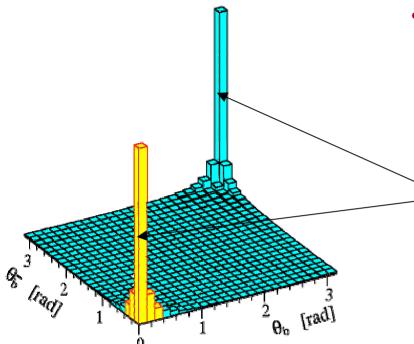


The LHCb Velo detector

A high precision silicon device for vertexing, tracking and triggering in LHCb.

J.P. Palacios, University of Liverpool

Talk Overview



- The LHCb detector
 - Physics reach
 - General layout of components
- Velo Requirements
 - Physics
 - System and mechanical
- Velo Layout
- Silicon R&D
- Outlook
- Conclusions

The LHCb Decector

- Physics: where are the Bs?
 - LHC 14TeV pp collisions
 - For $\mathcal{L} = 2x10^{32} \text{cm}^{-2} \text{s}^{-1}$ and $\sigma_{bb} \sim 500 \mu \text{b}$ have 100K bb/s produced!
 - O(10¹²) bb pairs/year at LHCb
 - 0.5% of total inelastic cross section
 - Cross sections forward peaked and correlated

Opt for a small angle forward spectrometer **HCAL** Muons **ECAL** TT1 RICH-1 250mrad light 100mrad VELO light TT1 ST3 RICH-2 Velo Rich1 Tracker Rich2 Vertex 2002 Workshop

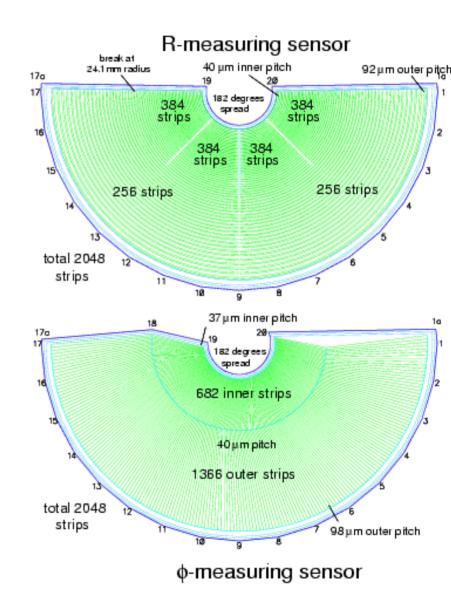
LHCb is a day one experiment! Full physics even at LHC startup **luminosity!**

Velo Requirements (1)

- Primary & secondary vertex reconstruction
 - Sensitive area as close to beam as possible
 - Highest resolution close to beam line
 - Coverage in forward and backward hemispheres
 - Interaction point distributed in Z with σ = 5.3 cm
 - Interesting events show displaced vertices from B and Charm decays. Resolution on these crucial to sensitivity of LHCb measurements.
 - "Busy" secondary vertices can point to multiple interactions
 - Minimal material between vertex and first measured point
 High resolution

on first measurement!

Requirements (2)

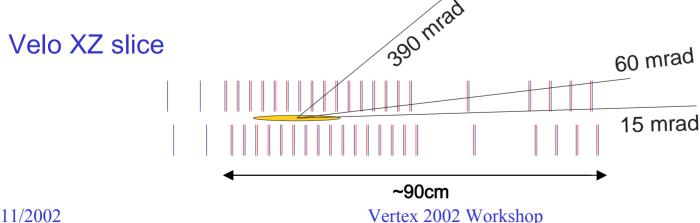

- Trigger (see talk by Niels Tuning)
 - FAST 2D (rz) and 3D (rzφ)
 standalone tracking for L1 Trigger:
 Choose RΦ geometry!
 - Rejection of multiple interactions

