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Exclusive production of ηπ− and η′π− has been studied with a 191 GeV/c π− beam impinging 
on a hydrogen target at COMPASS (CERN). Partial-wave analyses reveal different odd/even angular 
momentum (L) characteristics in the inspected invariant mass range up to 3 GeV/c2. A striking similarity 
between the two systems is observed for the L = 2, 4, 6 intensities (scaled by kinematical factors) and the 
relative phases. The known resonances a2(1320) and a4(2040) are in line with this similarity. In contrast, 
a strong enhancement of η′π− over ηπ− is found for the L = 1, 3, 5 waves, which carry non-qq̄ quantum 
numbers. The L = 1 intensity peaks at 1.7 GeV/c2 in η′π− and at 1.4 GeV/c2 in ηπ−, the corresponding 
phase motions with respect to L = 2 are different.
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The ηπ and η′π mesonic systems are attractive for spectro-
scopic studies because any state with odd angular momentum L, 
which coincides with the total spin J , has non-qq̄ (“exotic”) quan-
tum numbers J PC = 1−+, 3−+, 5−+, . . . . The 1−+ state has been 
the principal case studied so far [1,2].

A comparison of ηπ and η′π should illuminate the role of 
flavour symmetry. Since η and η′ are dominantly flavour octet and 
singlet states, respectively, different SU(3)flavour configurations are 
formed by ηπ and η′π . These configurations are linked to odd 
or even L by Bose symmetry [3–5]. Indeed, experimentally the 
diffractively produced P -wave (L = J = 1) in η′π− was found to 
be more pronounced than in ηπ− [6]. A more systematic study of 
the two systems in the odd and even partial waves is desirable.

Diffractive production of ηπ− and η′π− was studied by pre-
vious experiments with π− beams in the 18 GeV/c–37 GeV/c
range [6–9]. Apart from the well-known resonances a2(1320) and 
a4(2040), resonance features were observed for the exotic P -wave 
in the 1.4 GeV/c2–1.7 GeV/c2 mass range. It has quantum num-
bers J PG = 1−− , where G-parity is used for the charged system, 
corresponding to C = +1 since the isospin is 1. Results for charge-
exchange production of η(′)π0 are difficult to relate to these obser-
vations [1]. Critical discussions of the resonance character concern 
a possible dynamical origin of the behaviour of the L = 1 wave in 
these systems [10,11,1].

The present study is performed with a 191 GeV/c π− beam 
and in the region 0.1 (GeV/c)2 < −t < 1 (GeV/c)2, where t de-
notes the squared four-momentum transfer to the proton target. 
This is within the range of Reggeon-exchange processes [12,13], 
where diffractive excitation and mid-rapidity (“central”) production 
coexist. The former can induce exclusive resonance production. The 
latter will lead to a system of the leading and the centrally pro-
duced mesons with (almost) no interaction in the final state.

In this Letter, the behaviour of all partial waves with L = 1–6 in 
the η(′)π− invariant mass range up to 3 GeV/c2 is studied. A pe-
culiar difference between ηπ− and η′π− in the even and odd-L
waves is observed.

The data were collected with the COMPASS apparatus at CERN. 
COMPASS is a two-stage magnetic spectrometer with tracking and 
calorimetry in both stages [14,15]. A beam of negatively charged 
hadrons at 191 GeV/c was impinging on a liquid hydrogen target 
of 40 cm length and 35 mm diameter. Using the information from 
beam particle identification detectors, it was checked that K − and 
p̄ admixtures to the 97% π− beam are insignificant in the final 
sample analysed here. Recoiling target protons were identified by 
their time of flight and energy loss in a detector (RPD) which con-
sisted of two cylindrical rings of scintillating counters at distances 
of 12 cm and 78 cm from the beam axis, covering the polar an-
gle range above 50◦ as seen from the target centre. The angular 
range between the RPD and the opening angle of the spectrom-
eter of about ±10◦ was covered mostly by a large-area photon 
and charged-particle veto detector (SW), thus enriching the data 
recording with kinematically complete events [16]. The trigger for 
taking the present data required coincidence between beam defi-
nition counters and the RPD, and no veto from the SW nor from 
a small counter telescope for non-interacting beam particles far 
downstream (32 m) from the target. A sample of 4.5 × 109 events 
was recorded with this trigger in 2008.

