to obtain a combined result is
strongly motivated.

In the BABAR analysis, the contributions of the different intermediate states in
the decay were obtained from a maximum-likelihood fit of the distribution of events
in the Dalitz plot formed from the two variables m2

Kπ ≡ m2
K±π∓ and m2

ππ ≡ m2
π±π∓ .

13

As in many other Dalitz-plot analyses, the total signal amplitudes A and A for B+

and B− decays, respectively, were given in the isobar formalism, by

A = A(m2
Kπ,m

2
ππ) =

∑
j

cjFj(m
2
Kπ,m

2
ππ) (5)

A = A(m2
Kπ,m

2
ππ) =

∑
j

cjF j(m
2
Kπ,m

2
ππ) , (6)

where j is a given intermediate decay mode. The distributions Fj ≡ F j are the
lineshapes (e.g., Breit–Wigner functions) describing the dynamics of the decay am-
plitudes, and the complex coefficients cj and cj contain all the weak-phase depen-
dence and are measured relative to one of the contributing channels. They were
parameterised as

cj = (xj + ∆xj) + i(yj + ∆yj) (7)

cj = (xj −∆xj) + i(yj −∆yj) ,

where ∆xj and ∆yj are CP -violating parameters.
We generate 100 signal-only datasets from the results of this analysis. The

sample size is Poisson-distributed with an expected value of 4585, which is the
signal yield obtained in the fit to the BABAR data [17]. We then consider each of the
4950 possible pairwise combinations of these samples as datasets from two different
experiments. For the purpose of this example we focus on one of the parameters of
interest of the BABAR analysis: the CP violating parameter ∆x of the ρ0(770)K±

contribution, ∆xρ. The value used to generate events is that measured by BABAR,
namely −0.160 ± 0.049 ± 0.024+0.094

−0.013. After fitting each of the individual samples
with the model used for event generation, we obtain combined results for ∆xρ by
three different methods:

1. a näıve average of the individual results for ∆xρ, taking into account the
parabolic uncertainties of the fits to the individual samples;

2. a näıve average, taking into account the asymmetric uncertainties of the indi-
vidual fits4, following the prescription from Ref. [9] (denoted ∆xAvg.

ρ);

3. a joint fit to the two samples in the Jfit framework, using the full likelihood
function (denoted ∆xJFIT

ρ).

The results obtained from methods 1 and 2 above are found to be equivalent:
in the present case, with a very few exceptions, the effect of the asymmetric nature
of the likelihood is negligible comparing to the statistical uncertainty. The results
obtained from methods 2 and 3 are compared in Fig. 4, and show a much larger
difference. The distribution of the difference between results obtained by the two
methods has a full width at half maximum of approximately 25% of the typical
statistical uncertainty on ∆xρ in fits to individual datasets (which is 0.03).

We perform likelihood scans as a function of ∆xρ for several individual datasets
and their corresponding joint fits, i.e., we fix ∆xρ to several consecutive values,

4The asymmetric uncertainties are obtained from the MINOS routine of the MINUIT package.

14

0.2− 0.15− 0.1−
Avg.
ρx∆

0

100

200

300

A
rb

itr
ar

y
U

ni
ts

0.2− 0.15− 0.1−
ITFJ

ρx∆

0.2−

0.15−

0.1−

A
vg

.
ρx

∆

0.02− 0 0.02 0.04
ITFJ

ρx∆ − Avg.
ρx∆

0

200

400

600

800

A
rb

itr
ar

y
U

ni
ts

0.2− 0.15− 0.1−
ITFJ

ρx∆
0

100

200

300

A
rb

itr
ar

y
U

ni
ts

Figure 4: Distributions of ∆xρ results obtained by (top left) näıve averages taking into
account the asymmetric uncertainties of the individual fits to two samples, (bottom right)
joint fits performed in the Jfit framework, (top right) the former versus the latter, and
(bottom left) the difference between the two.

