LHCb experiment : Detector and Physics program

Z.J.Ajaltouni
(on behalf of the LHCb collaboration)

Laboratoire de Physique Corpusculaire Université Blaise Pascal/CNRS-IN2P3 Clermont Ferrand

VANCOUVER, JUNE 25-29, 2002

B Physics and CP violation at proton collider

Detector for B **meson physics at LHC: LHCb experiment**

Main role of the Trigger system

Optimization of the detector and Physics performance

B Physics and CP violation at proton collider

Why choosing a hadron collider at $\sqrt{s}=14$ TeV to study $B(\bar{B})$ physics ?

- * Main production process : Gluon-Gluon fusion
- $\star \sigma(pp \to b\bar{b} + X) \approx 0.5 \ mb$
- \star Comparing to e^+e^- machine :

$$\frac{\sigma(pp \to b\bar{b} + X)}{\sigma(e^+e^- \to Y(4S))} \ge 4.3 \times 10^5$$

 \Longrightarrow Expected number of $b\bar{b}$ pairs in one year data taking (10⁷ s/y) :

$$N_{b\bar{b}} \sim 10^{12}$$

* Multiple hadronic flavours in final states :

$$B_d^0(40\%), B_s^0(10\%), B_u^{\pm}(40\%), B_c^{\pm}, \Lambda_b, ...(10\%)$$

- \Longrightarrow Many open channels available for **CPV** processes with $B(ar{B})$ mesons.
- ⋆ Standard B Physics
- ullet High precision measurement of the unitarity triangles (UT) angles :

$$\alpha, \beta, \gamma, \delta \gamma$$

 \bullet Exhaustive study of $B^0_s - \bar{B^0_s}$ system : Mixing , Oscillations, x_s

Radiative B decays

⇒ Electroweak Penguin:

Measurement of some poorly known **CKM** matrix elements :

$$V_{td}$$
 related to : $B
ightarrow \gamma
ho^0$

 V_{ts} related to : $B
ightarrow \gamma \, K^{*0}$

Search for Rare Decays :

$$B_s^{\ 0} \to \mu^+ \mu^- \ , \quad B^0 \to \ell^+ \ell^- X \ ...$$

which SM branching ratios $\sim 10^{-7}-10^{-9}$

 \bullet Channels forbidden by the S.M. like : $B^0{}_{d,s} \to e^\pm \mu^\mp$

 \Rightarrow Opportunity to search for **New Physics** beyond the SM like FCNC or SUSY processes

* Old-New items with B Physics

 \star Search for a **direct CPV** in charged B^\pm decays :

Very small according to the S.M, but \Rightarrow New path to understand the mechanism of CPV

 \star Exhaustive study of **CPV** with mixed eigenstates :

$$B_{d,s}^0 \to V_1^0 V_2^0 \quad \Rightarrow CP = (-1)^\ell$$

with $J_V{}^{PC}=1^{--}$ and $\ell=0,1,2$

 \Rightarrow Angular analysis performed in a **model independent** way

Detector for B Physics at proton collider: LHCb

- ullet $bar{b}$ pairs produced by gluon fusion
- \Rightarrow B mesons very peaked in the forward direction :

 $\Theta_B \leq 200 \ mrad$

- ullet Mean momentum of the B meson, $< P_B > \ = 80 \;\; GeV$
- the beam axis : \Rightarrow Particles coming from B decays must be detected at *very small angles* according to

$$15 \ mrad \le \theta_i \le 300 \ mrad$$

- ⇒ LHCb detector very similar to a fixed target experiment
- ——> Clicb detector very similar to a fixed target ex

Open detector: easy for the installation and maintenance of the subdetectors

Other characteristics of B mesons at LHC

- ullet Mean path length of a B meson : $\ell=-7mm$
- Mean nominal luminosity : $\mathcal{L}=2\times 10^{32}cm^{-2}s^{-1}$ Optimized luminosity with single pp interaction
- Important background :

$$\sigma(bb)/\sigma_{Inelastic} \approx 0.006$$

Main requirements for LHCb detector

- Vertex detector
- lacktriangle Particle identification : $\gamma/e/\mu/\pi/K/p$
- Very accurate track reconstruction and momentum resolution
- High selective and fast trigger system to select both :

