Heavy quark production

Jibo HE on behalf of the LHCb collaboration, including results from the ALICE, ATLAS, CMS, CDF and D0 collaborations

CERN

ISVHECRI 2014 @ CERN (Geneva), 18/08/2014

Jibo HE (CERN)

Heavy quark production

18/08/2014 1 / 40

Outline

• Overview of heavy quark(onium) hadroproduction in $pp(p\bar{p})$

- In heavy-lon collisions, covered by B. Donigus
- Via diffraction, covered by I. Katkov
- Heavy quark (associated) production
 - Charm
 - Bottom
- Heavy quarkonium (associated) production
 - Charmonium
 - Bottomonium
 - Polarization
- Impossible to cover all results, sorry for missing your favorite ones

- 同下 - ヨト - ヨ

Introduction

- Measurements of heavy quark(onium) production provide important tests of QCD
 - Parton distribution function (PDF)
 - Hard parton scattering
 - Fragmentation

- Production cross-section at new energies also required to guide relevant studies, e.g., search for new physics
- Measurements of heavy flavor production in *pp* collisions provide mandatory baseline for nucleus-nucleus collisions

Jibo HE (CERN)

Heavy quark production

Experiments at Tevatron and LHC

- Tevatron
 - ▶ $p+\bar{p}$, beam energy: 980 (900) GeV, $\sqrt{s} = 1.96(1.8)$ TeV
 - Two General Purpose Detector (GPD), D0 and CDF
- LHC
 - p+p, beam energy: 4 (3.5) TeV, $\sqrt{s} = 8(7)$ TeV
 - Two GPDs, ATLAS, CMS
 - ALICE (Heavy-Ion physics), LHCb (Beauty/Charm physics)
- LHCb covers forward region (2 < η < 5), while other experiments mostly cover central region

Charm production

Jibo	HE	(CER	N)
------	----	------	----

Open charm production @ 7 TeV

With exclusive decays, in good agreement with theo.

Associated W + c production

80

[CMS, JHEP 02 (2014) 013] [ATLAS, JHEP 05 (2014) 068]

 $W \rightarrow I \nu$

 $(I = \mu, e)$

1.5

CMS 2011

m

L = 5.0 fb⁻¹ at \sqrt{s} = 7 TeV

σ(W⁺+ c) / σ(W + c)

Jibo HE (CERN)

20 40

Heavy quark production

04

100 120 σ(W + c) [pb]

Bottom production

Jibo	HE (CEF	RN)
		-	

Bottom production using electron

- Different sources of electrons separated using impact parameter
- Bottom and charm differential cross-section described well by FONLL prediction

Jibo HE (CERN)

[ALICE, PLB 721 (2013) 13]

Bottom production using J/ψ

[LHCb, EPJC 71 (2011) 1645] [LHCb, JHEP 02 (2013) 041] [LHCb, JHEP 06 (2013) 064]

- LHCb measured bottom production using $b \rightarrow J/\psi X$ at $\sqrt{s} = 2.76$ and 8 TeV, apart from that at 7 TeV
- $b \rightarrow J/\psi X$ separated from LHCb Candidates / (0.2 Data prompt J/ψ using √s = 8 TeV 2.5<y<3.0 $t_z = \frac{(z_{J/\psi} - z_{PV}) \times M_{J/\psi}}{p_z}$ • Good agreements with FONLL 3<p_<4 GeV/c Prompt I/a Wrong PV Background t, [ps] $\frac{\mathrm{d}\;\sigma(J/\psi)}{\mathrm{d}\;p_{\mathrm{T}}}[\mathrm{nb}/(\mathrm{GeV}/c]$ 3 [µb] 103 = (a) LHCb J/ ψ from b, 2.0 < y < 4.5, p_ < 14 GeV/c → LHCb J/ψ from b, 2.0 < y < 4.5</p> FONLL, 2.0 < y < 4.5, p v < 14 GeV/c FONLL, 2.0 < y < 4.5 10 $\sqrt{s} = 8 \text{ TeV}$ 0.5 10^{-1} 5 10 15 10 20 √s [TeV] p_{T} [GeV/c] Jibo HE (CERN) Heavy guark production 18/08/2014 10/40

