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Abstract

The search for electroweak superpartners has recently moved to the centre of interest at the LHC. We provide the
currently most precise theoretical predictions for these particles, use them to assess the precision of parton shower
simulations, and reanalyse public experimental results assuming more general decompositions of gauginos and slep-

tons.
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1. Introduction

For many theoretical and phenomenological reasons,
supersymmetry (SUSY) remains one of the best moti-
vated extensions of the Standard Model (SM) of particle
physics. The strongly interacting superpartners in the
Minimal SUSY SM (MSSM), the first- and second gen-
eration squarks and gluinos, are largely restricted after
the first LHC run at 7 and 8 TeV centre-of-mass energy
to be heavier than 1 TeV. However, this is not the case
for stops, which play a central role in explaining the rel-
atively large mass of the SM-like Higgs boson, and the
electroweakly interacting sleptons and gauginos, which
provide natural candidates for the dark matter in the uni-
verse. The search for these particles has therefore re-
cently moved to the centre of interest at the LHC.

LHC analyses on SUSY particle searches rely heav-
ily on precision calculations of SM backgrounds and
SUSY signals. At next-to-leading order (NLO) of QCD,
SUSY production cross sections have been calculated
more than a decade ago [1, 2, 3, 4, 5, 6, 7]. More re-
cently, resummation methods have been applied at next-
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to-leading logarithmic (NLL) accuracy [8]. Here, we
present our NLO+NLL calculations for direct gaugino
[9, 10, 11, 12] and slepton [13, 14, 15, 16] production
near threshold and close to vanishing transverse mo-
mentum (pr), use them to assess the precision of parton
shower simulations, and reanalyse public experimental
results assuming more general decompositions of gaug-
inos and sleptons.

2. Resummation

The hadronic cross section for the production of
SUSY particles at the LHC

Opp = JappXasthy) ® fo1p(Xp, pir) ®

D T i) M
n=0

is obtained by a convolution of the parton densities
(PDFs) f(x,uy), that depend on the partonic momen-
tum fraction x and the factorisation scale uy, with the
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partonic cross section o, that can be expanded in pow-
ers of the strong coupling constant a(¢,) running with
the renormalisation scale ;.

Near production threshold, where the ratio of the
squared invariant mass M? of the produced particle pair
over the partonic centre-of-mass energy s, z = M?/s,
approaches unity, the cross section exhibits logarithimc
enhancements,

2n—1 ll’lm(l Z)

(n) _ (m) —
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After applying a Mellin transform, e.g.
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these logarithmically enhanced terms, coming from soft
gluon radiation, can be resummed to all orders,

TW(N) = Hyg - exp (¢ In(N) + &P + ), (@)

where H represents the hard, non-singular part and
& are universal coefficients. Since also the dominant
collinear 1/N¢ terms (N¢ being the number of colours
in QCD) are universal, they can also be exponentiated
in a so-called “collinear improved” resummation calcu-
lation [17].

A second critical region is encountered when the
transverse momentum of the produced particle pair
tends to zero, pr — 0. There, the cross section behaves
as

2n—1 1 M2
o (pr) = Zcm[—zlnm(—z)} : )
m=0 Pr Pr/l,

After applying a Fourier transform,
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with by = 2¢77%, the logarithms can again be resummed
to all orders,

TW(N) = Hyg - exp(¢VIn(b) + 2@ + ). (7)

Since the threshold and transverse-momentum loga-
rithms are of the same kinematic origin, i.e. soft gluon
radiation, they can also be resummed jointly in (N, b)
space.

To achieve the best possible accuracy over the full
kinematic ranges, the fixed-order and resummed results
are added. However, since the logarithmically enhanced
terms are present in both parts, this overlap must be sub-
tracted to avoid double counting,

_ fo. res. exp.
Oap = Oy + 0 =0, . ®)

Table 1: Our constrained MSSM benchmark point with tang = 10
and Ap = 0 GeV. All masses are given in units of GeV, and the gluino
and average squark masses are rounded to 5 GeV accuracy.
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Distributions in the measured quantities M and pr are
then obtained by applying an inverse Mellin transform

doap(7) 1 f _N 2 doap(N)
Y R AS LA R VA VE Rt A DA
Mz 2mi Jo, O ar

with the so-called minimal prescription, where an inte-
gration contour Cy is defined by N = C + ze* and
z € [0; oo[, and an inverse Fourier transform

d N

== f db 5 Jo(bpr) dor(b) (10)

de S 0 2
with a deformed contour b = (cos¢ + isin¢g)t and ¢ €
[0; oo[ for a proper treatment of all encountered poles in
the complex plane.

3. Gauginos

Using the resummation formalisms described briefly
above, we demonstrate the impact of our precision pre-
dictions for gaugino pair production at the LHC with
a centre-of-mass energy of /s = 8 TeV at the con-
strained MSSM benchmark point defined in Tab. 1. It
features sufficiently high squark and gluino masses, that
are not yet excluded, and an interestingly large branch-
ing fraction of the second lightest neutralino into the
lightest neutralino and the SM-like Higgs boson. The
neutralino/chargino masses are 250 GeV for )2(1), 472
GeV for )2(2) /X and 766 for Y3 ,/¥3, and the correspond-
ing total cross sections are shown in Tab. 2. As one can
see, they are often increased, in particular from LO to
NLO and, as one approaches the production threshold,
also from NLO to NLL, and the scale uncertainty is al-
ways considerably stabilised.

