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Abstract
I review the basics of perturbative QCD, including infrared divergences and
safety, collinear and kT factorization theorems, and various evolution equa-
tions and resummation techniques for single- and double-logarithmic correc-
tions. I then elaborate its applications to studies of jet substructures and hadronic
two-body heavy-quark decays.

1 Introduction
One of the important missions of the Large Hadron Collider (LHC) is to search for new physics beyond
the standard model. The identification of new physics signals usually requires precise understanding of
standard-model background, whose contributions mainly arise from quantum chromodynamics (QCD).
Many theoretical approaches have been developed based on QCD, which are appropriate for studies
of processes in different kinematic regions and involving different hadronic systems. The theoretical
framework for high-energy hadron collisions is known as the perturbative QCD (pQCD). I will focus on
pQCD below, introducing its fundamental ingredients and applications to LHC physics. Supplementary
material can be found in [1].

The simple QCD Lagrangian reveals rich dynamics. It exhibits the confinement at low energy,
which accounts for the existence of various hadronic bound states, such as pions, protons,B mesons, and
etc.. This nonperturbative dynamics is manifested by infrared divergences in perturbative calculations
of bound-state properties like parton distribution functions and fragmentation functions. On the other
hand, the asymptotic freedom at high energy leads to a small coupling constant, that allows formulation
of pQCD. Therefore, it is possible to test QCD in high-energy scattering, which is, however, nontrivial
due to bound-state properties of involved hadrons. That is, high-energy QCD processes still involve
both perturbative and nonperturbative dynamics. A sophisticated theoretical framework needs to be
established in order to realize the goal of pQCD: it is the factorization theorem [2], in which infrared
divergences are factorized out of a process, and the remaining piece goes to a hard kernel. The point
is to prove the universality of the infrared divergences, namely, the independence of processes the same
hadron participates in. Then the infrared divergences are absorbed into a parton distribution function
(PDF) for the hadron, which just needs to be determined once, either from experimental data or by
nonperturbative methods. The universality of a PDF guarantees the infrared finiteness of hard kernels
for all processes involving the same hadron. Convoluting these hard kernels with the determined PDF,
one can make predictions. In other words, the universality of a PDF warrants the predictive power of the
factorization theorem.

Though infrared divergences are factorized into a PDF, the associated logarithmic terms may ap-
pear in a process, that is not fully inclusive. To improve perturbative expansion, these logarithmic cor-
rections should be organized by evolution equations or resummation techniques. For the summation of
different single logarithms, the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation [3] and
the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation [4] have been proposed. For different double log-
arithms, the threshold resummation [5–7] and the kT resummation [8, 9] have been developed. Besides,
an attempt has been made to combine the DGLAP and BFKL equations, leading to the Ciafaloni-Catani-
Fiorani-Marchesini (CCFM) equation [10]. Similarly, the threshold and kT resummations has been uni-
fied under the joint resummation [11,12], which is applicable to processes in a wider kinematic range. A
simple framework for understanding all the above evolution equations and resummation techniques will
be provided.
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After being equipped with the pQCD formalism, we are ready to learn its applications to various
processes, for which I will introduce jet substructures and hadronic two-body heavy-quark decays. It
will be demonstrated that jet substructures, information which is crucial for particle identification at the
LHC and usually acquired from event generators [13], are actually calculable using the resummation
technique. Among jet substructures investigated in the literature, the distribution in jet invariant mass
and the energy profile within a jet cone will be elaborated. For the latter, it will be shown that the
factorization theorem goes beyond the conventional naive factorization assumption [14], and provides
valuable predictions for branching ratios and CP asymmetries of hadronic two-body heavy-quark decays,
that can be confronted by LHCb data. Specifically, I will concentrate on three major approaches, the
QCD-improved factorization [15], the perturbative QCD [16–19], and the soft-collinear-effective theory
[20–23]. Some long-standing puzzles in B meson decays and their plausible resolutions are reviewed.
For more details on this subject, refer to [24].

