

Electroweak penguins at LHCb

Jibo HE (on behalf of the LHCb collaboration)

CERN

ICHEP @ Valencia, 05/07/2014

Electroweak penguins at LHCb

A >

The LHCb detector

• Acceptance $2 < \eta < 5$, with excellent vertexing, tracking, PID • $\mathcal{L}_{int} = 1$ fb⁻¹ @ 7 TeV in 2011, & 2 fb⁻¹ @ 8 TeV in 2012

Jibo HE (CERN)

One way of indirect searches for NP at LHCb

- Measure FCNC transitions, where New Physics (NP) is more likely to emerge, and compare to predictions
 - E.g., Operator product expansion for $b \rightarrow s$ transitions

$$\mathcal{H}_{\text{eff}} = -\frac{4 \, G_F}{\sqrt{2}} \, V_{tb} \, V_{ts}^* \frac{e^2}{16 \pi^2} \sum_{i=1...10, S, P} (C_i O_i + C'_i O'_i) + \text{h.c.}$$

- New Physics may
 - ★ modify short-distance Wilson coefficients C^(')
 - * add new operators $\sum_{j} C_{j}^{NP} O_{j}^{NP}$ and change the decay rates, angular distributions, etc
- Focus on EW penguins in this talk, other rare decays are discussed in J. Albrecht's talk [link]

$b \rightarrow s \ell^+ \ell^-$ transitions

b→ sℓ⁺ℓ⁻ processes governed by FCNCs, rates and angular distributions sensitive to NP

$B^0 ightarrow {\cal K}^{*0} \mu^+ \mu^-,$ decay rates and ${\cal A}_{FB}$

[JHEP 1308 (2013) 131]

- $d\mathcal{B}/dq^2$, differential branching fraction
- $\mathcal{A}_{FB}(=\frac{3}{4}S_6)$, the forward-backward asymmetry of the dimuon system. In SM, it changes sign at q_0^2 .
- First measurement of zero crossing point, $q_0^2 = 4.9 \pm 0.9 \text{ GeV}^2/c^4$, consistent with SM predictions $3.9 4.4 \text{ GeV}^2/c^4$

• Theory uncertainties are dominated by knowledge of $B \to K^*$ form factors

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$, form-factor-independent observables

[PRL 111 (2013) 191801]

- New basis of observables, less dependent on form factors $P'_{i=4,5,6,8} = \frac{S_{j=4,5,7,8}}{\sqrt{F_L(1-F_L)}}$ [Descotes-Genon et al., arXiv:1303.5794]
- P'_5 shows deviation from "SM" in one q^2 bin (4.30 8.68 GeV²/ c^4), how significant depends on theoretical predictions...

$B ightarrow \mathcal{K}^{(*)} \mu^+ \mu^-$, differential branching fraction

Control charmonium effects?

- $B^+ \rightarrow (\psi(4160) \rightarrow \mu^+ \mu^-) K^+$ first observation
 - Another ψ to exclude?
 - Interference to consider?

 QCD or New Physics? [Lyon, Zwicky, arXiv:1406.0566]

> Large non-factorisable effects (or NP) required to have consistent picture between BESII e⁺e[−] → hadrons data and the LHCb result

$B ightarrow \mathcal{K}^{(*)} \mu^+ \mu^-$, isospin asymmetry

[JHEP 06 (2014) 133]

- Asymmetry in charged and neutral $B \to K^{(*)}\mu^+\mu^-$ decays $\mathcal{A}_I = \frac{\Gamma(B^0 \to K^{(*)0}\mu^+\mu^-) \Gamma(B^+ \to K^{(*)+}\mu^+\mu^-)}{\Gamma(B^0 \to K^{(*)0}\mu^+\mu^-) + \Gamma(B^+ \to K^{(*)+}\mu^+\mu^-)}$
- A_I predicted to be zero in the SM for both $B \to K \mu^+ \mu^-$ and $B \to K^* \mu^+ \mu^-$ decays [Lyon, Zwicky, arXiv:1305.4797]
- Deviation from SM observed for B→ Kµ⁺µ⁻ decay with 2011 data (1 fb⁻¹), tension much reduced with full dataset (3 fb⁻¹)