It is interesting to compare the NLL threshold re-
summed results with a Monte Carlo prediction at LO us-
ing the multi-parton generator MadGraph [18] and the
PYTHIA [19] parton shower. As one can see in Fig.
1, the NLL+NLO invariant mass distribution (red, thick
full) agrees in general very well with the Monte Carlo
results obtained after matching matrix elements contain-
ing no (green, dotted), one (blue, dashed), and up to two
(red, dot-dashed) additional jets to parton showering.
As the NLO+NLL calculation does not contain more
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Table 2: Total cross sections (in fb) for the production of various gaug-
ino pairs and their associated scale and PDF uncertainties for the LHC
running at a center-of-mass energy of /s = 8 TeV at our benchmark

point. The PDF uncertainties are not shown for the LO results.
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Figure 1: Distributions in the invariant mass M of a jgjf pair with
mass 472 GeV each at the LHC with /s = 8 TeV. We compare the
NLO matched to the NLL (red, thick full) distribution to the results
obtained after matching matrix elements containing no (green, dot-
ted), one (blue, dashed), and up to two (red, dot-dashed) additional
jets to parton showering.

than one hard additional jet, it does, however, not allow
to validate precisely the two-jet matching [20].

A comparison of NLO and NLO+NLL pr spectra
versus the corresponding MadGraph and PYTHIA pre-
dictions is shown in Fig. 2. While the NLO predic-
tion diverges at low pr, the NLO+NLL result shows
the correct physical turnover and agrees very well with
the Monte Carlo predictions. Again, the two-jet match-
ing can not be precisely validated due to the lack of two
hard jets in the NLO+NLL calculation.

4. Sleptons

The production of slepton (I) pairs has so far been
analysed by the LHC experiments ATLAS and CMS
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Figure 2: Distributions in the transverse momentum p7 of a ,Eg,ﬁ pair
with mass 472 GeV each at the LHC with /s = 8 TeV. We compare
fixed order at O(a;) (blue, full) and NLL (red, thick full) distributions
to the results obtained after matching matrix-elements containing no
(green, dotted), one (blue, dashed), and up to two (red, dot-dashed)
additional jets to parton showering.

using simplified models. In particular, they assume a
flavour-conserving decay into a SM lepton / and the
lightest SUSY particle (LSP, )2?), while all other SUSY
particles, in particular the squarks and gluinos, are as-
sumed to be heavy and to decouple. The experimen-
tal signature is then a pair of same-flavour leptons and
missing transverse energy (E7).

In our (re-)analysis [21], we take into account differ-
ent slepton flavors (also 7), both left- and right-handed
sleptons (incl. mixing for staus) [22], and a different
gaugino or higgsino nature of lightest neutralino [23].
The stau mass eigenstates are in particular obtained

through
cos@; sinb: T
cos 0; )( TR ) an

T
7, )\ —sin6;

Their couplings to Z bosons and neutralinos are given
by

1
C(ZT) = [ - E + S%V] COS2 9-; + [S%V] Sin2 0-? (12)

CS’L) = \/Ee[sWNf + cWNg] cos 0z — [ZCWSWN;‘yT] sin 6

C%’R) = [ -2 \/EesWNl] sin 6 — [QCWSWN3)’T] cos 6z

where y, denotes the tau lepton Yukawa coupling, which
in the case of third-generation (s)leptons cannot be ne-
glected. The four neutralino mixing parameters are con-
strained by a unitarity relation,

INI* + N2 + N3P + INg P = 1. (13)

In Fig. 3 we show total production cross sections at
NLO+NLL as a function of both stau mass and mix-
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Figure 3: Total cross sections for stau pair production at the LHC,
running at centre-of-mass energies of 8 TeV. We present predictions
as functions of the stau mass and the stau mixing angle after matching
the NLO results with threshold resummation at the NLL accuracy.

ing angle. As one can see, the cross section drops with
the mass of the produced staus, but also as they become
more right-handed, corresponding to larger values of ;.

We have recast a recent ATLAS slepton analysis [24]
to take into account the different gaugino/higgsino na-
ture of the neutralino that results, e.g., from left-handed
selectron decays. As one can see in Fig. 4, the exclu-
sion curves for binos (top) and winos (bottom) are very
similar, i.e. there is not much sensitivity to the nature of
the lightest neutralino in these slepton decays.

The situation is quite different for the left-/right-
handed nature of the decaying slepton, as one can see
in Fig. 5. Here we assume a mixed bino-wino nature for
the lightest neutralino and study the production of left-
(top) and right-handed (bottom) smuons. The exclusion
curves are in this case quite different, reflecting the fact
that right-handed (s)leptons have weaker couplings and
smaller cross sections.

5. Conclusion

The most precise electroweak SUSY particle produc-
tion cross sections at NLO+NLL are by now routinely
taken into account by the LHC experiments ATLAS and
CMS for gaugino/higgsino and slepton searches, in par-
ticular when deriving exclusion limits. The correspond-
ing computer code RESUMMINO has been made pub-
lic and is available for use in experimental analyses and
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Figure 4: 95% confidence exclusion limit for left-handed selectron
pair production, given in the (Mj, M;(?) mass plane of a simplified
model for different choices of the neutralino nature taken as bino (top)
and wino (bottom). We present the visible cross section after applying
the ATLAS selection strategy. The limits are extracted for 4.7 fb~! of
LHC collisions at a centre-of-mass energy of 7 TeV.
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Figure 5: 95% confidence exclusion limit for left-handed (top) and
right-handed (bottom) smuon pair production, given in the (Mj, M}?)
mass plane of a simplified model for mixed bino-wino neutralino na-
ture. We present the visible cross section after applying the ATLAS
selection strategy. The limits are extracted for 4.7 fb~! of LHC colli-
sions at a centre-of-mass energy of 7 TeV.

theoretical studies, not only for SUSY particles [25], but
also for additional neutral gauge bosons [26].
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