Bottom production using $\psi(2S)$

[ATLAS, arXiv:1407.5532] [CMS, JHEP 02 (2012) 011] [LHCb, EPJC 72 (2012) 2100]

- ATLAS measured bottom production using $b \rightarrow \psi(2S)X$ with $\psi(2S) \rightarrow J/\psi(\mu\mu)\pi^+\pi^-$, overlaid with CMS and LHCb results (note: different rapidity ranges)
- Compared to NLO, FONLL & GM-VFNS, discrepancy at high p_T?

Heavy quark production

Bottom production using χ_c

[ATLAS, JHEP 07 (2014) 154]

Jibo HE (CERN)

Heavy quark production

18/08/2014 12 / 40

b meson production

• LHCb measured $B^+ \rightarrow J/\psi K^+$, $B^0 \rightarrow J/\psi K^{*0}$, and $B^0_s \rightarrow J/\psi \phi$ production for 2 < y(B) < 4.5, in agreement with FONLL

b meson production (cont.)

- $d\sigma/dp_T$, good agreement with FONLL
- Theo. uncertainty includes m_b , μ_R , μ_F and PDF

Jibo HE (CERN)

B^+ production by ATLAS

- ATLAS measured $B^+ \rightarrow J/\psi K^+$ in the central region
- Compared to CMS results, FONLL, POWHEG, and MC@NLO

[M. Cacciari et al., JHEP 10 (2012) 137]

[ATLAS, JHEP 10 (2013) 042] [CMS PRL 106 (2011) 112001]

Fragmentation fraction ratio f_s/f_d

[LHCb, JHEP 04 (2013) 001]

- Fragmentation fraction $f_s = \frac{\sigma(B_s^0)}{\sigma(b\bar{b})}, f_d = \frac{\sigma(B^0)}{\sigma(b\bar{b})}$
- f_s/f_d needed for normalization of $B^0_s
 ightarrow \mu^+\mu^-$
- LHCb updated measurement of f_s/f_d with $B_s^0 \rightarrow D_s^- \pi^+$ and $B^0 \rightarrow D^- K^+$ using 2011 data (1 fb⁻¹)
- Evidence (3σ) of dependence on p_T(B), while no indication of dependence on η(B)

Jibo HE (CERN)

18/08/2014 16 / 40

Λ_b^0 production

[LHCb, PRD 85 (2012) 032008] [LHCb, arXiv:1405.6842]

B_c^+ production

 $\begin{array}{l} \label{eq:constraint} [\text{CDF, cDF-note-11083}] [\text{LHCb, PRL 199 (2012) 232001}] [\text{CMS, CMS-PAS-BPH-12-011}] \\ \hline \mbox{Production at } \sqrt{s} = 1.96 \ \text{TeV}, \ \frac{\sigma(B_c^+) \times \mathcal{B}(B_c^+ \to J/\psi \, \mu^+ \nu)}{\sigma(B^+) \times \mathcal{B}(B^+ \to J/\psi \, K^+)} \\ = 0.211 \pm 0.012^{+0.021}_{-0.020} \ \mbox{for } p_{\mathrm{T}}(B) > 6 \ \text{GeV}/c \ \text{and} \ |y| < 0.6 \ \text{by CDF} \\ \hline \mbox{Production at } \sqrt{s} = 7 \ \text{TeV}, \ \frac{\sigma(B_c^+) \times \mathcal{B}(B_c^+ \to J/\psi \, \pi^+)}{\sigma(B^+) \times \mathcal{B}(B^+ \to J/\psi \, K^+)} \\ \hline \mbox{(} 0.68 \pm 0.10 \pm 0.03 \pm 0.05(\tau_{B_c^+}))\% \\ \hline \mbox{for } p_{\mathrm{T}}(B) > 4 \ \text{GeV}/c \ \text{and} \ 2.5 < \eta(B) < 4.5, \ \text{by LHCb} \\ \hline \mbox{(} 0.48 \pm 0.05 \pm 0.04^{+0.05}_{-0.03}(\tau_{B_c^+}))\% \\ \hline \mbox{for } p_{\mathrm{T}}(B) > 15 \ \text{GeV}/c \ \text{and} \ |y| < 1.6, \ \text{by CMS} \end{array}$

Jibo HE (CERN)

Heavy quark production

18/08/2014 18 / 40

B_c^+ production (cont.)