$B ightarrow K \mu^+ \mu^-$, angular analysis

- Angular distribution [JHEP 05 (2014) 082] $\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{\ell}} = \frac{3}{4}(1 - \mathcal{F}_{H})(1 - \cos^{2}\theta_{\ell}) + \frac{1}{2}\mathcal{F}_{H} + \mathcal{A}_{FB}\cos\theta_{\ell}$
 - *A*_{FB} is almost zero in SM
 - "Flat term" *F*_H
 - Fractional contribution of (pseudo)scalar and tensor
 - Non-zero but small in the SM, due to finite muon mass

• $B^+
ightarrow K^+ \mu^+ \mu^-$, consistent with SM

Test of lepton universality using $B^+ \to K^+ \ell^+ \ell^-$

•
$$\mathcal{R}_{\mathcal{K}} = \frac{\mathcal{B}(B^+ \to \mathcal{K}^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to \mathcal{K}^+ e^+ e^-)} = 1 \pm \mathcal{O}(10^{-3})$$
 in the SM

[arXiv:1406.6482]

- Small corrections due to phase space & Higgs penguin diagrams
- Up to 10% deviation from SM by new (pseudo)scalar operators
- Double ratio used to cancel systematic uncertainties

 Analysis done in the experimentally and theoretically favoured region 1 < q² < 6 GeV²/c⁴

Jibo HE (CERN)

July 5, 2014 11 / 15

Test of lepton universality using $B^+ \rightarrow K^+ \ell^+ \ell^-$ (cont.)

Jibo HE (CERN)

10

 a^{20} $a^{2} [GeV^{2}/c^{4}]$

July 5, 2014

12/15

Electroweak penguins at LHCb

$B^+ ightarrow K^+ \pi^+ \pi^- \{\phi K^+\} \mu^+ \mu^-$, observations

• $B^+ \rightarrow K^+ \pi^+ \pi^- \mu^+ \mu^-$, first observation

[LHCb-Paper-2014-030]

- Differential branching fraction $d\mathcal{B}/dq^2$ measured
- K⁺π⁺π[−] structure, integrated the overall q² range, consistent with several broad, overlapping resonances

•
$$\mathcal{B} = \left(4.36^{+0.29}_{-0.27}(\text{stat}) \pm 0.20(\text{syst}) \pm 0.18(\text{norm})\right) \times 10^{-7}$$

Photon polarization in $b \rightarrow s \gamma$

[PRL 112 (2014) 161801]

- Photon in $b \rightarrow s\gamma$ mostly left-handed in SM, correction at $\mathcal{O}(\frac{m_s}{m_b})$
- $B^+ \to K^+ \pi^+ \pi^- \gamma$, up-down asymmetry, \propto photon polarization λ_{γ} $\mathcal{A}_{ud} \equiv \frac{\int_0^1 d\cos\theta \frac{d\Gamma}{d\cos\theta} - \int_{-1}^0 d\cos\theta \frac{d\Gamma}{d\cos\theta}}{\int_{-1}^1 d\cos\theta \frac{d\Gamma}{d\cos\theta}} \propto \lambda_{\gamma}$
- Four bins in $m(K^+\pi^+\pi^-)$, combined significance 5.2 σ , first observation of photon polarization

- The LHC(b) is the new Flavour factory
- The SM tested thoroughly with the EW penguins at LHCb
 - Decay rates
 - Angular distributions
- The SM works so well, but some tensions observed, and awaiting theory explanations, and confirmations with more data
 - The P_5' puzzle in ${\cal B}^0 o {\cal K}^{*0} \mu^+ \mu^-$
- The photon in $b \rightarrow s\gamma$ transitions observed to be polarized
- More will come, stay tuned
 - $B^0
 ightarrow K^{*0} \mu^+ \mu^-$ analysis with 3 fb⁻¹
 - ▶ Photon polarization measurements with, e.g., $B^0 o K^{*0} e^+ e^-$

<u>►</u> ...

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))