For the analysis of the exclusively produced π−η and π−η′
mesonic systems, the η was detected by its decay η → π−π+π0

(π0 → γ γ ), and the η′ by its decay η′ → π−π+η (η → γ γ ). The 
preselection for the common final state π−π−π+γ γ required:

(a) three tracks with total charge −1 reconstructed in the spec-
trometer,
(b) a vertex, located inside the target volume, with one incoming 
beam particle track and the three outgoing tracks,

(c) exactly two “eligible” clusters in the electromagnetic calorime-
ters of COMPASS (ECAL1, ECAL2), and

(d) the total energy Etot of the outgoing particles within a 10 GeV
wide window centred on the 6 GeV FWHM peak at 191 GeV
in the Etot distribution.

Clusters were considered “eligible” if they were not associated with 
a reconstructed track, if the cluster energy was above 1 GeV and 
4 GeV in ECAL1 and ECAL2, respectively, and if their timing with 
respect to the beam was within ±4 ns.

Sharp η (η′) peaks of widths 3 MeV/c2–4 MeV/c2 were ob-
tained in the π−π+π0 and π−π+η mass spectra after kinematic 
fitting of the γ γ systems within ±20 MeV/c2 windows about the 
respective π0 and η masses. For the present four-body analyses 
of the systems π−π−π+π0 and π−π−π+η, broad windows of 
50 MeV/c2 width about the η and η′ masses were applied to the 
three-body π−π+π0 and π−π+η systems, respectively. In this 
way, a common treatment of η(′) and the small number of non-η(′)
events becomes possible in the subsequent likelihood fit. No sig-
nificant deviations from coplanarity (required to hold within 13◦) 
are observed for the momentum vectors of beam particle, mesonic 
system and recoil proton, which confirms the exclusivity of the re-
action. Details are found in Refs. [17,18].

In order to account for the acceptance of the spectrometer and 
the selection procedure, Monte Carlo simulations [15,19] were per-
formed for four-body phase-space distributions. The latter were 
weighted with the experimental t distributions, approximated by 
dσ/dt ∝ |t| exp(−b|t|) with slope parameter b = 8.0 (GeV/c)−2

and b = 8.45 (GeV/c)−2 for η′π− and ηπ− , respectively. The ob-
served weak mass-dependence of the slope parameter was found 
not to affect the present results. The overall acceptances for ηπ−
and η′π− in the present kinematic range and decay channels 
amounted to 10% and 14%, respectively. Due to the large coverage 
of forward solid angle by the COMPASS spectrometer, the accep-
tances vary smoothly over the relevant regions of phase space, see 
Ref. [20]. A test of the Monte Carlo description was provided by 
comparison to a five-charged-track sample where η′ decays via 
π+π−η (η → π+π−π0). The known branching ratio of η decay 
into γ γ and π−π+π0 was reproduced [18] leading to a conser-
vative estimate of 8% for the uncertainty of the relative acceptance 
of the two channels discussed here.

To visualise the gross features of the two channels, subsam-
ples of events were selected with tight ±10 MeV/c2 windows on 
the η and η′ masses. These contain 116 000 and 39 000 events, 
respectively, including 5% background from non-η(′) events. These 
subsamples are shown as function of the ηπ− and η′π− masses in 
Figs. 1 (a) and (b), and additionally in the scatter plots Figs. 2 (a) 
and (b) as a function of these invariant masses and of cosϑGJ, 
where ϑGJ is the angle between the directions of the η(′) and the 
beam as seen in the centre of mass of the η(′)π− system (polar 
angle in the Gottfried–Jackson frame). These distributions are in-
tegrated over |t| from 0.1 (GeV/c)2 to 1.0 (GeV/c)2 and over the 
azimuth ϕGJ (measured with respect to the reaction plane). The 
ϕGJ distributions are observed to follow closely a sin2 ϕGJ pattern 
throughout the mass ranges covered in both channels [18,20].