2 Factorization Theorem
The QCD lagrangian is written as

LQCD = ψ̄(i 6DaTa −m)ψ − 1

4
Fµνa Fµνa, (1)

with the quark field ψ, the quark mass m, and the covariant derivative and the gauge field tensor

Dµ
a = ∂µ + igAµa ,

Fµνa = ∂µAνa − ∂νAµa − gfabcA
µ
bA

ν
c , (2)

respectively. The color matrices Ta and the structure constants fabc obey

[T (F )
a , T

(F )
b ] = ifabcT

(F )
c , (T (A)

a )bc = −ifabc, (3)

where F (A) denotes the fundamental (adjoint) representation. Adding the gauge-fixing term in the
path-integral quantization to remove spurious degrees of freedom, Eq. (1) becomes

LQCD = ψ̄(i 6DaTa −m)ψ − 1

4
Fµνa Fµνa −

1

2
λ(∂µA

µ
a)2 + ∂µη

†
a(∂

µ + gfabcA
µ
c )ηb, (4)

with the gauge parameter λ, and the ghost field η. The last term in the above expression comes from the
Jacobian for the variable change, as fixing the gauge.

The Feynman rules for QCD can be derived from Eq. (4) following the standard procedures [25].
The quark and gluon propagators with the momentum p are given by i 6p/(p2 + iε) and −igµν/p2 in the
Feynman gauge, respectively. The quark-gluon-quark vertex and the ghost-gluon-ghost vertex are written
as −igγµTa and gfabcp′µ, respectively, where the subscripts µ and a are associated with the gluon, p′ is
the momentum of the outgoing ghost, and b (c) is associated with the outgoing (incoming) ghost. The
three-gluon vertex and the four-gluon vertex are given by

Γ3g = −gfa1a2a3 [gν1ν2(p1 − p2)ν3 + gν2ν3(p2 − p3)ν1 + gν3ν1(p3 − p1)ν2 ,

Γ4g = −ig2[fea1a2fea3a4(gν1ν3gν2ν4 − gν1ν4gν2ν3) + fea1a3fea4a2(gν1ν4gν3ν2 − gν1ν2gν3ν4)

+fea1a4fea2a3(gν1ν2gν4ν3 − gν1ν3gν4ν2)], (5)

respectively, where the subscripts a1, a2, · · · and ν1, ν2, · · · are assigned to gluons counterclockwise.
The particle momenta flow into the vertices in all the above Feynman rules.
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2.1 Infrared Divergences and Safety
The first step to establish the factorization theorem is to identify infrared divergences in Feynman di-
agrams for a QCD process at quark-gluon level. We start with the vertex correction to the amplitude
γ∗(q)→ q(p1)q̄(p2), in which a virtual photon of momentum q = p1 + p1 splits into a quark of momen-
tum p1 and an anti-quark of momentum p2. Given the Feynman rules, one has the loop integral∫

d4l

(2π)4
(−igγνTa)

i( 6p1− 6 l)
(p1 − l)2 + iε

(−ieγµ)
−i(6p2− 6 l)

(p2 − l)2 + iε
(−igγνTa)

−i
l2 + iε

, (6)

where l is the loop momentum carried by the gluon, and the inclusion of the corresponding counterterm
for the regularization of a ultraviolet divergence is understood. The appearance of infrared divergences
becomes more transparent, as performing the contour integration in the light-cone frame, in which the
coordinates lµ = (l+, l−, lT ) are defined by

l± =
l0 ± lz√

2
, lT = (lx, ly). (7)

When an on-shell particle moves along the light cone, only one component of its momentum is large
in this frame. For example, the above quark momenta can be chosen as pµ1 = (p+

1 , 0,0T ) and pµ2 =
(0, p−2 ,0T ).

In terms of the light-cone coordinates, Eq. (6) is reexpressed as∫
dl+dl−d2lT

(2π)4

1

2(l+ − p+
1 )l− − l2T + iε

1

2l+(l− − p−2 )− l2T + iε

1

2l+l− − l2T + iε
, (8)

where only the denominators are shown, since infrared divergences are mainly determined by pole struc-
tures. The poles of l− are located, for 0 < l+ < p+

1 , at

l− =
l2T

2(l+ − p+
1 )

+ iε, l− = p−2 +
l2T

2l+
− iε, l− =

l2T
2l+
− iε. (9)

As l+ ∼ O(p+
1 ), the contour of l− is pinched at l− ∼ O(l2T /p

+
1 ) by the first and third poles, defin-

ing the collinear region. As l+ ∼ O(lT ), the contour of l− is pinched at l− ∼ O(lT ), defining the
soft region. That is, the collinear (soft) region corresponds to the configuration of lµ ∼ (E,Λ2/E,Λ)
(lµ ∼ (Λ,Λ,Λ)), where E and Λ denote a large scale and a small scale, respectively. Another leading
configuration arises from the hard region characterized by lµ ∼ (E,E,E). A simple power counting
implies that all the above three regions give logarithmic divergences. Picking up the first pole in Eq. (9),
Eq. (8) becomes

