

Jets and jet substructure after LHC Run 1

Emily Thompson Columbia University

on behalf of ATLAS and CMS

BOOST'14 @ LONDON - AUGUST 18, 2014

Outline:

- A brief Run1 history, and what have we learned
- Putting jet substructure techniques to use
- Run2 and beyond!

Introduction

- BOOST workshop, a history.
 - A Look Back at the Experimental Progression of Substructure at BOOST
 - BOOST 2010: These aren't your daddy's jets
 - BOOST 2011: "First" data
 - BOOST 2012: Kids in a candy store
 - BOOST 2013: Bringing substructure into the mainstream
- Theme of Run1:
 - Validating, calibrating and exploiting jet substructure
- BOOST 2014: Getting ready for Run2!
 - ...wait, are we ready??
- Go back and ask...what does "boost" mean?
 - High pT
 - Dense environments
 - Tagging boosted objects over a light quark/gluon background

(from David Miller's summary talk last year)

- We knew that new techniques would have to be developed to understand hadronic final states at the LHC
- Needed to convince ourselves it would work, especially in the presence of extreme pileup

- Pileup mitigation...the three amigos! Trimming, Filtering, Pruning
 - They do it all...use mass to tag a boosted object, maybe with some jet shapes, after performing grooming to remove pileup + UE

- Pileup mitigation...the three amigos! Trimming, Filtering, Pruning
 - They do it all...use mass to tag a boosted object, maybe with some jet shapes, after performing grooming to remove pileup + UE
- And we compared them in data! Things looked pretty good in 20 fb⁻¹

 Grooming works on on uncalibrated substructure components (ie: subjet pT), but we needed to show that we could successfully calibrate on "global" jet scale (ie: jet mass, pT)...

 ...but don't forget the generators! Large differences seen depending on what kind of parton showering was chosen

- Along came advanced tagging: "grooming++"
 - Tagging+grooming all in one!
 - eg: HEPTopTagger, shower deconstruction, CMS top tagger, MVA-based tagging...

- More rigorous comparisons to focus on just a few taggers, before we move on to Run2
- Caveat: need to add systematics to these curves!
 - This is non trivial! Correlations also need to be properly taken into account

2-pronged "W" tagging

- More rigorous comparisons to focus on just a few taggers, before we move on to Run2
- Caveat: need to add systematics to these curves!
 - This is non trivial! Correlations also need to be properly taken into account

3-pronged "top" tagging

- Pileup suppression: different approaches from the two experiments:
 - ATLAS: jet vertex fraction, jet areas correction and jet shapes subtraction work well...the latter can help "ease" the task of unfolding to particle level
 - CMS: PFlow reconstruction coupled with charged hadron subtraction...large effort to commission track-based pileup jet ID (already used in analyses)

- Pileup suppression: different approaches from the two experiments:
 - ATLAS: jet vertex fraction, jet areas correction and jet shapes subtraction work well...the latter can help "ease" the task of unfolding to particle level
 - CMS: PFlow reconstruction coupled with charged hadron subtraction...large effort to commission track-based pileup jet ID (already used in analyses)

Tracking in jet substructure

- Use of tracking in substructure: eg: CMS particle flow
 - Combines tracking and calorimeter information, where individual pflow objects are used as inputs to jet finding: ideal for jet substructure!
 - Directly removes up to 60% of charged pileup tracks
 - Relies on high granularity and resolution of ECAL and high magnetic field to separate individual showers...only limitation is being able to understand the overlap between showers

Tracking in jet substructure

other examples: Jet charge, q/g, track-based trimming...

Putting the techniques to use

 In the end, only one thing matters...are the new techniques improving the sensitivity to new physics/providing a better measurement than could have been done with traditional jet algorithms?

Putting the techniques to use

 In the end, only one thing matters...are the new techniques improving the sensitivity to new physics/providing a better measurement than could have been done with traditional jet algorithms?

 $Z' \rightarrow tt$ (semi-lep), 7 TeV "boosted" employed simple trimmed R=1.0 jet with sqrt(d12) cut

Putting the techniques to use

On to Run2...and beyond!

- You can't do physics in Run2 without BOOST
 - Any objects with pT > ~500 GeV are going to need jet substructure techniques in order to extend discovery reach for new particles into the multi-TeV region

X → ttbar resonance

On to Run2...and beyond!

- You can't do physics in Run2 without BOOST
 - Any objects with pT > ~500 GeV are going to need jet substructure techniques in order to extend discovery reach for new particles into the multi-TeV region
- Can we handle it?

Pileup mitigation

- Our current strategies actually do surprisingly well (at least in simulation!)
- You can't have enough pileup mitigation...we'll never be "done" on this front

Re-optimization

- Entering the extreme substructure regime
- Retuning grooming parameters for Run2:
 - At really high boost, subjets with current parameters start to merge

Re-optimization

- Entering the extreme substructure regime
- Retuning grooming parameters for Run2:
 - At really high boost, subjets with current parameters start to merge

(ok..maybe a *bit* extreme to worry about right now...)

Re-optimization

- Substructure scale: how low can you go?
 - At some point, you're limited by calo granularity...and substructure scale is on the order of cells/clusters
 - Might try jet reconstruction with ecal-only to improve angular resolution.
 - Also take a look at more track based measurements
- Detector upgrades will include tracker and calorimeter improvements
 - ATLAS phase 0: new IBL layer (extra pixel layer)
 - CMS phase 1: new pixel tracker, HCAL with finer longitudinal segmentation

Two jets with pT > 500 GeV

adding 2×10³⁴ cm⁻²s⁻¹ pileup

all tracks in dijet event with pT > 0.5 GeV and more than 1 Pixel+IBL cluster

Don't forget those generators!

- One piece missing from us: measurements from jet mass and other shapes have not yet been fed back into generators for tuning
 - Generator modeling is already a limiting systematic for many searches
 - Also high pT differential cross sections of boosted objects (ttbar, $Z \rightarrow bb$, etc)
 - Correcting back to the particle level is very challenging!

B-tagging in jet substructure

 Last comment: B-tagging was really only seriously brought up last year for the first time (see Ivan Marchesini's talk from BOOST'13)

boosted higgs → bb (MC)

B-tagging in jet substructure

 B-tagging subjets: integrating b-tagging and substructure techniques in boosted topologies

 \bullet eg: CMS W' \rightarrow tb resonance

after top candidate selection

after top candidate selection + subjet btagging requirement

B-tagging in jet substructure

Further improvements can be gained...

Graviton Mass [GeV]

In conclusion...

- Can't do Run2 without boosted techniques! Questions to ask going in LINIVERSITY
 - What are the optimal taggers? Need to do proper comparisons with systematics
 - How will we define the uncertainties on W and Top tagging efficiency? Using insitu techniques on the global jet or by propagating individual substructure uncertainties? How can these be improved?
 - Can we improve pileup mitigation? ie: for the jet 4-vector and internal shapes
 - What else can we do with tracking? Where does this break down?
 - How well do things improve when we feed measurements back to generators?
- Ultimate question: If we see evidence of new physics, how do we convince the world (and ourselves) that we're right, and that its not a feature of a tagger? how do you understand the tails?

Looking forward to a great workshop!