Several salient features of the intensity distributions in Fig. 2
are noted before proceeding to the partial-wave analysis. In the 
ηπ− data, the a2(1320) with its two-hump D-wave angular 
distribution is prominent, see also Fig. 1 (a). The D-wave pat-
tern extends to 2 GeV/c2 where interference with the a4(2040)

can be discerned. For higher masses, increasingly narrow for-
ward/backward peaks are observed. This feature corresponds to 
the emergence of a rapidity gap. In terms of partial waves it 
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Fig. 1. Invariant mass spectra (not acceptance corrected) for (a) ηπ− and (b) η′π− . Acceptances (continuous lines) refer to the kinematic ranges of the present analysis.

Fig. 2. Data (not acceptance corrected) as a function of the invariant ηπ− (a) and η′π− (b) masses and of the cosine of the decay angle in the respective Gottfried–Jackson 
frames where cosϑGJ = 1 corresponds η(′) emission in the beam direction. Two-dimensional acceptances can be found in Ref. [20].
indicates coherent contributions from larger angular momenta. 
Forward/backward asymmetries (only weakly affected by accep-
tance) occur for all masses in both channels, which indicates 
interference of odd and even partial waves. In the η′π− data, the 
a2(1320) is close to the threshold energy of this channel (1.1 GeV), 
and the signal is not dominant, see also Fig. 1 (b). A forward/back-
ward asymmetric interference pattern, indicating coherent D- and 
P -wave contributions with mass-dependent relative phase, gov-
erns the η′π− mass range up to 2 GeV/c2. In the a4(2040) region, 
well-localised interference is recognised. As for ηπ− , narrow for-
ward/backward peaking occurs at higher mass, but in this case the 
forward/backward asymmetry is visibly larger over the whole mass 
range of η′π− .

The data were subjected to a partial-wave analysis (PWA) using 
a program developed at Illinois and VES [21–23]. Independent fits 
were carried out in 40 MeV/c2 wide bins of the four-body mass 
from threshold up to 3 GeV/c2 (so-called mass-independent PWA). 
Momentum transfers were limited to the range given above.

An η(′)π− partial-wave is characterised by the angular mo-
mentum L, the absolute value of the magnetic quantum number 
M = |m| and the reflectivity ε = ±1, which is the eigenvalue of re-
flection about the production plane. Positive (negative) ε is chosen 
to correspond to natural (unnatural) spin-parity of the exchanged 
Reggeon with J P

tr = 1− or 2+ or 3− . . . (0− or 1+ or 2− . . . ) trans-
fer to the beam particle [18,24]. These two classes are incoherent.

In each mass bin, the differential cross section as a function of 
four-body kinematic variables τ is taken to be proportional to a 
model intensity I(τ ) which is expressed in terms of partial-wave 
amplitudes ψε

LM(τ ),

I(τ ) =
∑
ε

∣∣∣∣
∑

Aε
LMψε

LM(τ )

∣∣∣∣
2

+ non-η(′) background. (1)

L,M
The magnitudes and phases of the complex numbers Aε
LM consti-

tute the free parameters of the fit. The expected number of events 
in a bin is

N̄ ∝
∫

I(τ )a(τ )dτ , (2)

where dτ is the four-body phase space element and a(τ ) desig-
nates the efficiency of detector and selection. Following the ex-
tended likelihood approach [25,24], fits are carried out maximis-
ing

lnL ∼ −N̄ +
n∑

k=1

ln I(τk), (3)

where the sum runs over all observed events in the mass bin. 
In this way, the acceptance-corrected model intensity is fit to the 
data.