[LHCb, PRL 111 (2013) 181801]

- LHCb measured $\frac{f_c}{f_s} \cdot \mathcal{B}(B_c^+ \to B_s^0 \pi^+)$ using 2011 + 2012 data, for $2 < \eta(B) < 5$.
- Measured with $B_s^0 \to D_s^- \pi^+$ and $B_s^0 \to J/\psi \phi$ independently, results consistent with each other
- Combined results $\frac{f_c}{f_s} \cdot \mathcal{B}(B_c^+ \to B_s^0 \pi^+) = \left(2.37 \pm 0.31 \pm 0.11 \frac{+0.17}{-0.12} (\tau_{B_c^+})\right) \times 10^{-3}$

• First observation of $B_c^+
ightarrow B_s^0 \pi^+$

Jibo HE (CERN)

イロト イポト イヨト イヨト

Quarkonium production

Jibo	HE	(CERN)
------	----	--------

(a)

Charmonium

► 4 E ► E ∽ Q C 18/08/2014 21 / 40

Prompt J/ψ differential cross-section

[ATLAS, NPB 850 (2011) 387] [CMS, JHEP 02 (2012) 011] [LHCb, EPJC 71 (2011) 1645]

Results of three experiments agree well

Compilation by H.K. Wöhri

18/08/2014 22 / 40

Prompt J/ψ , compare with theo.

[ALICE, JHEP 11 (2012) 065] [ATLAS, NPB 850 (2011) 387] [CMS, JHEP 02 (2012) 011] [LHCb, EPJC 71 (2011) 1645] Theo. predictions in agreement with data

Jibo HE (CERN)

Heavy quark production

$\psi(2S)$ production

[CMS, JHEP 02 (2012) 011] [LHCb, EPJC 72 (2012) 2100]

 ψ(2S), free from prompt feed-down, more convenient to compare with theoretical prediction
 Y.-Q.Ma.K.Wang.K.-T.Chao arXiv:hep-ph/1012.1030

.

Ratio of prompt $\psi(2S)$ to J/ψ

[CDF, PRD 80 (2009) 031103] [CMS, JHEP 02 (2012) 011] [LHCb, EPJC 72 (2012) 2100] [JHEP10 (2008) 004]
 Ratio in the central region agree with that in the forward region, no strong dependence on rapidity?

• Stronger *p*_T dependence at CDF than at LHC

Note: the lines do not represent any theoretical model; they are added to help guiding the eye through the points

Jibo HE (CERN)

Heavy quark production

18/08/2014 25 / 40

χ_c production

[CMS, EPJC 72 (2012) 2251] [LHCb, PLB 714 (2012) 215, JHEP 10 (2013) 115] [ATLAS, JHEP 07 (2014) 154]

• Using $\chi_c \rightarrow J/\psi\gamma$, with $\gamma \rightarrow e^+e^-$. Good resolution, χ_c 's peaks are separated

Jibo HE (CERN)

Fraction of J/ψ from χ_c decays

[CDF, PRL 79 (1997) 578] [LHCb, PLB 714 (2012) 215] [ATLAS, JHEP 07 (2014) 154]

• Big fraction of J/ψ from feed-down of χ_c

Ratio of χ_{c2} to χ_{c1}

[CMS, EPJC 72 (2012) 2251] [LHCb, PLB 714 (2012) 215, JHEP 10 (2013) 115] [ATLAS, JHEP 07 (2014) 154]

- Assume χ_c are unpolarized
- Big uncertainty due to unknown polarization
- Ratio not consistent with simple spin counting, 5/3