Baseline Sensor Design

•Sensors: 7mm>R>44mm

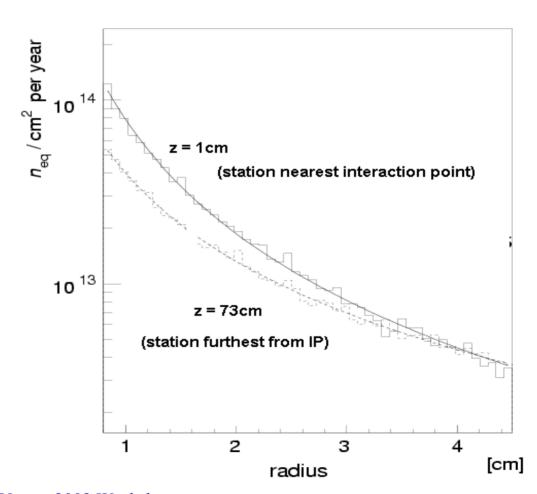
(Active area 8mm to 43mm)

- •182° angular coverage
- R sensors
 - Pitch 40μm to 92μm
 - 45° inner, 90° outer sections
- - Pitch 37μm to 40μm and 40μm to 98μm
 - Double stereo angle



Requirements (3)

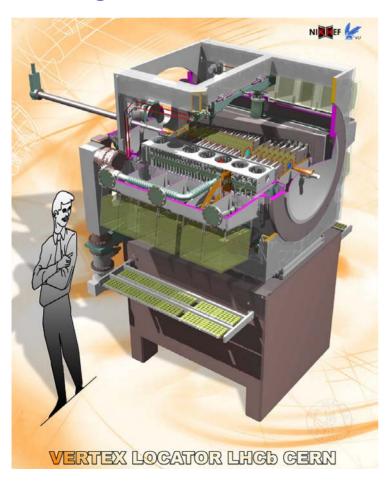
- LHCb Tracking system (see talk by F. Lehner)
 - Track reconstruction for B and Charm decays
 - Match LHCb forward acceptance (15 to 390mrad)
 - Sufficient hits/track: at least 3 hits
 - Single hit efficiency > 99% for S/N > 14
 - Good extrapolation of Velo tracks into rest of LHCb tracking system
 - Minimize material seen by tracks going through Velo: dealing with tracks of Energy O(GeV)

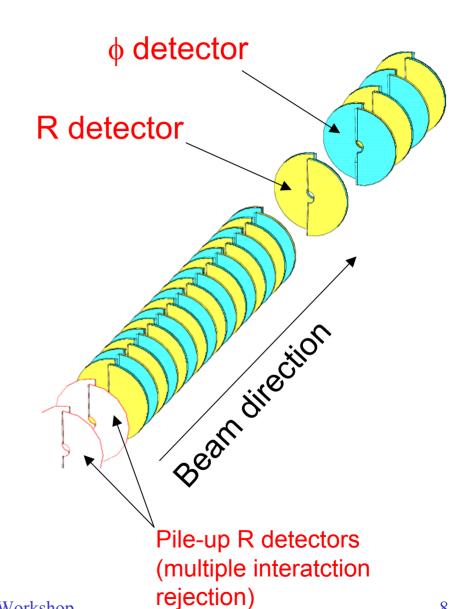

Requirements (4)

All this in an extreme radiation environment:

Flux between $5x10^{12}n_{eq}$ cm⁻² /year and $1.3x10^{14}n_{eq}$ cm⁻² /year depending on r and z

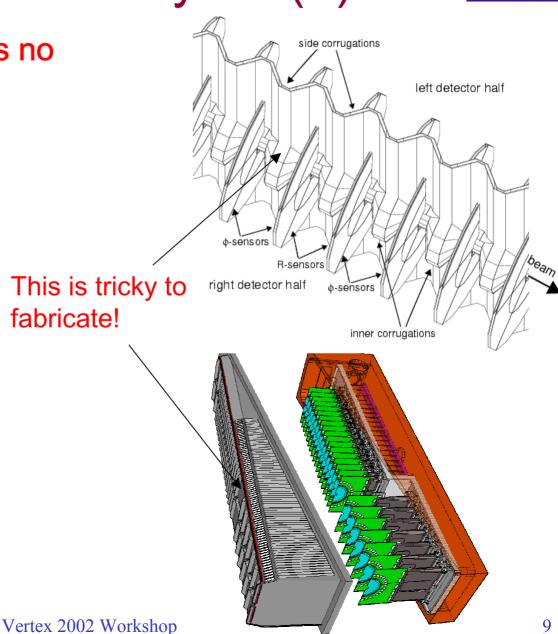
Velo silicon must be operational for at least 2 years under these conditions