−i
2p+

1

∫
dl+d2lT
(2π)3

p+
1 − l+

2p−2 l
+(p+

1 − l+) + p+
1 l

2
T

1

l2T
≈ −i

4p1 · p2

1

(2π)3

∫
dl+

l+

∫
d2lT
l2T

, (10)

which produces the double logarithm from the overlap of the collinear (the integration over l+) and soft
(the integration over lT ) enhancements.

The existence of infrared divergences is a general feature of QCD corrections. An amplitude is
not a physical quantity, but a cross section is. To examine whether the infrared divergences really call for
attention, we extend the calculation to the cross section of the process e−e+ → X , the e−e+ annihilation
into hadrons. A cross section is computed as the square of an amplitude, whose Feynman diagrams are
composed of those for the amplitude connected by their complex conjugate with a final-state cut between
them. The cross section at the Born level e−e+ → γ∗ → qq̄ is written as

σ(0) = Nc
4πα2

3Q2

∑
f

Q2
f , (11)
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Fig. 1: Final-state cut on self-energy corrections to a virtual photon propagator.

where Nc = 3 is the number of colors, α is the electromagnetic coupling constant, Q2 is the e−e+

invariant mass, and Qf is the quark charge in units of the electron charge. The virtual one-loop correc-
tions, including those to the gluon vertex in Eq. (6) and to the quark self-energy, give in the dimensional
regularization [25]

σ(1)V = −2NcCF
∑
f

Q2
f

ααs
π
Q2

(
4πµ2

Q2

)2ε
1− ε

Γ(2− 2ε)

[
1

ε2
+

3

2

1

ε
− π2

2
+ 4 +O(ε)

]
, (12)

with the color factor CF = 4/3, the strong coupling constant αs, the renormalization scale µ, and the
Gamma function Γ. The double pole 1/ε2 is a consequence of the overlap of the collinear and soft
divergences. The one-loop corrections from real gluons lead to [25]

σ(1)R = 2NcCF
∑
f

Q2
f

ααs
π
Q2

(
4πµ2

Q2

)2ε
1− ε

Γ(2− 2ε)

[
1

ε2
+

3

2

1

ε
− π2

2
+

19

4
+O(ε)

]
. (13)

It is a crucial observation that the infrared divergences cancel in the summation over the virtual
and real corrections in Eqs. (12) and (13), respectively: the double and single poles have a minus sign
in the former, but a plus sign in the latter. It is easy to understand the infrared cancellation by means
of self-energy corrections to the propagator of a virtual photon. Since a virtual photon does not involve
a low characteristic scale, the loop corrections must be infrared finite. As taking the final-state cut
shown in Fig. 1, the imaginary piece of a particle propagator is picked up, Im(1/(p2 + iε)) ∝ δ(p2),
which corresponds to the Feynman rule for an on-shell particle. Because the self-energy corrections are
infrared finite, their imaginary part, i.e., the e−e+ → X cross section, is certainly infrared finite. The
above observation has been formulated into the Kinoshita-Lee-Nauenberg (KLN) theorem [26], which
states that a cross section is infrared safe, as integrating over all phase spaces of final states. Combining
Eqs. (11), (12), and (13), one derives the e−e+ → X cross section up to next-to-leading order (NLO)

σ = Nc
4πα2

3Q2

∑
f

Q2
f

[
1 +

3

4

αs(Q)

π
CF

]
, (14)

that has been used to determine the strong coupling constant αs(Q) at the scale Q.

2.2 DIS and Collinear Factorization
Though a naive perturbation theory applies to the e−e+ annihilation, it fails for more complicated ones,
such as the deeply inelastic scattering (DIS) of a nucleon by a lepton, `(k)N(p) → `(k′) + X . Even as
the momentum transfer squared−q2 = (k−k′)2 ≡ Q2 is large, the quark-level cross section for the DIS
suffers infrared divergences at high orders, which reflect the nonperturbative dynamics in the nucleon.
A special treatment of the infrared divergences is then required. It will be demonstrated that they can be
factorized out of the scattering process, and absorbed into a nucleon PDF.
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Consider the two structure functions F1,2(x,Q2) involved in the DIS, where the Bjorken variable
is defined as x ≡ −q2/(2p · q) = Q2/(2p · q), and take F2 as an example. We shall not repeat loop
integrations, but quote the NLO corrections to the quark-level diagrams [25]:

F q2 (x,Q2) = x

{
δ(1− x) +

αs
2π
CF

[
1 + x2

1− x

(
ln

1− x
x
− 3

4

)
+

1

4
(9 + 5x)

]
+

+
αs
2π
CF

(
1 + x2

1− x

)
+

(
4πµe−γE

)ε ∫ Q2

0

dk2
T

k2+2ε
T

+ · · ·

}
, (15)

where the superscript q denotes the initial-state quark, γE is the Euler constant, and the first term comes
from the leading-order (LO) contribution. The subscript + represents the plus function, which is under-
stood as a distribution function via∫ 1

0
dx

f(x)

(1− x)+
≡
∫ 1

0
dx
f(x)− f(1)

1− x
. (16)

The integration over k2
T generates an infrared divergence, that is regularized in the dimensional

regularization with ε < 0, ∫ Q2

0

dk2
T

k2+2ε
T

=
1

−ε
(
Q2
)−ε

. (17)

Hence, the infrared divergence does exist in the perturbative evaluation of the DIS structure function,
even after summing over the virtual and real corrections. This divergence arises from the collinear region
with the loop momentum being parallel to the nucleon momentum, since it can also be regularized by
introducing a mass to the initial-state quark. It is related to the confinement mechanism, and corresponds
to a long-distance phenomenon associated with a group of collimated on-shell particles. The other terms
in Eq. (15) represent the hard NLO contribution to the structure function. Comparing the results for the
DIS and for the e−e+ annihilation, the former involves the integration over final-state kinematics, but
not over initial-state kinematics. This is the reason why the KLN theorem does not apply to the infrared
divergences associated with the initial-state nucleon, and the above collinear divergence exists. Note that
the soft divergences cancel between virtual and real diagrams due to the fact that a nucleon is color-
singlet: a soft gluon with a huge space-time distribution cannot resolve the color structure of a nucleon,
so it does not interact with it.

Besides, the collinear gluon emissions modify a quark momentum, such that the initial-state quark
can carry various momenta, as it participates in hard scattering. It is then natural to absorb the collinear
divergences into a PDF for the nucleon, φq/N , which describes the probability for quark q to carry certain
amount of the nucleon momentum. In other words, the quark-level collinear divergences are subtracted
by those in the PDF in perturbation theory, and the remaining infrared finite piece contributes to the hard
kernel H . We write the quark-level structure function as the following expansion in the strong coupling
constant,

F q2 (x,Q2) = H(0) ⊗ φ(0)
f/N +

αs
2π
H(1) ⊗ φ(0)

q/N +
αs
2π
H(0) ⊗ φ(1)

q/N + · · · , (18)

where H(i) (φ(i)
q/N ) is the hard kernel (PDF) of the i-th order. The symbol ⊗ represents a convolution in

the parton momentum fraction ξ:

H ⊗ φq/N ≡
∫ 1

x

dξ

ξ
H(x/ξ,Q, µ)φq/N (ξ, µ). (19)

5



We are ready to assign each term in Eq. (15) into either H(i) or φ(i)
q/N . The first term δ(1−x) goes

to H(0) ⊗ φ(0)
q/N with the definitions

H(0)(x/ξ,Q, µ) = δ(1− x/ξ), φ
(0)
q/N (ξ, µ) = δ(1− ξ), (20)

which confirm H(0) ⊗ φ(0)
q/N = δ(1 − x). The second term in Eq. (15) is assigned to H(1) ⊗ φ(0)

q/N and

the third term to H(0) ⊗ φ(1)
q/N with

H(1)(x,Q, µ) = P (1)
qq (x) ln

Q2

µ2
+ · · · ,

φ
(1)
q/N (ξ, µ) =

(
4πµe−γ

)ε
P (1)
qq (ξ)

∫ µ2

0

dk2
T

k2+2ε
T

, (21)

and the quark splitting function

P (1)
qq (x) = CF

(
1 + x2

1− x

)
+

. (22)

The definition of the PDF in terms of a hadronic matrix element is given by

φq/N (ξ, µ) =

∫
dy−

2π
exp(−iξp+y−)