Semi-leptonic channels and purely hadronic ones

Subdetectors

- Magnet
- Vertex locator (VELO)
- ♦ Two ring imaging Cherenkov : RICH1 and RICH2
- ❖ Tracker system : Inner tracker and Outer tracker
- Calorimetric system: SPD, Preshower, ECAL, HCAL
- Muon system

Total "length" pprox 20 meters

VErtex LOcator (VELO)

- Silicon vertex detector made out of 21 stations
- Each station contains 2 discs divided into sectors : One disc with radial strips for ϕ angle measurement Other disc with circular strips for r coordinate measurement

- With 200,000 electronic channels and a total silicon area of $0.32m^2$, the primary vertex resolutions are the following :
 - Beam direction, $\sigma_z = 42 \pm 1 \ \mu m$
 - Perpendicular to the beam, $\sigma_{\perp} = 10 \pm 1 \ \mu m$
 - lacktriangle Time resolution for $B_s o D_s \pi$: $\sigma_t = 42 f s$

Tracking system

Stations involving two main technologies :

- * Inner tracker: Silicon sensors
- \star Outer tracker: Drift cells of 5 mm diameter made out of straw tubes
- Average reconstruction efficiency for an individual track coming from B decays :

$$\epsilon_{tracking} = 96\% \pm 1\%$$

Momentum resolution : $\sigma_p/p~=~0.4\%$

In the Technical Proposal, 11 stations were foreseen.

LHCb-light optimization: 11 stations replaced by 4 stations giving the same resolution

RICH detectors

Need to identify and to separate Π/K in a wide momentum range : 1-150 GeV/c

- \implies Measurement of the **angles** α **and** γ
- \star Main signals involving pion(s) and kaon(s)

$$B_d^0 \to \pi^+ \pi^- \\ B_s^0 \to K^+ K^- \\ B_s^0 (\bar{B}_s^0) \to D_s^+ K^- (D_s^- K^+)$$

Important backgrounds from other B decay channels and beauty hadrons :

$$B^0{}_{d,s} o \pi K$$
 $\Lambda_b o p K$, $p\pi$

Kinematic conditions

- i) $\approx 90\%$ of π^{\pm} coming from $B_d^0 \to \pi^+\pi^-$ have momentum $\leq 150~{\rm GeV/c}$.
- ii) Kaons from high multiplicity B decays : momentum down to 1GeV/c.

* Momentum and Angular acceptances of the B tracks

\Longrightarrow Three kinds fo radiators with different indices in *two* separated RICH detectors

Radiator	Index	Momentum range
Silica aerogel	1.03	low
Gaseous C_4F_{10}	1.0014	intermediate
Gaseous CF_4	1.0005	high

RICH1

Very close to the Vertex detector:

 $\Theta_H \leq 300 \; \mathrm{mrad}$, $\Theta_V \leq 200 \; \mathrm{mrad}$

Radiators : Aerogel + C_4F_{10} with a volume $2.4 \times 2.4 \times 1~m^3$

Radiation length $\approx 14\% X_0$

Momentum range for Π/K separation : 1 - 100 GeV/c

RICH2

Placed downstream with smaller angular acceptances:

 $\Theta_H \leq 120 \ \mathrm{mrad}$, $\Theta_V \leq 100 \ \mathrm{mrad}$

Radiator : CF_4 with a volume $7 \times 7 \times 2.45$ m^3

(total radiation length $\approx 12.4\% X_0$)

Momentum range for Π/K separation : 100 - 150 GeV/c

 \star Electronic read-out : $\mathbf{HPD} \to \mathsf{need}$ to $450~\mathsf{HPD}$ to cover all the photo-detector area ($2.6~m^2$)

\Longrightarrow Performance of the two RICH : Π/K separation ${\bf greater}$ than 3σ

Calorimeter system

Made from 4 subdetectors :

