

Abstract-- The Monitoring and Control Unit (MCU) card has

been developed as an IEEE P-1386.1 mezzanine card for
networked monitoring and control applications. It is
implemented as Peripheral Component Interconnect (PCI) host
processor according to the VITA-32 draft standard for
processor mezzanines. The first application of the MCU is the
LHCb Readout Unit, which requires remote configuration of its
Field Programmable Gate Arrays (FPGAs) and PCI devices.
The MCU hardware system consists of a "PC-on-chip" with a
Synchronous Dynamic Random Access Memory (SDRAM) and
Local Area Network (LAN) controller on a mezzanine card,
configured for booting LINUX as a diskless client from a
networked server. The MCU’s control functions are either
implemented via the standard P-1386 PCI bus connectors or via
a dedicated programmable I/O connector. The MCU’s target
application and its general-purpose feature will be presented.

I. INTRODUCTION

HE Monitoring and Control Unit (MCU) has been
conceived from the beginning as a mezzanine for

configuring the LHCb Readout Unit [1], and provide In
System programmability (IsP) capabilities, with remote
operation.

The MCU is a networked x86 processor system with

remote boot capability, designed for a 3.3V PCI environment.
However, interface protocols available in its I/O connector
are independent of the PCI bus, making the MCU a versatile
system to use in motherboards hosting Industry Standard
Association (ISA), Universal Serial Bus (USB), Joint Test
Action Group (JTAG) IEEE 1149.1/P1149.4 protocol and
I2C bus choices.

II. SYSTEM ARCHITECTURE

Standards for embedded CPUs like PC104 and Industrial
PC are neither specified nor adequate for use in the modular

A. Guirao is with the European Organization for Particle Physics
(CERN) as doctoral student of the Polytechnic University of Valencia
(UPV). E-mail: Angel.guirao.elias@cern.ch

J. Toledo is with Polytehnical University, Valencia. He is now with the
Department of Electronics, and also in CERN. E-mail: Jose.toledo@cern.ch

D. Dominguez was with CERN. He is now with Polytechnic University,
Valencia, working in CERN NA60 experiment. E-mail:
David.dominguez@cern.ch

B. Bruder was with CERN, and he is now with Alcatel Microelectronics,
Paris.

bus standards used in High-Energy Physics (HEP)
experiments. The only common mezzanine standard adopted
by the VME community, apart from IP, is the PMC IEEE P-
1386.1 standard which is also “defacto” used in a
mechanically compatible format by LHC experiments for the
CERN S-Link card form factor [4].

The MCU was designed to comply with the PCI based-

PMC mezzanines standard proposed by VITA-32 as a draft
[5]. Using an I/O user connector apart from the PCI
connector, this standard is module and company independent.
It allows for components of the main board below most of its
covered area. The connector area is specified to comply with
a front-panel area like on a VME card. PMC connectors are
both mechanically and electrically proven to work reliably
and without noise problems.

Fig. 1. General system architecture. Shadowed modules are external to the
System-On-a-Chip (SoC) processor.

H. Müller is with CERN, working as leader in several projects for LHCb

and NA60 experiments. E-mail: Hans.Muller@cern.ch

A networked mezzanine processor card

Guirao A., Toledo J., Dominguez D., Bruder B., and Müller H.

CERN EP-ED, Geneva, Switzerland

T

A. System core

The “MachZ” System-On-a-Chip (SOC) [6] is a complete
processor and peripheral subsystem requiring only external
clocks, SDRAM, and BIOS ROM/Flash.

It consists of the following major blocks:

�� Industry standard 32 bit processor core with integrated
floating point co-processor and 8KB L1 cache,

�� A North Bridge (system controller) with “Frontside” PCI
Master / Slave Arbitration and SDRAM interfaces,

�� A custom South Bridge with “Front-side” PCI interface
to the North Bridge and “Backside” PCI Master/Slave
system interface, Enhanced Integrate Device Electronics
(EIDE) and USB controllers, floppy controller, serial
ports, access bus, PC/AT sub-system, parallel port and
general purpose I/O.

The idea is to use a fully compatible PC system, which

runs Linux with only minor changes, and thus allows the
software programmers to work without problems due to a
platform change.

The MCU is carrying a 486+ core processor, running up to

120MHz. Peripherals, like the PCI bus, run at 33MHz.

B. Peripherals

Peripherals in the MCU are divided in two large blocks.
ZFLinux’s embedded interfaces and MCU’s own extensions.

Embedded interfaces globe serial and parallel ports,

watchdog timers, Enhaced IDE (EIDE), USB and floppy
controllers, Access bus (I2C compatible) interface, keyboard
and PS/2 mouse systems. A general purpose I/O system
completes this wide fan of choices, allowing the designer to
use the x86 SOC with minimal external parts.

For easy integration in embedded systems, the processor

offers also a programmable chip select logic for high
integration systems. This concept avoids external logic and
the complex address methods used in an x86 platform.

The MCU’s own peripherals are the embedded 10/100Mb

Ethernet unit, with MAC and PHY units for wired Ethernet,
and JTAG interface for Readout Unit test. The parallel port
has been disabled, although EIDE and floppy interfaces are
available for using the MCU as independent computer,
outside the Readout unit application.

A video output was not required for the diskless

philosophy, and only a serial terminal output for debugging
purposes is offered.

1) Ethernet and remote booting
An embedded Ethernet 100Mb/s chip, integrating MAC

and PHY layers is included for a full diskless computer, with
remote booting capability across the network.