The partial-wave amplitudes are composed of two parts: a fac-
tor fη ( fη′ ) that describes both the Dalitz plot distribution of the 
successive η (η′) decay [26] and the experimental peak shape, 
and a two-body partial-wave factor that depends on the primary 
η(′)π− decay angles. In this way, the four-body analysis is re-
duced to quasi-two-body. The partial-wave factor for the two spin-
less mesons is expressed by spherical harmonics. Thus, the full 
η(π−π+π0)π− partial-wave amplitudes read

ψε
LM(τ ) = fη(pπ− , pπ+ , pπ0) × Y M

L (ϑGJ,0)

×
{

sin MϕGJ for ε = +1

cos MϕGJ for ε = −1
(4)

and analogously for η′(π−π+η)π− . There are no M = 0, and 
therefore no L = 0 waves for ε = +1. The fits require a weak 
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L = M = 0, ε = −1 amplitude which contributes 0.5% (1.1%) to 
the total ηπ− (η′π−) intensity. This isotropic wave is attributed to 
incoherent background containing η(′) , whereas the non-η(′) back-
ground amplitude in Eq. (1) is isotropic in four-body phase space.

An independent two-body PWA was carried out not taking 
into account the decays of the η(′) , but using tight window cuts 
(±10 MeV/c2) on the η(′) peak in the respective three-body spec-
tra. The results were found to be consistent with the present anal-
ysis [18].

The above-mentioned azimuthal sin2 ϕGJ dependence is in 
agreement with a strong M = 1 dominance, as was experienced 
earlier [6–9]. No M > 1 contributions are needed to fit the data in 
the present t range, with the exception of the ηπ− D-wave where 
statistics allows the extraction of a small M = 2 contribution. The 
final fit model is restricted to the coherent L = 1–6, M = 1 plus 
L = 2, M = 2 partial waves from natural parity transfer (ε = +1) 
and the incoherent backgrounds introduced above.

Incoherence of partial waves of the same naturality, leading to 
additional terms in Eq. (1), could arise from contributions with and 
without proton helicity flip, or from different t-dependences of the 
amplitudes over the broad t range. However, for two pseudoscalars, 
incoherence or partial incoherence of any two partial waves with 
M = 1 can be accommodated by full coherence with appropriate 
choice of phase [7]. Comparing PWA results for t above and be-
low 0.3 (GeV/c)2, no significant variation of the relative M = 1
amplitudes with t is observed [18]. The L = 2, M = 2 contribution 
shows a different t-dependence but does not introduce significant 
incoherence.

In general, a two-pseudoscalar PWA suffers from discrete ambi-
guities [27,28,24]. The observed insignificance of unnatural-parity 
transfer crucially reduces the ambiguities. In the case of ηπ− , the 
remaining ambiguities are resolved when the M = 2 D-wave am-
plitude is introduced. For η′π− , ambiguities occur when the PWA 
is extended beyond the dominant L = 1, 2 and 4 waves. We re-
solve this by requiring continuous behaviour of the dominant par-
tial waves and of the Barrelet zeros [24]. The acceptable solutions 
agree within the statistical uncertainties with the solution selected 
here, which is the one with the smallest L = 3 contribution.

The results of the PWA are presented as intensities of all in-
cluded partial waves in Figs. 3, 4, and as relative phases with 
respect to the L = 2, M = 1 wave in Fig. 5. The plotted intensi-
ties are the acceptance-corrected numbers of events in each mass 
bin, as derived from the |Aε

LM |2 of Eq. (1). Feedthrough of the order 
of 3% from the dominant a2(1320) signal is observed in the L = 4
ηπ− distribution, as shown in light colour in Fig. 3. Relative inten-
sities integrated over mass up to 3 GeV/c2, taking into account the 
respective η(′) decay branchings, are given in Table 1. The ratio of 
the summed intensities is I(ηπ−)/I(η′π−) = 4.0 ± 0.3. This ratio 
is not affected by luminosity, its error is estimated from the un-
certainty of the acceptance. The ηπ− yield is larger for all even-L
waves. Conversely, the odd-L yields are larger in the η′π− data.