Velo layout (1)

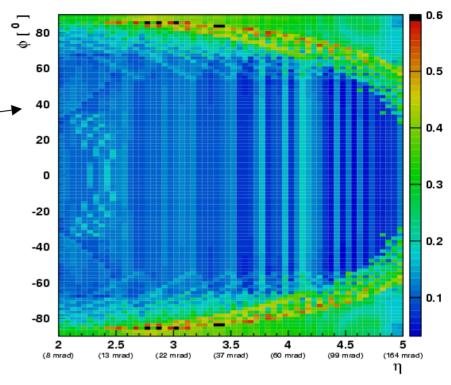
- 21 stations with 2 R and 2 Φ sensors each
- Z range -17cm to 74cm



Velo Layout (2)

To get to small R Velo has no beam pipe! Need to:

- Shield from RF pickup
 - Shielding must be retractable by 30mm
 - Must have ~1mm
 clearance from sensors
- Protect LHC vacuum
 - Must withstand pressure differential of ~15 mBar between primary and secondary vacua
- Guide the wakefields



Velo Layout (3)

- Minimise material between
 Velo halves and in LHCb
 acceptance
- Minimise material before first measured hit: inner corrugations

First full size foil from NIKHEF! Al Mg alloy with superplastic deformation

Silicon R&D

Main issues investigated

- ★ Efficiency, S/N, resolution vs. irradiation and V_{dep} (n-on-n vs. p-on-n)
 - R
 ⊕ geometry validation (tracking, alignment)
- ★ Double metal layer pickup
 - Cryogenic operation
 - Floating strips
 - Non-uniform irradiation (see talk by Gianluigi Casse)

Silicon R&D Program

Some of the detectors tested in

r = 4.0 cm

r = 0.8 cm

r = 2.22 cm

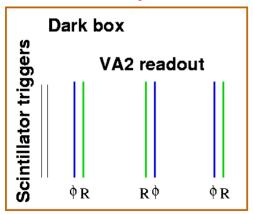
pitch

32.5um

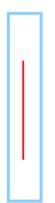
50 um

92 um

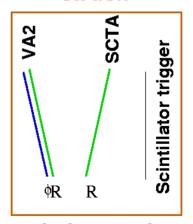
DELPHI-ds sensor beam and lab: n side p side radius = 49.88 mm27.92 mm 17.68 mm pitch 10.00 mm 40 µm/ 60 µm PR01 R-sensor 6 cm pitch = 42 µm 40 um 2*192+1*256+1*366 routing lines floating strips = 1006 strips PR02-0 sensor 2048 strips read out 1024 outer strips Non irradiated Irradiated pitch reference area test area 1*256+1*768 <45 −126 µm \ $44 - 79 \mu m$ = 1024 strips 1024 inner strips 10.00 mm 27,92 mm pitch r = 0.8 cmr = 4.0 cmr = 1.8 cm24 μm 55 μm 124 µm PR01 ø-sensor stereo angle 9º radius = 49.88 mm strips PR02-R sensor routing lines 2048 strips read out 256 strips 256 strips 384 strips 384 至 strips要 Al calibration pieces 384 strips strips Beam



Silicon R&D (2)


- Test beam experimental setup
 - 120 GeV μ and π from CERN SPS
 - Hamamatsu PR01 telescopes for track extrapolation into test detector
 - Telescope sensors validated RΦ geometry