×1

2

∑
σ

〈N(p, σ)|q̄(0, y−, 0T )
1

2
γ+W (y−, 0)q(0, 0, 0T )|N(p, σ)〉, (23)

where |N(p, σ)〉 denotes the bound state of the nucleon with momentum p and spin σ, y− is the minus
component of the coordinate of the quark field after the final-state cut, the first factor 1/2 is attributed to
the average over the nucleon spin, and the matrix γ+/2 is the spin projector for the nucleon. Here µ is
called the factorization scale, which is similar to a renormalization scale, but introduced in perturbative
computations for an effective theory. The Wilson lines are defined by W (y−, 0) = W (0)W †(y−) with

W (y−) = P exp

[
−ig

∫ ∞
0

dzn− ·A(y + zn−)

]
, (24)

where P represents a path-ordered exponential. The Wilson line behaves like a scalar particle carry-
ing a color source. The two quark fields in Eq. (23) are separated by a distance, so the above Wilson
links are demanded by the gauge invariance of the nonlocal matrix element. Since Eq. (23) depends
only on the property of the nucleon, but not on the hard processes it participates in, a PDF is universal
(process-independent). This is the most important observation, that warrants the predictive power of the
factorization theorem.

The Wilson line appears as a consequence of the eikonalization of the final-state quark, to which
the collinear gluons attach. The eikonalization is illustrated below by considering the loop correction to
the virtual photon vertex. Assuming the initial-state quark momentum p = (p+, 0,0T) and the final-state
quark momentum p′ = (0, p′−,0T), we have the partial integrand

6p′γν 6p
′+ 6 l

(p′ + l)2
γµ
6p+ 6 l

(p+ l)2
γν ≈6p′γ−

6p′+ 6 l
(p′ + l)2

γµ
6p+ 6 l

(p+ l)2
γ+ ≈6p′γ− 6p′

2p′ · l
γµ
6p+ 6 l

(p+ l)2
γ+, (25)

as the loop momentum l is collinear to p, where 6p′ comes from the Feynman rule for the final-state quark,
γµ is the photon vertex, and the subleading contribution from the transverse components of γν has been

6



neglected. Applying the identity γ− 6p′ = 2p′−− 6p′γ− and 6p′ 6p′ = p′2 = 0 leads the above expression
to

6p′γµ 6p+ 6 l
(p+ l)2

γ+ p′−

p′ · l
≈6p′γµ 6p+ 6 l

(p+ l)2
γ+ n−−

n− · l
≈6p′γµ 6p+ 6 l

(p+ l)2
γν

nν−
n− · l

, (26)

where the dimensionless vector n− = (0, 1,0T) is parallel to p′, and the subleading contribution from
ν = T has been restored. The factor nν− and 1/n− · l are called the eikonal vertex and the eikonal
propagator, respectively.

It is then shown that the Feynman rule nν−/n− · l for the eikonalized final-state quark is derived
from the Wilson line in Eq. (24). Consider the expansion of the path-order exponential in W (0) up to
order of αs, and Fourier transform the gauge field into the momentum space,

−ig
∫ ∞

0
dzn− ·

∫
d4l exp[iz(n− · l + iε)]Ã(l)

= −ig
∫
d4l

exp[iz(n− · l + iε)]

i(n− · l + iε)

∣∣∣∣z=∞
z=0

n− · Ã(l) =

∫
d4l

gnν−
n− · l + iε

Ãν(l), (27)

where the term iε has been introduced to suppress the contribution from z = ∞. The field Ã(l) is
contracted with the gauge field from the initial-state quark with interaction to form the gluon propaga-
tor −i/(l2 + iε). The expansion of the second piece W (y−) gives the Feynman rules for the eikonal
propagator appearing after the final-state cut. In this case the additional exponential factor exp(il · y)
is combined with exp(−iξp+y−), implying that the valence quark q(0, y−, 0T ) after the final-state cut
carries the momentum ξp − l. In summary, the first (second) piece of Wilson lines corresponds to the
configuration without (with) the loop momentum flowing through the hard kernel. The above discussion
verifies the Wilson lines in the PDF definition.