The ηπ− P -wave intensity shows a compact peak of
400 MeV/c2 width, centred at a mass of 1.4 GeV/c2. Beyond 
1.8 GeV/c2 it disappears. The D-wave intensity is a factor of 
twenty larger than the P -wave intensity. These observations re-
semble those at lower beam energy [7,9]. A similar P -wave peak 
was observed in p̄n annihilation at rest, where it appears with 
an intensity comparable to that of the D-wave [29]. The present 
D-wave is characterised by a dominant a2(1320) peak and a broad 
shoulder that extends to higher masses and possibly contains the 
a2(1700). An M = 2 D-wave intensity is found at the 5% level. 
The G-wave shows a peak consistent with the a4(2040) and a 
broad bump centred at about 2.7 GeV/c2. The F , H and I-waves 
(L = 3, 5, 6) adopt each less than 1% of the intensity in the present 
mass range but are significant in the likelihood fit as can be judged 
from the uncertainties given in Table 1.

The η′π− P and D-waves have comparable intensities. The 
former peaks at 1.65 GeV/c2, drops to almost zero at 2 GeV/c2

and displays a broad second maximum around 2.4 GeV/c2. The 
D-wave shows a two-part structure similar to ηπ− but with rel-
atively larger intensity of the shoulder. The G-wave distribution 
shows an a4(2040) plus bump shape as observed for ηπ− . In con-
trast to the G and I-waves, the odd F and H-waves have a factor 
of 2–3 more intensity than in the ηπ− channel. Relative to the to-
tal intensities observed in the two channels, the odd-L waves are 
enhanced by an order of magnitude in η′π− . The F -wave distribu-
tion features a broad peak around 2.6 GeV/c2.

Phase motions in both systems can best be studied with respect 
to the D-wave, which is present with sufficient intensity in the full 
mass range. The rapid phase rotations caused by the a2(1320) and 
a4(2040) resonances are discernible. The P versus D-wave phases 
in both systems are almost the same from the η′π− threshold up 
to 1.4 GeV/c2 where a branching takes place. Given the similar-
ity of the D-wave intensities after applying a kinematical factor 
(see below), it is suggestive to ascribe the different relative phase 
motions in the 1.4 GeV/c2–2.0 GeV/c2 range to the P -wave. It is 
noted that the P -wave intensities drop dramatically within this re-
gion, almost vanishing at 1.8 GeV/c2 in ηπ− and at 2 GeV/c2 in 
η′π− . In contrast, the G- versus D-phase motions are almost iden-
tical. All phase differences tend to constant values at high masses, 
which is a wave-mechanical condition for narrow angular focus-
ing.

Fits of resonance and background amplitudes to these PWA 
results (so-called mass-dependent fits) lead to strongly model-
dependent resonance parameters. If these fits are restricted to 
masses below 1.9 GeV/c2, comparable to previous analyses, a sim-
ple model incorporating only P and D-wave Breit–Wigner ampli-
tudes and a coherent D-wave background yields π1(1400) ηπ−
resonance parameters and π1(1600) η′π− resonance parameters 
consistent with those of Refs. [7–9]. However, the inclusion of 
higher masses demands additional model amplitudes, in particular 
additional D-wave resonances and coherent P -wave backgrounds. 
The presence of a coherent background in the P -wave is suggested 
by the PWA results in Figs. 3, 4, 5 (a): The vanishing of the in-
tensities around 2.0 GeV/c2 is ascribed to destructive interference 
within this partial wave, and the relatively slow phase motion 
across the η′π− P -wave peak demands the additional amplitude 
in order to dampen the π1(1600) phase rotation. Fitted P -wave 
resonance masses in both channels are found to be shifted up-
wards by typically 200 MeV/c2 when introducing constant-phase 
model backgrounds as in Ref. [23]. In the present Letter, we re-
frain from proposing resonance parameters for the exotic P -wave 
or even the exotic F and H-waves observed here. The present ob-
servations at masses beyond the a2(1320) and the π1 structures 
might stimulate extensions of resonance-production models, as e.g. 
multi-Regge models [13].