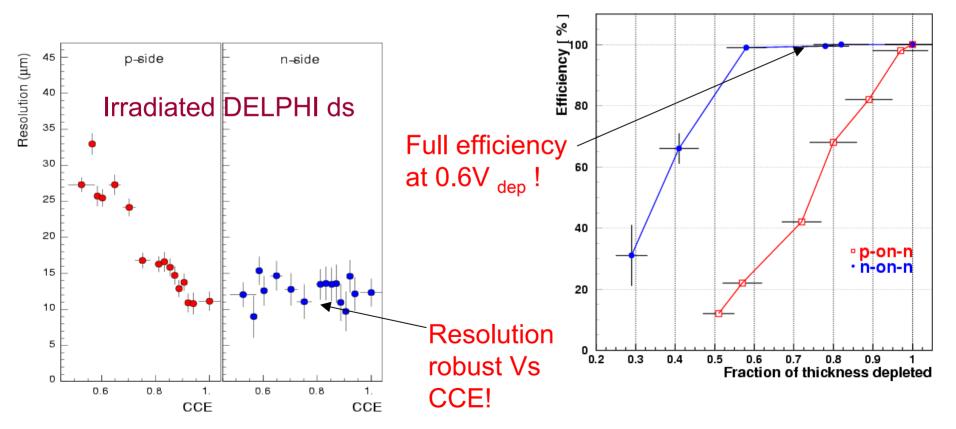
First telescope station



resolution: 5 micron

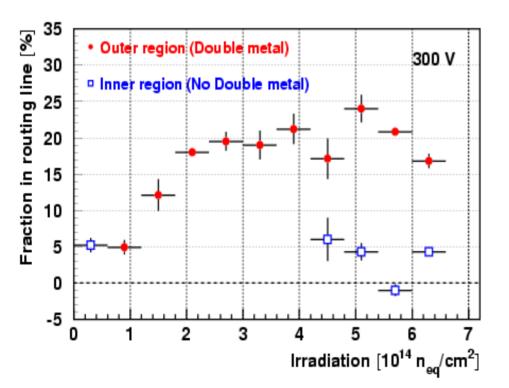
Test station

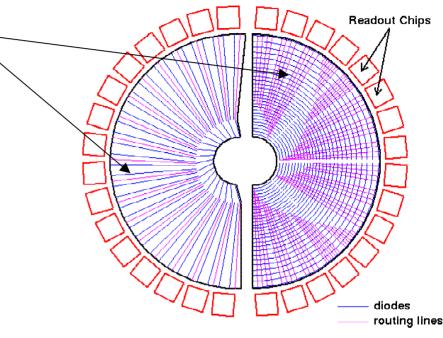
Inclined telescope station


resolution: 5 micron

Silicon R&D (3)

- Results from DELPHI, PR01,PR02 show n-on-n has clear advantages over p-on-n in resolution and efficiency when operated underdepleted
- n-bulk becomes effective p after irradiation. Depletion evolves from n implant side...


Silicon R&D (4)



Double metal layer

– A concern: we have lots of it!

 Charge pickup from double metal layer a problem, particularly for irradiated p-on-n

Effects on n-on-n currently under study. Expect better performance vs. irradiation

See Bowcock et al. NIM 478 (2002) 291-295

rkshop 15

Silicon R&D (5)

Cryogenic operation

 Found to bring detectors back to life... but for limited periods of time. NIM A 440 (2000) 17

Floating strips

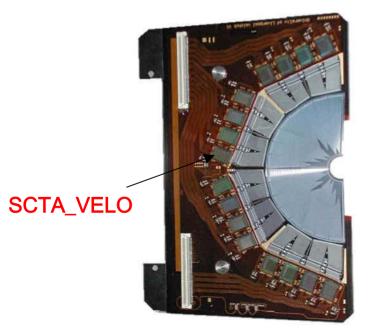
- Φ strip pitch increases with R. Outer region pitch ~100mm
- Use floating strips to increase resolution for no extra channels?
- Data available for non-irradiated n-on-n. Need irradiated.
- What about double metal?