15

for each of which the fit is repeated. The other parameters are free to vary as in
the nominal fit. We compare the sum of one-dimensional log-likelihood functions
obtained from scans of two datasets, to the full likelihood scan obtained with the
corresponding Jfit-framework fit. One such comparison, which is more extreme
than the average case, but not uncommon, is shown in Fig. 5. It illustrates the fact
that even if two experiments provide their likelihood dependences on a particular
subset of parameters, obtaining a combined result by summing these functions is
in general not equivalent to performing a joint fit. Indeed, values of nuisance pa-
rameters, for which combined results are not desired, generally differ between the
joint fit and the individual fits. Note that in the particular case shown in Fig. 5 the
minimum obtained from the joint fit does not lie between the two minima obtained
from the individual fits but is located at a more negative value and, in fact, is closer
to the generated value of −0.16. It also has a smaller uncertainty than the other
combination. This indicates that even in well-behaved cases and even if the combi-
nation is performed by summing partial likelihood functions, neglecting correlations
may result in biases.

ρx∆
0.2 0.1 0

 l
n
 L

∆
−

0

5

10

ρx∆
0.2 0.1 0

 l
n
 L

∆
−

0

5

10

15

20

Figure 5: Left: log-likelihood scans, showing −∆ lnL ≡ (lnL)min − lnL as a function of
∆xρ in two different datasets. Right: the sum of these two log-likelihoods scans (dashed-
dotted curve), compared to the scan obtained from a joint fit to the two samples, performed
in the Jfit framework (solid curve). It should be noted that the result obtained from the
joint fit is more negative than both of those from the individual fits and is closer to the
true value (−0.16). In addition it has a smaller uncertainty than the simple average.

To evaluate how often one of the features illustrated in Fig. 5 occurs, the distance
of combined results to the generated value of ∆xρ has been studied. For each of
the 4950 pairwise combinations of datasets, we compute DAvg. =

∣∣∆xAvg.
ρ −∆xGen.

ρ

∣∣,
and DJFIT =

∣∣∆xJFIT
ρ −∆xGen.

ρ

∣∣, where ∆xGen.
ρ = −0.16 is the generated value of

∆xρ. The distances DAvg. and DJFIT are then compared. This study shows that
results obtained by joint fits are more often closer to the generated value than
those obtained by näıve averages due to the fact that they fully account for the
correlations between the fit variables. Figure 6 shows DAvg. versus DJFIT in the

16

different pairwise combinations and the distribution of the difference between the
former and the latter. This example shows that, while both methods can yield
unbiased results, joint fits are more often closer to the true value. Moreover, to
clarify the presence of the non-Gaussian tails in the distribution of differences, it
is overlaid with a Gaussian fitted to its central region [−0.005, 0.005]; numbers of
positive and negative entries in the distribution, excluding the ranges corresponding
to one, two and three standard deviations of the Gaussian are given in Table 3.
Comparison of the statistical uncertainties obtained from näıve averages and joint
fits are shown in Fig. 7. In 88% of the cases the uncertainty obtained from a joint
fit is smaller.

0 0.02 0.04 0.06 0.08
ITFJD

0

0.02

0.04

0.06

0.08

A
vg

.
D

0.02− 0 0.02 0.04
ITFJD − Avg.

D

1

10

210

310

A
rb

itr
ar

y
U

ni
ts

Figure 6: Left: distance from the generated value (−0.16) of ∆xρ results obtained by
näıve averaging versus that corresponding to Jfit-framework fits. Right: distribution of
the difference between the former and the latter. The solid smooth curve is a Gaussian
fitted to the central region of the distribution [−0.005, 0.005], to clarify the presence of the
non-Gaussian tails.

Table 3: The distribution on the right hand side of Fig. 6 illustrates the fact that results
obtained by joint fits are more often closer to the generated value than these obtained
by näıve averages. Here are given the numbers of positive and negative entries in the
distribution, excluding the ranges corresponding to one, two and three standard deviations
(σ) of the overlaid Gaussian.