After detaching the collinear gluons from the final-state quark, the fermion flow still connects the
PDF and the hard kernel. To achieve the factorization in the fermion flow, we insert the Fierz identity,

IijIlk =
1

4
IikIlj +

1

4
(γα)ik(γ

α)lj +
1

4
(γ5γα)ik(γ

αγ5)lj

+
1

4
(γ5)ik(γ

5)lj +
1

8
(γ5σαβ)ik(σ

αβγ5)lj , (28)

with I being the identity matrix and σαβ ≡ i[γα, γβ]/2. At leading power, only the term (γα)ik(γ
α)lj/4

contributes, in which the structure (γα)lj/2 ≈ (γ+)lj/2 goes to the definition of the PDF in Eq. (23), and
(γα)ik/2 ≈ (γ−)ik/2 goes into the evaluation of the hard kernel. The other terms in Eq. (28) contribute
at higher powers. Similarly, we have to factorize the color flow between the PDF and the hard kernel by
inserting the identity

IijIlk =
1

Nc
IikIlj + 2(T c)ik(T

c)lj , (29)

where I denotes the 3×3 identity matrix, and T c is a color matrix. The first term in the above expression
contributes to the present configuration, in which the valence quarks before and after the final-state cut
are in the color-singlet state. The structure Ilj/Nc goes into the definition of the PDF, and Iik goes
into the evaluation of the hard kernel. The second term in Eq. (29) contributes to the color-octet state
of the valence quarks, together with which an additional gluonic parton comes out of the nucleon and
participates in the hard scattering.

The factorization formula for the nucleon DIS structure function is written as

F2(x,Q2) =
∑
f

∫ 1

x

dξ

ξ
Hf (x/ξ,Q, µ)φf/N (ξ, µ), (30)
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with the subscript f labeling the parton flavor, such as a valence quark, a gluon, or a sea quark. The
hard kernel Hf is obtained following the subtraction procedure for the collinear divergences, and its LO
and NLO expressions have been presented in Eqs. (20) and (21), respectively. The universal PDF φf/N ,
describing the probability for parton f to carry the momentum fraction ξ in the nucleon, takes a smooth
model function. It must be derived by nonperturbative methods, or extracted from data.

2.3 Predictive Power
The factorization theorem derived above is consistent with the well-known parton model. The nucleon
travels a long space-time, before it is hit by the virtual photon. As Q2 � 1, the hard scattering occurs
at point space-time. Relatively speaking, the quark in the nucleon behaves like a free particle before
the hard scattering, and decouples from the rest of the nucleon. Therefore, the cross section for the
nucleon DIS reduces to an incoherent sum over parton flavors under the collinear factorization. That is,
the approximation ∣∣∣∣∣∑

i

Mi/N

∣∣∣∣∣
2

≈
∑
i

|Mf |2 φf/N , (31)

holds, whereMi/N represents the scattering amplitude for partonic state i of the nucleon N (it could be
a multi-parton state), andMf represents the infrared finite scattering amplitude for parton f .

Comparing the factorization theorem with the operator product expansion (OPE), the latter in-
volves an expansion in short distance yµ ∼ 0. A typical example is the infrared safe e−e+ → X , whose
cross section can be expressed as a series σ ≈

∑
iCi(y)Oi(0). The Wilson coefficients Ci and the local

effective operators Oi appear in a product in the OPE. A factorization formula involves an expansion on
the light cone with small y2 ∼ 0, instead of yµ ∼ 0. A typical example is the DIS structure function,
in which the existence of the collinear divergences implies that a parton travels a finite longitudinal dis-
tance y−. It is also the reason why the hard kernel Hf and the PDF φf/N appear in a convolution in the
momentum fraction.

The factorization procedure introduces the factorization scale µ into the hard kernel Hf and the
PDF φf/N , as indicated in Eq. (30). Higher-order corrections produce the logarithms ln(Q/µ) inHf and
ln(µ/Q0) in φf/N , which come from the splitting of ln(Q/Q0) in the structure function F2, Q0 being a
low scale characterizing φf/N . One usually sets µ = Q to eliminate the logarithm in Hf , such that the
input φf/N (ξ,Q) for arbitrary Q is needed. The factorization scale does not exist in QCD diagrams, but
is introduced when a physical quantity like the structure function is factorized. The independence of the
factorization scale, µdF2/dµ = 0, leads to a set of renormalization-group (RG) equations

µ
d

dµ
φf/N (ξ, µ) = γfφf/N (ξ, µ),

µ
d

dµ
Hf (x/ξ,Q, µ) = −γfHf (x/ξ,Q, µ), (32)

where γf denotes the anomalous dimension of the PDF. A solution of the RG equations describes the
evolution of the PDF in Q

φf/N (ξ,Q) = φf/N (ξ,Q0) exp

[∫ Q

Q0

dµ

µ
γf (αs(µ))

]
, (33)

as a result of the all-order summation of ln(Q/Q0). Hence, one just extracts the initial condition φ(ξ,Q0)
defined at the initial scale Q0 from data. The PDF at other higher scales Q is known through the evo-
lution. That is, the inclusion of the RG evolution increases the predictive power of the factorization
theorem.