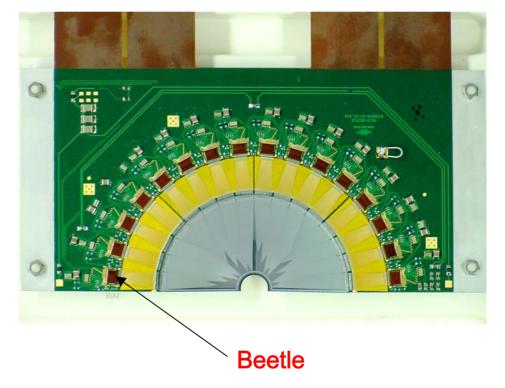
Future ideas

- High resistivity CZ substrate
 - Test beam data of prototype undergoing analysis
- P-bulk detectors
 - See talk by G. Casse and NIM A 487 (2002) 465-470
- Thin detectors:
 - Produced 150μm n-on-n PR03.

Silicon R&D (6)

- Conclusions from silicon research
 - n-in-n a clear choice for Velo
 - All requirements for irradiated detectors met
 - Operational below full depletion
 - Floating strips remain an option for replacement of Velo if necessary
 - − R φ geometry allows fast tracking (Trigger)
 - Final R and
 Ф strip layout decision imminent
 - Open to technology improvements for future Velo sensors (eg CERN RD50)


Readout Electronics



- LHCb L1 trigger input 1MHz (cf ATLAS, CMS 100kHz)
 - Readout time 900ns
 - 1 readout line per 32 channels
- 2 options: SCTA_VELO and Beetle chip

Hybrids built and tested. Analysis under way. Decision making

process advanced...

Outlook

- Silicon sensor design for Velo near completion.
- Hybrid prototype tested succesfully
- First Mechanical module being built
- Plan to have complete Velo in 2005 and place in test beam in 2006
- Startup in 2007

Conclusions

- The Velo is in an advanced stage of design. Prototyping is underway
- A range of issues regarding the choice of silicon technology have been investigated and a baseline design for the first Velo completed
- The performance of the system exceeds the physics and system requirements of LHCb

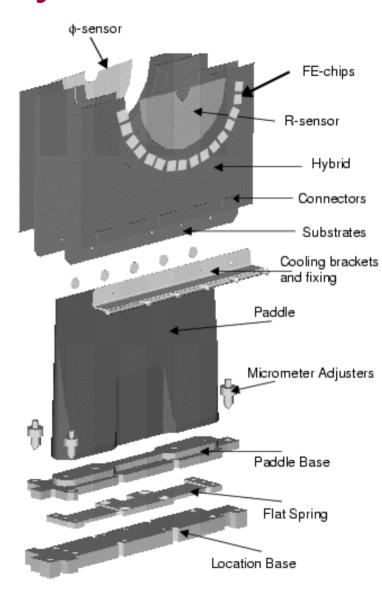
Backup Slides

Silicon R&D

 Ongoing program to determine the technology choice for first Velo and further iterations.

- Tested in test beam and lab:
- DELPHI ds XY 6cmX3.4cm
 - P pitch 25 μm (readout 50 μm)
 - n pitch 42 μm
- Hamamatsu R, Φ 300μm n-on-n, 72° (PR01)
 - pitch 40-126 μm
 - up to 2.5•10¹⁴ n_{eq}/cm²
- MICRON Φ 200 μm, p-on-n, 182° (PR02)
 - pitch 24-124 μm
 - irradiated up to 6.4•10¹⁴ n_{eq}/cm²
- ALICE, GLAST
- Micron R, 300 μm

Lab tests with IR laser and 40MHz electonics. See talk by Gianluigi Casse


R/\phi geometry validation and test beam telescope

Velo Layout

- 21 stations with Si perpendicular to beamline
 - Stations divided into opposing modules with an R and a φ 182° Si strip sensor
 - 2048 channels per sensor read out with 16 chips
 - Hybrid: readout electronics, thermal conductivity, mechanical support

01/11/2002 Vertex 2002 W