<u>ڇَ</u> ۾ <u>6</u> 0.9 NROCD CMS NRQCD uncertainty pp.√s = 7 TeV ື່ອັ⁰.8 = 4.6 fb⁻¹ = (+1 + 2)0.7 0.6 0.5 0.4 0.3Ē 0.2 $|y(J/\psi)| < 1.0, p_{-}(\gamma) > 0$ 0.1 Unpolarized 0.0 10 20 $p_{\tau}(J/\psi)[GeV/c]$

Jibo HE (CERN)

Bottomonium

Υ production

[ATLAS, PRD 87 (2013) 052004] [CMS, PLB 727 (2013) 101] [LHCb, EPJC 72 (2012) 12]

Good agreement between data and theoretical predictions

Jibo HE (CERN)

Heavy quark production

Ratio of ↑s cross-section

[ATLAS, PRD 87 (2013) 052004] [CMS, PLB 727 (2013) 101] [LHCb, EPJC 72 (2012) 12]

Clear dependence on p_T, due to feed-down?

• Observation of $\chi_b(3P)$ states

[ATLAS, PRL 108 (2012) 152001] [LHCb, arXiv:1407.7734]

• LHCb also observed $\chi_b(3P) o \Upsilon(3S)\gamma$

Fraction of Υ from χ_b decays

• Big fraction of Υ from feed-down of χ_b

[LHCb, arXiv:1407.7734]

The ψ polarization puzzle

- NRQCD [Braaten, Kniehl & Lee, PRD 62, 094005 (2000)]
- CSM [Gong & Wang, PRL 100,232001 (2008)]
 [Artoisenet et al., PRL 101, 152001 (2008)]
- *k*_T fact. [Baranov, Phys. Rev. D 66, 114003

Jibo HE (CERN)

(2002)]

18/08/2014 34 / 40

[CDF, PRL 99 (2007) 132001]

J/ψ and $\Upsilon(1S)$ polarization

• Frame-invariant variable $\tilde{\lambda} = \frac{\lambda_{\theta} + 3\lambda_{\phi}}{1 - \lambda_{\phi}}$

• No sign of significant polarization in all measurements

Polarization, comparisons with theo. predictions

NLO CSM disfavored

[LHCb, EPJC 73 (2013) 2631, arXiv:1403.1339]

- NLO NRQCD calculations, different selections of experimental data to determine the non-perturbative matrix elements
 - NLO CS and NLO NRQCD(1) [M. Butenschoen and B. A. Kniehl, PRL 108 (2012) 172002]
 - NLO NRQCD(2) [B. Gong et al., PRL 110 (2013) 042002]
 - NLO NRQCD(3) [K.-T. Chao et al., PRL 108 (2012) 242004]
- Increasing polarization as p_T predicted by NLO NRQCD not supported by data

Double J/ψ production

• Double J/ψ production observed by LHCb and D0

Both Single and Double particle scattering contribute, $f^{\text{SP}} = 0.70 \pm 0.11$

Jibo HE (CERN)

Double charm production

 Double charm production observed, Double Parton Scattering (DPS) needed to explain measured cross-section

$W + J/\psi$ associated production

- [ATLAS, JHEP 04 (2014) 172] Dominated by CO? [B.A. Kniehl *et al.*, PRD 66 (2002) 114002] [G.Li *et al.*, PRD 83 (2011) 014001] CS contribution comparable [J.P. Lansberg and C. Lorce, PLB 726 (2013) 218]
- ATLAS observed $W + J/\psi$ associated production
 - DP: two interactions independent and uncorrelated?
 - Data suggest both SPS and DPS contributions
- More data needed to distinguish CS and CO to SPS, and to determine relative rates of SPS and DPS

Summary

- Big progress made on understanding the heavy quark(onium) hadroproduction
 - Production cross-section
 - Feed-down fraction for quarkonium
 - Polarization of quarkonium

<u>►</u> ...

- New states, production observed
 - ► χ_b(3P)
 - Double charm(onium) production
 - $W + J/\psi$ associated production

<u>►</u> ...

- In general, theoretical predictions describe data well. However,
 - Possible to reduce theoretical uncertainty, e.g., due to scales?
 - Polarization of quarkonium...
 - Heavy quark production cross-section at high p_T...