For the distinct a2(1320) and a4(2040) resonances, mass-
dependent fits using a standard relativistic Breit–Wigner param-
eterisation, which for the a2 includes also the ρπ decay in the 
parameterisation of the total width [6], give the following results:

m(a2) = 1315 ± 12 MeV/c2, Γ (a2) = 119 ± 14 MeV/c2,

m(a4) = 1900+80
−20 MeV/c2, Γ (a4) = 300+80

−100 MeV/c2,

B2 ≡ N(a2 → η′π−)

N(a2 → ηπ)
= (5 ± 2)%,

B4 ≡ N(a4 → η′π−) = (23 ± 7)%. (5)

N(a4 → ηπ)
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Fig. 3. Intensities of the L = 1–6, M = 1 and L = 2, M = 2 partial waves from the partial-wave analysis of the ηπ− data in mass bins of 40 MeV/c2 width. The light-coloured
part of the L = 4 intensity below 1.5 GeV/c2 is due to feedthrough from the L = 2 wave. The error bars correspond to a change of the log-likelihood by half a unit and do 
not include MC fluctuations which are on the order of 5%.
Here, N stands for the integrated Breit–Wigner intensities of the 
given decay branches. The errors given above are dominated by 
the systematic uncertainty, which is estimated by comparing fits 
with and without coherent backgrounds, a2(1700) or π1(1400). 
The masses and B2 agree with the PDG values [26]. The decay 
branching ratio B4 is extracted here for the first time.
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Fig. 4. Intensities of the L = 1–6, M = 1 partial waves from the partial-wave analysis of the η′π− data in mass bins of 40 MeV/c2 width (circles). Shown for comparison 
(triangles) are the ηπ− results scaled by the relative kinematical factor given in Eq. (7).
For a detailed comparison of the results from the mass-
independent PWA of both channels, their different phase spaces 
and angular-momentum barriers are taken into account. For the 
decay of pointlike particles, transition rates are expected to be 
proportional to

g(m, L) = q(m) × q(m)2L (6)

with break-up momentum q(m) [30–32]. Overlaid on the PWA re-
sults for η′π− in Fig. 4 are those for ηπ− , multiplied in each bin 
by the relative kinematical factor

c(m, L) = b × g′(m, L)

g(m, L)
, (7)

where g(′) refers to η(′)π− with break-up momentum q(′) , and the 
factor b = 0.746 accounts for the decay branchings of η and η′ into 
π−π+γ γ [26].

By integrating the invariant mass spectra of each partial wave, 
scaled by [g(′)(m, L)]−1, from the η′π− threshold up to 3 GeV/c2, 
we obtain scaled yields I(′) and derive the ratios
L
R L = b × I L/I ′L . (8)

As an alternative to the angular-momentum barrier factors q(m)2L

of Eq. (6), we have also used Blatt–Weisskopf barrier factors [33]. 
For the range parameter involved there, an upper limit of r =
0.4 fm was deduced from systematic studies of tensor meson de-
cays, including the present channels [30,31], whereas for r = 0 fm
Eq. (6) is recovered. To demonstrate the sensitivity of R L on the 
barrier model, the range of values corresponding to these upper 
and lower limits is given in Table 1.