Excluded Number of Number of
region (σ) positive entries negative entries

3 126 71
2 330 266
1 918 911

We stress that the example given here is not extreme: likelihoods are nearly
Gaussian and are rather well behaved, as can be seen in Fig. 5. In cases where the
likelihood presents strong non-linear features, such as asymmetric functions that

17

)ITFJ − (Average
ρX∆

σ
0.005 0 0.005

A
rb

it
ra

ry
 U

n
it

s

0

500

1000

Figure 7: The difference between uncertainties obtained in näıve averages, and those
from joint fits performed in the Jfit framework. In the former, the average between the
positive and negative asymmetric uncertainties is used. In 88% of the cases joint fits yield
improved sensitivity to ∆xρ.

cannot be well described by a bifurcated Gaussian, or if it has multiple minima,
the difference between näıve averaging and joint fitting could be much larger. In
practice, multiple solutions appear in nearly all the Dalitz-plot analyses performed
by the B factories; they represent one of the major difficulties in these analyses.
Clearly, a joint fit allows to resolve better the global minimum from the mirror
solutions.

18

C Example worker class

In this section we give an example implementation of a worker class, LauRooFitSlave,
that is derived from the LauSimFitSlave base class. The particular implementation
uses classes from the RooFit framework [1] to describe the fit model, store the data
to be fitted and to evaluate the likelihood function. It is sufficiently general to cover
the majority of RooFit-based fitting scenarios and can be quite straightforwardly
extended to include those with conditional observables, fitting only subsets of the
data, etc. The implementations of the constructor and destructor, each of the eight
pure virtual member functions mentioned in Section 3, as well as some additional
utility functions, are given with some accompanying explanatory text. For the full
documentation and source code please see Ref. [19].

C.1 Class data members

The data members of the class are as follows:

//! The fit model

RooAbsPdf& model_;

//! The dataset variables

RooArgSet dataVars_;

//! The name of the (optional) weight variable in the dataset

TString weightVarName_;

//! The data file

TFile* dataFile_;

//! The data tree

TTree* dataTree_;

//! The data for the current experiment

RooAbsData* exptData_;

//! Is the PDF extended?

const Bool_t extended_;

//! The experiment category variable

RooCategory iExptCat_;

//! The NLL variable

RooNLLVar* nllVar_;

//! The fit parameters (as RooRealVar ’s)

std::vector <RooRealVar*> fitVars_;

//! The fit parameters (as LauParameter ’s)

std::vector <LauParameter*> fitPars_;

C.2 Constructor and destructor

The constructor takes as arguments the fit model, a flag to indicate whether or not
the fit is an extended fit, the fit variables, and the name of the variable in the data
that should be used as an event-by-event weight (if any):

LauRooFitSlave :: LauRooFitSlave(RooAbsPdf& model ,

const Bool_t extended ,

const RooArgSet& vars ,

const TString& weightVarName) :

19

LauSimFitSlave (),

model_(model),

dataVars_(vars),

weightVarName_(weightVarName),

dataFile_ (0),

dataTree_ (0),

exptData_ (0),

extended_(extended),

iExptCat_("iExpt","Expt Number"),

nllVar_ (0)

{

}

The destructor cleans up any allocated memory:

LauRooFitSlave ::~ LauRooFitSlave ()

{

delete nllVar_; nllVar_ = 0;

this ->cleanData ();

}

C.3 Utility functions

The cleanData utility function cleans up the memory associated with the data stor-
age. The convertToLauParmaeter and convertToLauParmaeters functions convert
the RooFit versions of the fit parameters (either RooRealVar or RooFormulaVar

objects) into LauParameter objects.

void LauRooFitSlave :: cleanData ()

{

if (dataFile_ != 0) {

dataFile_ ->Close();

delete dataFile_;

dataTree_ = 0;

dataFile_ = 0;

}

delete exptData_;

exptData_ = 0;

}

LauParameter* LauRooFitSlave :: convertToLauParameter(const RooRealVar* rooParameter

) const

{

return new LauParameter(rooParameter ->GetName (), rooParameter ->getVal (),

rooParameter ->getMin (), rooParameter ->getMax (), rooParameter ->

isConstant ());

}

std::vector < std::pair <RooRealVar*,LauParameter*> > LauRooFitSlave ::

convertToLauParameters(const RooFormulaVar* rooFormula) const

{

// Create the empty vector

std::vector < std::pair <RooRealVar*,LauParameter*> > lauParameters;

Int_t parIndex (0);

RooAbsArg* rabsarg (0);