Remote booting is a comfortable way to get a central,

common and fast control over software running in a large
number of computers.

Diskless computers rely on this procedure to load their

operating system images into memory, in several steps. The
drawback using remote booting is the network load.
However, benefits are important, because expensive, fragile
and cumbersome equipment like hard drives is not required.

The boot negotiation is accomplished in three steps. First,

the diskless computer broadcasts an IP address request.
Either the BOOTP or DHCP protocol is running in one or
more central servers, which assign an IP address for a
particular MAC address.

Once the MCU has its IP address, it requests for an
operating system image. The Central server transmits it in a
packet based basic protocol (TFTP).

The operating system is loaded into memory this way, and
executed locally in each MCU. When running an operating
system capable of mounting a network file system, like
Linux, the MCU will mount the file system across the
network.

This way, many MCU will share the same file system, with
exception of some critical resources, which are unique for
each of them.

Once each MCU is running Linux, eCos or any real-time

system (RTOS), slow control and IsP funcionalities are
available.

Following this philosophy, Readout Units installed in the

LHCb experiment will be centrally controlled and configured
in an inexpensive and fast way.

C. Software

The MCU is meant to use a Linux system, which eases the
diskless operation thanks to the use of a powerful networking
file system. The team policy is to keep all software
development within the frame of a public source. Linux
operating system is widely known and very well supported.

With a special license-free compiled kernel, the MCU

boots Linux using a console redirection to the serial port for
local debugging.

Etherboot free software [8] is used to link with the existing

DHCP and TFTP protocols in Linux. Intel’s PXE software
[7] is also available to the public. Nevertheless, it requires a

licensed programming environment, not always preferred by
all users.

III. APPLICATIONS

A. The Read Out Unit

The LHCb Readout Unit (RU) is in general a module for
receiving and buffering event data on 4 Slink inputs at up to 1
MHz trigger rate [1].

 The overall throughput product of “eventsize” rate is

approximately 160 Mbytes/s. The internal subevent building
process generates newly formatted subevents on the RU’s
output port, which may be either PCI or Slink.

The RU has been conceived from the beginning as a 9U

module with data input channels in the front panel and output
channels on the rear panel. There is no use of the backplane,
except for power supply purposes. The crate system chosen is
Fastbus (IEEE960).

In absence of backplane-resided controller, an embedded
controller is required in each RU. This controller has
therefore to be inexpensive and networked.

After using non-standard commercial controllers at the

beginning, a widely used standard was chosen [3] for the final
Readout Unit design: The PCI based-PMC mezzanines with
user I/O extension as is proposed by the VITA-32 draft
standard. This standard is module and company independent,
allows for components on the main board below most of its
covered area and the connector area is specified to comply
with a frontpanel area like on a VME card.

The MCU mezzanine was thus designed by the RU team as
a networked, PMC processor module for FPGA configuration
via PCI and for user-specific protocols via the VITA I/O
connector.

Task of the MCU include monitoring the Sub Event

Building (SEB) buffer, error handling and reporting, remote
control of the operating parameters of the RU, PCI bus
initialization, re-load FPGA configuration bitmaps, access
status registers inside the FPGAs, implement high-level data
transport protocols or emulate RU functions before
implementing them in programmable logic hardware.

We opted for a double stack height (i.e. double-width RU

modules) in Fastbus crates. This allows for mounting
components & connectors up to 14 mm on the visible side of
a PMC.

Fig. 2. The MCU in the Readout Unit Application. The main shadowed

area is RU, meanwhile small shadowed components are mezzanine boards.

Fig. 3. The Readout Unit with all S-Link mezzanines, the NIC and the

MCU cards. The MCU is on the half height, on the left.

B. Other scenarios

The MCU is a complete PC compatible system, quite
simple and more affordable than any portable or industrial PC
on the market. With some compromise on processing power,
it offers low power, and small size.

The industrial PCs market, with follows the PIC standard,

offers a PCI-ISA system based in a passive backplane, and a
PC system plugged as PCI host. Other standards like PC104
only provide the PCI bus.

The MCU’s open architecture and PHC compliance allows

using it in other applications as PCI host, using a passive
adapter for PMC to the appropriate standard.

Instead of a passive adapter, the Flexible Input-Output card

(FLIC) [2] may be used as “intelligent” adapter, giving the
designer the power of a highly customizable PCI logic added
to the MCU versatility.

IV. REFERENCES

[1] J.Toledo et alt., The Readout Unit For High Rate Applications In The
LHCb Experiment, 12th IEEE-NPSS Real Time 2001

[2] H.Müller et alt., A Flexible PCI Card For Data Acquisition, 12th
IEEE-NPSS Real Time 2001

[3] Readout Unit history, documents, talks and minutes see
http://hmuller.home.cern.ch/hmuller/ RUminutes.htm

[4] Draft Standard of physical and environmental layers for PCI
mezzanine cards IEEE P1386.1 Draft 2.0
http://www.cern.ch/~hmuller/docs/PCI-SCI/pmc_draft.pdf

[5] Processor VME Standard VITA 32 199x Draft 4.01 Sept 2000,
http://www.vita.com

[6] ZFLniux data source, ZF Linux DevicesInc , Palo Alto, CA, USA
http://www.zflinux.com, 2000

[7] Preboot Execution Environment PXE software, Intel Corporation,
http://developer.intel.com/ial/wfm

[8] Etherboot Project, http://etherboot.sourceforge.net/