8



Fig. 2: CT10 NNLO (solid color) and NLO (dashed) parton distribution functions.

Fitting the factorization formulas for those processes, whose dynamics is believed to be clear, such
as Eq. (30) for DIS, one has determined the PDFs for various partons in the proton. The CTEQ-TEA
CT10 models at the accuracy of NLO and next-to-next-to-leading order (NNLO) for hard kernels are
displayed in Figs. 2 [27, 28]. The increase of the gluon and sea-quark PDFs with the decrease of the
momentum fraction ξ is a consequence of more radiations in that region in order to reach a lower ξ. The
comparison of the PDFs at Q = 2 GeV and Q = 85 GeV indicates that the valence u-quark and d-quark
PDFs become broader with Q, while the gluon and sea-quark PDFs increase with Q.

Note that a choice of an infrared regulator is, like an ultraviolet regulator, arbitrary; namely, we
can associate an arbitrary finite piece with the infrared pole 1/(−ε) in φ(1)

f/N . Shifts of different finite
pieces between φf/N and Hf correspond to different factorization schemes. Hence, the extraction of a
PDF depends not only on powers and orders, at which QCD diagrams are computed, but on factorization
schemes. Since perturbative calculations are performed up to finite powers and orders, a factorization
scheme dependence is unavoidable. Nevertheless, the scheme dependence of pQCD predictions would
be minimized, if one sticks to the same factorization scheme. Before adopting models for PDFs, it should
be checked at which power and order, at which initial scale, and in what scheme they are determined.

At last, I explain how to apply the factorization theorem to make predictions for QCD processes.
A nucleon PDF φf/N is infrared divergent, if evaluated in perturbation theory due to the confinement
mechanism. The QCD diagram for a DIS structure function involving quarks and gluons as the external
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Fig. 3: Comparison of ATLAS data for inclusive jet pT distribution with a theoretical prediction using CT10
NNLO.

particles are also infrared divergent. It has been demonstrated that the infrared divergences cancel be-
tween the QCD diagrams and the effective diagrams for φf/N , as taking their difference, which defines
the hard kernel HDIS. One then derives the factorization formula for other processes, such as the Drell-
Yan (DY) process N(p1)N(p2) → `+`−(q) + X , and computes the corresponding hard kernel HDY.
The point is to verify that the infrared divergences in the QCD diagrams for DY and in the effective
diagrams for the nucleon PDF cancel, and HDY is infrared finite. If it is the case, the universality of
the nucleon PDF holds, and the factorization theorem is applicable. If not, the factorization theorem
fails. After verifying the factorization theorem, one makes predictions for the DY cross section using
the formula σDY = φf1/N ⊗ HDY ⊗ φf2/N . As an example, the predictions for the inclusive jet pT
distribution derived from the factorization theorem [28] are presented in Fig. 3. The consistency between
the predictions and the ATLAS data is obvious.

2.4 kT Factorization
The collinear factorization theorem introduced above has been intensively investigated and widely ap-
plied to many QCD processes up to higher powers and orders. The evolution of PDFs from low to high
factorization scales is governed by the DGLAP equation. The databases for PDFs have been constructed,
such as the CTEQ models. Other nonperturbative inputs like soft functions, jet functions, and fragmen-
tation functions have been all explored to some extent. However, another more complicated framework,
the kT factorization theorem [29–31], may be more appropriate in some kinematic regions or in semi-
inclusive processes. The collinear factorization applies, when the DIS is measured at a finite Bjorken
variable x. The cross section is written as the convolution of a hard kernel with a PDF in a parton mo-
mentum fraction ξ. As x→ 0, ξ ≥ x can reach a small value, at which the parton transverse momentum
kT is of the same order of magnitude as the longitudinal momentum ξp, and not negligible. Once kT is
kept in a hard kernel, a transverse-momentum-dependent (TMD) function Φ(ξ, kT , µ) is needed to de-
scribe the parton distribution not only in the momentum fraction ξ, but also in the transverse momentum
kT . The DIS cross section is then written, in the kT factorization theorem, as the convolution

F2(x,Q2) =
∑
f

∫ 1

x

dξ

ξ

∫
d2kTHf (x/ξ, kT , Q, µ)Φf/N (ξ, kT , µ). (34)

The kT factorization theorem is also applicable to the analysis of low pT spectra of final states, like direct
photon and jet productions, for which kT ∼ pT is not negligible.