RooRealVar* rrvar (0);

RooFormulaVar* rfvar (0);

// Loop through all the parameters of the formula

while ((rabsarg = rooFormula ->getParameter(parIndex))) {

// First try converting to a RooRealVar

rrvar = dynamic_cast <RooRealVar *>(rabsarg);

if (rrvar) {

// Do the conversion and add it to the array

LauParameter* lpar = this ->convertToLauParameter(rrvar);

lauParameters.push_back(std:: make_pair(rrvar ,lpar));

20

continue;

}

// If that didn’t work , try converting to a RooFormulaVar

rfvar = dynamic_cast <RooFormulaVar *>(rabsarg);

if (rfvar) {

// Do the conversion and add these to the array

std::vector < std::pair <RooRealVar*,LauParameter*> > lpars =

this ->convertToLauParameters(rfvar);

for (std::vector < std::pair <RooRealVar*,LauParameter*> >::

iterator iter = lpars.begin(); iter != lpars.end(); ++

iter) {

lauParameters.push_back(*iter);

}

continue;

}

// If neither of those worked we don’t know what to do, so print an

error message and continue

std::cerr << "ERROR in LauRooFitSlave :: convertToLauParameters : One

of the parameters is not a RooRealVar nor a RooFormulaVar , it

is a: " << rabsarg ->ClassName () << std::endl;

std::cerr << " : Do

not know how to process that - it will be skipped." << std::

endl;

}

return lauParameters;

}

C.4 The initialise function

void LauRooFitSlave :: initialise ()

{

if (weightVarName_ != "") {

Bool_t weightVarFound = kFALSE;

RooFIter argset_iter = dataVars_.fwdIterator ();

RooAbsArg* param (0);

while ((param = argset_iter.next())) {

TString name = param ->GetName ();

if (name == weightVarName_) {

weightVarFound = kTRUE;

break;

}

}

if (! weightVarFound) {

std::cerr << "ERROR in LauRooFitSlave :: initialise : The set

of data variables does not contain the weighting

variable \"" << weightVarName_ << std::endl;

std::cerr << " :

Weighting will be disabled." << std::endl;

weightVarName_ = "";

}

}

}

C.5 The verifyFitData function

Bool_t LauRooFitSlave :: verifyFitData(const TString& dataFileName , const TString&

dataTreeName)

{

// Clean -up from any previous runs

if (dataFile_ != 0) {

this ->cleanData ();

}

21

// Open the data file

dataFile_ = TFile::Open(dataFileName);

if (! dataFile_) {

std::cerr << "ERROR in LauRooFitSlave :: verifyFitData : Problem

opening data file \"" << dataFileName << "\"" << std::endl;

return kFALSE;

}

// Retrieve the tree

dataTree_ = dynamic_cast <TTree*>(dataFile_ ->Get(dataTreeName));

if (! dataTree_) {

std::cerr << "ERROR in LauRooFitSlave :: verifyFitData : Problem

retrieving tree \"" << dataTreeName << "\" from data file \""

<< dataFileName << "\"" << std::endl;

dataFile_ ->Close();

delete dataFile_;

dataFile_ = 0;

return kFALSE;

}

// Check that the tree contains branches for all the fit variables

RooFIter argset_iter = dataVars_.fwdIterator ();

RooAbsArg* param (0);

Bool_t allOK(kTRUE);

while ((param = argset_iter.next())) {

TString name = param ->GetName ();

TBranch* branch = dataTree_ ->GetBranch(name);

if (branch == 0) {

std::cerr << "ERROR in LauRooFitSlave :: verifyFitData : The

data tree does not contain a branch for fit variable \"

" << name << std::endl;

allOK = kFALSE;

}

}

if (! allOK) {

return kFALSE;

}

// Check whether the tree has the branch iExpt

TBranch* branch = dataTree_ ->GetBranch("iExpt");

if (branch == 0) {

std::cout << "WARNING in LauRooFitSlave :: verifyFitData : Cannot

find branch \"iExpt \" in the tree , will treat all data as being

from a single experiment" << std::endl;