- Scintillator Pad Detector (SPD), PreShower (PS), Electromagnetic Calorimeter (ECAL), Hadronic Calorimeter (HCAL)
- trigger It provides $high\ transverse\ energy$ hadron, electron and photon for the level L0

SPD and Preshower

- ullet Lead wall of 12~mm thickness sandwiched by two scintillator planes :
- \star First plane or SPD signals the passage of charged particles :
- ightarrow discriminates between γ and e^{\pm}
- \star Second plane or PS located after the lead : discriminates between e^\pm and π^\pm
- Total radiation length $=\ 2X_0$
- Light collection is transmitted by wavelength shifting fibers (WLS)

ECAL

- **Shashlik** technology : 2mm lead ⊕ 4mm scintillator plates
- \bullet Thickness of $25X_0$ for an optimal energy resolution for e^\pm and γ
- ullet Variable cell sizes : 4x4 cm^2 , 6x6 cm^2 , 12x12 cm^2

Energy resolution:

$$\sigma_E/E = 10\%/\sqrt{E} \oplus 1.5\% \quad (GeV)$$

 \bullet Both SPD, PS and ECAL have each ~ 6000 channnels.

Readout system

WLS fibers connected to PMT:

- Multianode PMT with 64 anodes for SPD/PS
- Monoanode PMT for ECAL

HCAL

• Sampling structure :

Iron/Scintillator tile 16mm $Iron \oplus 4$ mm scintillator

- ullet Two cell sizes : 13x13 cm^2 and 26x26 cm^2
- ullet ~ 1500 channels readout by WLS and monoanode PMT
- Thickness = $5.6\lambda_I$

• Energy resolution :

$$\sigma_E/E = 80\%/\sqrt{E} \oplus 10\% \quad (GeV)$$

Muon system

* Main channels:

$$B_d^{\ 0} \to J/\Psi(\mu^+\mu^-)K_s^{\ 0} \ , \ B_s^{\ 0} \to \mu^+\mu^-$$

• 5 muon stations : 1 station located after RICH2 and 4 stations after the HCAL

Two kinds of technology are used:

- MWPC for the Inner detector
- RPC for the Outer detector
- \Rightarrow Provides a muon signal for the level **L0 trigger** $p_T \geq 1 \;\; GeV/c$

Trigger system for LHCb

Main requirements for the trigger system :

- ightharpoonup Rejecting the huge inelastic backgrounds, $\sigma_{Inelas}=80.0$ mb
- Selecting the signal
- Reconstructing the B mesons online

⇒ Four levels for the Trigger :

- ullet L0 : p_T of the photon or the charged particle
- L1: Vertex informations
- L2 and L3 : Event reconstruction at the **software** level

 \leftarrow

 \star Reducing the high rate of the incident beam particles from 40 MHz to 200 Hz

L0 Trigger

photon with the **calorimeter system** ullet Detecting high transverse momentum or transverse energy hadron, electron and/or

$$E_T(\gamma) \ge 4 \; GeV, \quad E_T(h) \ge 2.4 \; GeV, \quad E_T(e) \ge 2.4 \; GeV, \quad P_T(\mu) \ge 1 \; GeV$$

- \Rightarrow L0 output rate = 1 MHz
- \star Important improvement since the Technical Proposal (Feb. 1998) :
- ightarrow Conception and realization of a Π^0 trigger

$$B_d^0 \to \pi^0 \pi^0$$
 , $B_d^0 \to \rho^{\pm} \pi^{\mp}$, $B_d^0 \to \rho^{\pm} \rho^{\mp}$

Main characteristics:

- ullet Π^0 trigger concerns 15% to 45% of the unconverted photon pairs
- ullet Very elaborate algorithm for the cluster topology in the ECAL :

$$E_{T1} + E_{T2} \ge 3 \ GeV$$

from 10% to 20% according to the channels \Rightarrow Improvement of the performance of the L0 trigger : Relative efficiency increases

L1 Trigger

reconstruct the primary and secondary vertices It uses informations from the vertex detector and the hits in the stations to