The comparison in Fig. 4 reveals a conspicuous resemblance of 
the even-L partial waves of both channels. This feature remains if 
r = 0.4 fm, but the values of R L increase with increasing r (Ta-
ble 1). This similarity is corroborated by the relative phases as 
observed in Figs. 5 (d) and (f). The observed behaviour is expected 
from a quark-line picture where only the non-strange components 
nn̄ (n = u, d) of the incoming π− and the outgoing system are in-
volved. The similar values of R L for L = 2, 4, 6 suggest that the 
respective intermediate states couple to the same flavour content 
of the outgoing system.
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Fig. 5. Phases ΦL of the M = 1 partial waves with angular momentum L relative to the L = 2, M = 1 wave of ηπ− (triangles) and η′π− (circles) systems. For ηπ− , the phase 
between the P and D-waves is ill-defined in the region of vanishing P -wave intensity between 1.8 and 2.05 GeV/c2 (shaded). Panel (b) shows the relative M = 2 versus 

−
M = 1 phase of the ηπ D-wave.
Table 1
Intensities (yields), integrated over the mass range up to 3 GeV/c2, for the par-
tial waves with M = 1 (and M = 2 for L = 2) relative to L = 2, M = 1 in ηπ−
(set to 100). These yields take into account the decay branching ratios of η(′) into 
π−π+γ γ . Errors are derived from the log-likelihood fit and do not include the 
common uncertainty (8%) of the acceptance ratio of the two channels. The last col-
umn lists ηπ− over η′π− yield ratios derived from the scaled intensities (see text, 
Eq. (8)). The first (second) value of RL corresponds to range parameter r = 0 fm
(r = 0.4 fm).

L yield (ηπ−) yield (η′π−) RL

1 5.4 ± 0.3 12.8 ± 0.4 0.08–0.12
2 100 (fixed) 13.0 ± 0.3 0.84–1.18
2, M = 2 5.4 ± 0.2
3 0.39 ± 0.07 1.14 ± 0.13 0.14–0.19
4 10.0 ± 0.3 2.57 ± 0.18 0.80–0.97
5 0.12 ± 0.04 0.28 ± 0.10 0.13–0.15
6 0.87 ± 0.08 0.36 ± 0.05 0.66–0.74

The quark-line estimate (see Eq. (3) in [31]) for the a2(1320)

decay branching using r = 0.4 fm and the isoscalar mixing angle in 
the quark flavour basis, φ = 39.3◦ [32], is B2 = 3.9% for our mass 
value. This is in reasonable agreement with the present measure-
ment. An analogous calculation for the a4(2040) yields B4 = 11.8%, 
which is below the experimental value. A larger range parameter r
would improve the agreement.

On the other hand, the odd-L η′π− intensities are enhanced 
by a factor 5–10 as compared to ηπ− , see Fig. 4, Table 1. The 
P -wave fits well into the trend observed for the F and H-waves, 
which also carry exotic quantum numbers. It is suggestive to as-
cribe these observations to the dominant 8 ⊗ 8 and 1 ⊗ 8 charac-
ter of the ηπ− and η′π− SU(3)flavour configurations, respectively. 
When the former couples to an octet intermediate state, Bose sym-
metry demands even L, whereas the latter may couple to the non-
symmetric odd-L configurations. The importance of this relation 
was already pointed out in previous discussions of the exotic π1, 
where in particular the hybrid (gqq̄) or the lowest molecular state 
(qq̄qq̄) has 1 ⊗ 8 character [3–5].

A P -wave peak, consistent with quoted resonance parame-
ters [26], appears in each channel. In the η′π− channel, its rel-
atively large contribution is directly visible in Fig. 2 (b). The 
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forward/backward asymmetry, ascribed to L = 1, 3, 5 amplitudes 
interfering with the even-L ones, extends to higher masses, where 
a transition to rapidity-gap phenomena (central production) is ex-
pected. In the ηπ− data, the asymmetry is much less pronounced.

In conclusion, two striking features characterise the systematic 
behaviour of partial waves presented here:

(i) The even partial waves with L = 2, 4, 6 show a close similarity 
between the two channels, both in the intensities as function 
of mass – after scaling by the phase-space and barrier factors 
– as well as in their phase behaviour.

(ii) The odd partial waves with L = 1, 3, 5, carrying non-qq̄ quan-
tum numbers, are suppressed in ηπ− with respect to η′π− , 
underlining the importance of flavour symmetry.
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