} else {

// Define the valid values for the iExpt RooCategory

iExptCat_.clearTypes ();

const UInt_t firstExp = dataTree_ ->GetMinimum("iExpt");

const UInt_t lastExp = dataTree_ ->GetMaximum("iExpt");

for (UInt_t iExp = firstExp; iExp <= lastExp; ++iExp) {

iExptCat_.defineType(TString :: Format("expt%d",iExp), iExp

);

}

}

return kTRUE;

}

C.6 The prepareInitialParArray function

void LauRooFitSlave :: prepareInitialParArray(TObjArray& array)

{

// Check that the NLL variable has been initialised

if (! nllVar_) {

std::cerr << "ERROR in LauRooFitSlave :: prepareInitialParArray : NLL

var not initialised" << std::endl;

return;

}

22

// If we already prepared the entries in the fitPars_ vector then we only

need to add the contents to the array

if (! fitPars_.empty()) {

for (std::vector <LauParameter *>:: iterator iter = fitPars_.begin();

iter != fitPars_.end(); ++iter) {

array.Add(*iter);

}

return;

}

// Store the set of parameters and the total number of parameters

RooArgSet* varSet = nllVar_ ->getParameters(exptData_);

UInt_t nFreePars (0);

// Loop through the fit parameters

RooFIter argset_iter = varSet ->fwdIterator ();

RooAbsArg* param (0);

while ((param = argset_iter.next())) {

// Only consider the free parameters

if (! param ->isConstant ()) {

// Add the parameter

RooRealVar* rrvar = dynamic_cast <RooRealVar *>(param);

if (rrvar != 0) {

// Count the number of free parameters

++ nFreePars;

// Do the conversion and add it to the array

LauParameter* lpar = this ->convertToLauParameter(

rrvar);

fitVars_.push_back(rrvar);

fitPars_.push_back(lpar);

array.Add(lpar);

} else {

RooFormulaVar* rfvar = dynamic_cast <RooFormulaVar

*>(param);

if (rfvar == 0) {

std::cerr << "ERROR in LauRooFitSlave ::

prepareInitialParArray : The parameter

is neither a RooRealVar nor a

RooFormulaVar , don’t know what to do"

<< std::endl;

continue;

}

std::vector < std::pair <RooRealVar*,LauParameter*> >

lpars = this ->convertToLauParameters(rfvar);

for (std::vector < std::pair <RooRealVar*,

LauParameter*> >::iterator iter = lpars.begin ()

; iter != lpars.end(); ++iter) {

RooRealVar* rrv = iter ->first;

LauParameter* lpar = iter ->second;

if (! rrv ->isConstant ()) {

continue;

}

// Count the number of free parameters

++ nFreePars;

// Add the parameter to the array

fitVars_.push_back(rrvar);

fitPars_.push_back(lpar);

array.Add(lpar);

}

}

}

}

delete varSet;

this ->startNewFit(nFreePars , nFreePars);

}

23

C.7 The getTotNegLogLikelihood function

Double_t LauRooFitSlave :: getTotNegLogLikelihood ()

{

Double_t nLL = (nllVar_ != 0) ? nllVar_ ->getVal () : 0.0;

return nLL;

}

C.8 The setParsFromMinuit function

void LauRooFitSlave :: setParsFromMinuit(Double_t* par , Int_t npar)

{

// This function sets the internal parameters based on the values

// that Minuit is using when trying to minimise the total likelihood

function.

// MINOS reports different numbers of free parameters depending on the

// situation , so disable this check

const UInt_t nFreePars = this ->nFreeParams ();

if (! this ->withinAsymErrorCalc ()) {

if (static_cast <UInt_t >(npar) != nFreePars) {

std::cerr << "ERROR in LauRooFitSlave :: setParsFromMinuit :

Unexpected number of free parameters: " << npar << ".\n

";

std::cerr << "

Expected: " << nFreePars << ".\n" << std::endl;

gSystem ->Exit(EXIT_FAILURE);

}

}

// Despite npar being the number of free parameters

// the par array actually contains all the parameters ,

// free and floating ...