Input rate for **L1** : **1 Mhz** \Rightarrow Output rate : 40~KHz

 \Longrightarrow Towards the Data Acquisition system (**DAQ**)

L2 Trigger

from the different subdetectors Refines the vertex positions and the track reconstruction by using partial informations

ightarrow Output rate : 5 KHz

L3 Trigger

Uses complete data for B meson reconstruction

ightarrow Output rate : 200~Hz

(**Tech.Prop.**) ● Important improvements since the T.P. especially for the hadronic **Total trigger efficiency** : ullet Depends on the channel ullet Mean value pprox 30%

LHCb experiment: Detector and Physics program (page 26)

Reoptimization of LHCb: LHCb-light

- \star Material thickness up to the RICH2 : $60\%~X_0$ and $20\%~\Lambda_I$
- \Rightarrow Need to reduce the material for several purposes :
- Reducing the absorption of hadrons
- Improving their momentum resolution
- Good efficiency for γ and e^\pm reconstruction

VELO

 \star Minor change : 21 stations instead of 25

Tracking System

Important reduction of the number of stations

11 (Tech.Prop.)
$$\Longrightarrow$$
 4

With:

- \star Removing the stations in the magnet
- * New tracking algorithm
- \star New configuration of the tracking stations

New locations of the stations :

- TT1 before the Magnet
- ullet ST1-ST3 after the Magnet and identical design than T7-T9
- ⇒ Promising results :
- \star B track efficiency pprox 90% in a wide momentum range
- \star Ghost rate $\leq 10\%$

RICH System

- \star Removal of the shielding plate of RICH-1
- \star New configuration and design of the spherical mirror in RICH-1

Improving the L1 trigger performance

LHCb-light final TDR in progress and submission in Autumn 2002.

Trigger TDR will be submitted early 2003

Physics performance with LHCb

Many channels with high statistics \Rightarrow Different ways to measure the UT angles

Angle β

$$B_d \to J \Psi K_s^0 \Rightarrow 100 \text{K events/year, } \sigma(\sin 2\beta) = 0.02$$

 $B_d \to \Phi K_s^0 \Rightarrow \text{Channel under study}$

Angle α

$$B_d \to \pi^+\pi^- \Rightarrow 5$$
K events/year, $\sigma(\sin 2\alpha) = 0.05$
 $B_d \to \rho\pi \Rightarrow 1.3$ K events/year, $\sigma(\alpha) = 2.5^\circ - 5^\circ$
 $B_d \to \pi^0\pi^0 \Rightarrow$ Channel under study

Angle γ

ullet Several channels to estimate the angle $\gamma.$ Most important :

(i)
$$B_d \to D^{*\pm} \pi^{\mp}$$
 and (ii) $B_s \to D_s^{\ \pm} K^{\mp}$

- (i) $\approx 340 K$ events/year, angle γ deduced from the measurement of $(\gamma + 2\beta)$ $\Rightarrow \sigma(\gamma) = 10^\circ$
- (ii) $\approx 2.5 K$ events/y \Rightarrow measurement of $(\gamma-2\delta\gamma)$ $\rightarrow \sigma(\gamma-2\delta\gamma)=6^{\circ}-13^{\circ}$

"Fleischer method" :

 $SU(3)_f$ symmetry for the two conjugate channels :

$$B_d \to \pi^+\pi^-$$
 and $B_s \to K^+K^-$

 \Rightarrow Measuring both the two angles eta and γ : Will be investigated

Angle $\delta \gamma$

• $B^0_s \to J/\Psi\Phi \Rightarrow 80 {\rm K} \ {\rm events/y}, \ \sigma(\delta\gamma) = 2^\circ$ Channel where **New Physics** could be looked for

Conclusion

- ullet LHCb provides a clean identification of the main B decay exclusive channels
- ullet Many ways to measure the **UT angles** \Rightarrow Possibility of over-constraining the **CKM**
- ⇒ Looking for a *deviation* from the SM
- ⇒ New Physics
- \Rightarrow Dynamical Origin of CP Violation

 \leftarrow

Stopping the delay of LHC project...