// Update all the floating ones with their new values

for (UInt_t i(0); i<nFreePars; ++i) {

if (! fitPars_[i]->fixed()) {

// Set both the RooRealVars and the LauParameters

fitPars_[i]->value(par[i]);

fitVars_[i]->setVal(par[i]);

}

}

}

C.9 The readExperimentData function

UInt_t LauRooFitSlave :: readExperimentData ()

{

// check that we’re being asked to read a valid index

const UInt_t exptIndex = this ->iExpt();

if (iExptCat_.numTypes () == 0 && exptIndex != 0) {

std::cerr << "ERROR in LauRooFitSlave :: readExperimentData : Invalid

experiment number " << exptIndex << ", data contains only one

experiment" << std::endl;

return 0;

} else if (! iExptCat_.isValidIndex(exptIndex)) {

std::cerr << "ERROR in LauRooFitSlave :: readExperimentData : Invalid

experiment number " << exptIndex << std::endl;

return 0;

}

// cleanup the data from any previous experiment

delete exptData_;

// retrieve the data and find out how many events have been read

if (iExptCat_.numTypes () == 0) {

24

exptData_ = new RooDataSet(TString :: Format("expt%dData",exptIndex)

, "", dataTree_ , dataVars_ , "", (weightVarName_ != "") ?

weightVarName_.Data() : 0);

} else {

const TString selectionString = TString :: Format("iExpt ==%d",

exptIndex);

TTree* exptTree = dataTree_ ->CopyTree(selectionString);

exptData_ = new RooDataSet(TString :: Format("expt%dData",exptIndex)

, "", exptTree , dataVars_ , "", (weightVarName_ != "") ?

weightVarName_.Data() : 0);

delete exptTree;

}

const UInt_t nEvent = exptData_ ->numEntries ();

this ->eventsPerExpt(nEvent);

return nEvent;

}

void LauRooFitSlave :: cacheInputFitVars ()

{

// cleanup the old NLL info

delete nllVar_;

// construct the new NLL variable for this dataset

nllVar_ = new RooNLLVar("nllVar", "", model_ , *exptData_ , extended_);

}

C.10 The finaliseExperiment function

void LauRooFitSlave :: finaliseExperiment(const LauAbsFitter :: FitStatus& fitStat ,

const TObjArray* parsFromMaster , const TMatrixD* covMat , TObjArray&

parsToMaster)

{

// Copy the fit status information

this ->storeFitStatus(fitStat , *covMat);

// Now process the parameters

const UInt_t nFreePars = this ->nFreeParams ();

UInt_t nPars = parsFromMaster ->GetEntries ();

if (nPars != nFreePars) {

std::cerr << "ERROR in LauRooFitSlave :: finaliseExperiment :

Unexpected number of parameters received from master" << std::

endl;

std::cerr << " :

Received " << nPars << " when expecting " << nFreePars << std::

endl;

gSystem ->Exit(EXIT_FAILURE);

}

for (UInt_t iPar (0); iPar < nPars; ++iPar) {

LauParameter* parameter = dynamic_cast <LauParameter *>((*

parsFromMaster)[iPar]);

if (! parameter) {

std::cerr << "ERROR in LauRooFitSlave :: finaliseExperiment :

Error reading parameter from master" << std::endl;

gSystem ->Exit(EXIT_FAILURE);

}

if (parameter ->name() != fitPars_[iPar]->name()) {

std::cerr << "ERROR in LauRooFitSlave :: finaliseExperiment :

Error reading parameter from master" << std::endl;

gSystem ->Exit(EXIT_FAILURE);

}

*(fitPars_[iPar]) = *parameter;

RooRealVar* rrv = fitVars_[iPar];

rrv ->setVal(parameter ->value ());

rrv ->setError(parameter ->error());

25

rrv ->setAsymError(parameter ->negError (), parameter ->posError ());

}

// Update the pulls and add each finalised fit parameter to the list to

// send back to the master

for (std::vector <LauParameter *>:: iterator iter = fitPars_.begin(); iter !=

fitPars_.end(); ++iter) {

(*iter)->updatePull ();

parsToMaster.Add(*iter);

}

// Write the results into the ntuple

std::vector <LauParameter > extraVars;

LauFitNtuple* ntuple = this ->fitNtuple ();

ntuple ->storeParsAndErrors(fitPars_ , extraVars);

// find out the correlation matrix for the parameters

ntuple ->storeCorrMatrix(this ->iExpt (), this ->fitStatus (), this ->

covarianceMatrix ());

// Fill the data into ntuple

ntuple ->updateFitNtuple ();

}

26

References

[1] The web page of the RooFit project: http://roofit.sourceforge.net

[2] J. Back et al., arXiv:1711.09854 [hep-ex], submitted to Comput. Phys. Commun.

The web page of the Laura++ project: http://laura.hepforge.org

[3] R. Brun and F. Rademakers, Nucl. Instrum. Meth. A 389 (1997) 81.

The web page of the Root project: http://root.cern.ch

[4] F. James and M. Roos, Comput. Phys. Commun. 10 (1975) 343.

C++ translation of MINUIT: http://root.cern.ch/root/html/TMinuit.html

[5] The Doxygen documentation for the LauSimFitMaster class in Laura++:
http://laura.hepforge.org/doc/doxygen/v3r4/classLauSimFitMaster.html

[6] The Doxygen documentation for the LauSimFitSlave class in Laura++:
http://laura.hepforge.org/doc/doxygen/v3r4/classLauSimFitSlave.html

[7] R. Aaij et al. (LHCb Collaboration), Phys. Rev. D 91, 092002 (2015).

[8] R. Aaij et al. (LHCb Collaboration), Phys. Rev. D 93, 112018 (2016), Erratum:
Phys. Rev. D 94, 079902 (2016).

[9] C. Patrignani et al. (Particle Data Group), Chin. Phys. C 40, 100001 (2016).

[10] M.J. Oreglia, Ph.D Thesis, SLAC-236(1980), Appendix D; J.E. Gaiser, Ph.D
Thesis, SLAC-255(1982), Appendix F; T. Skwarnicki, Ph.D Thesis, DESY F31-
86-02(1986), Appendix E.

[11] G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1 (2012).

[12] S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 716, 30 (2012).

[13] Ed. A.J. Bevan, B. Golob, Th. Mannel, S. Prell, and B.D. Yabsley, Eur. Phys.
J. C 74, 3026 (2014).

[14] R. Aaij et al. (LHCb Collaboration), Phys. Rev. D 87, 072004 (2013).

[15] R. Aaij et al. (LHCb Collaboration), Phys. Rev. D 90, 072003 (2014).

[16] R. Aaij et al. (LHCb Collaboration), arXiv:1712.09320 [hep-ex], submitted to
Phys. Rev. Lett.

[17] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 78, 012004 (2008).

[18] A. Garmash et al. (Belle Collaboration), Phys. Rev. Lett. 96, 251803 (2006).

[19] The Doxygen documentation for the LauRooFitSlave class in Laura++:
http://laura.hepforge.org/doc/doxygen/v3r4/classLauRooFitSlave.html

27

http://roofit.sourceforge.net
http://arxiv.org/abs/1711.09854
http://laura.hepforge.org
http://root.cern.ch
http://root.cern.ch/root/html/TMinuit.html
http://laura.hepforge.org/doc/doxygen/v3r4/classLauSimFitMaster.html
http://laura.hepforge.org/doc/doxygen/v3r4/classLauSimFitSlave.html
http://arxiv.org/abs/1712.09320
http://laura.hepforge.org/doc/doxygen/v3r4/classLauRooFitSlave.html

	1 Introduction
	2 Joint fits and their benefits
	3 The master-worker architecture and the JFIT framework
	4 Conclusions
	A Maximum-likelihood estimation
	B Examples demonstrating the benefits of joint fitting
	B.1 Resonance mass and rate measurement
	B.2 Amplitude analysis of a hadronic three-body B-meson decay

	C Example worker class
	C.1 Class data members
	C.2 Constructor and destructor
	C.3 Utility functions
	C.4 The initialise function
	C.5 The verifyFitData function
	C.6 The prepareInitialParArray function
	C.7 The getTotNegLogLikelihood function
	C.8 The setParsFromMinuit function
	C.9 The readExperimentData function
	C.10 The finaliseExperiment function