A collinear gluon emission, modifying a parton longitudinal momentum, generates a parton trans-
verse momentum kT at the same time. The factorization of a TMD from the DIS is similar to that of
a PDF, which relies on the eikonal approximation in the collinear region. This procedure results in the

10



eikonal propagator nν−/n− · l, represented by the Wilson lines similar to that defined in Eq. (24). A naive
TMD definition as an extension of the PDF in Eq. (23) is given by

Φq/N (ξ, kT , µ) =

∫
dy−

2π

∫
d2yT
(2π)2

e−iξp
+y−+ikT ·yT

×1

2
〈N(p, σ)|q̄(0, y−, yT )

1

2
γ+W (y−, yT , 0, 0T )q(0, 0, 0T )|N(p, σ)〉, (35)

with the Wilson links W (y−, yT , 0, 0T ) = W (0, 0T )I0,yTW
†(y−, yT ). Because the valence quark fields

before and after the final-state cut are separated by a transverse distance in this case, the vertical links
I0,yT located at y− = ∞ are demanded by the gauge invariance of a TMD [32]. More investigations on
the vertical Wilson links can be found in [33].

Though we do need the kT factorization theorem, many of its aspects have not yet been completely
understood. For example, the naive definition in Eq. (35) is actually ill-defined, due to the existence of
the light-cone singularity, that arises from a loop momentum parallel to the Wilson line direction n−. A
plausible modification is to rotate the Wilson line away from the light cone, namely, to replace n− by
a vector n with n2 6= 0. This rotation is allowed, since the collinear divergences are insensitive to the
direction n as illustrated in Eq. (26) [34]: even when n− is rotated to n, only the minus component n−

is relevant for the evaluation of the collinear divergences. A detailed discussion on this subtle issue can
be found in [35]. Besides, a parton is off-shell by −k2

T , once kT is retained. Then whether a hard kernel
obtained in the kT factorization theorem is gauge invariant becomes a concern [36]. Dropping the kT
dependence of the hard kernel in Eq. (34), the integration of the TMD over kT ,

∫
d2kTΦf/N (ξ, kT ), can

be worked out. How this integral is related to the PDF φf/N (ξ) in Eq. (23) is worth of a thorough study.

3 Evolution and resummation
As stated in the previous section, radiative corrections in pQCD produce large logarithms at each order
of the coupling constant. Double logarithms appear in processes involving two scales, such as ln2(p+b)
with p+ being the large longitudinal momentum of a parton and 1/b being the small inverse impact
parameter, where b is conjugate to the parton transverse momentum kT . In the region with large Bjorken
variable x, there exists ln2(1/N) from the Mellin transformation of ln(1 − x)/(1 − x)+, for which
the two scales are the large p+ and the small infrared cutoff (1 − x)p+ for gluon emissions from a
parton. Single logarithms are generated in processes involving one scale, such as ln p+ and ln(1/x),
for which the relevant scales are the large p+ and the small xp+, respectively. Various methods have
been developed to organize these logarithmic corrections to a PDF or a TMD: the kT resummation for
ln2(p+b) [8,9], the threshold resummation for ln2(1/N) [5–7], the joint resummation [11,12] that unifies
the above two formalisms, the DGLAP equation for ln p+ [3], the BFKL equation for ln(1/x) [4], and
the CCFM equation [10] that combines the above two evolution equations. I will explain the basic ideas
of all the single- and double-logarithmic summations in the Collins-Soper-Sterman (CSS) resummation
formalism [8, 9].

3.1 Resummation Formalism
Collinear and soft divergences may overlap to form double logarithms in extreme kinematic regions,
such as low pT and large x. The former includes low pT jet, photon, and W boson productions, which
all require real gluon emissions with small pT . The latter includes top pair production, DIS, DY pro-
duction, and heavy meson decays B → Xulν and B → Xsγ [16, 37, 38] at the end points, for which
parton momenta remain large, and radiations are constrained in the soft region. Because of the limited
phase space for real gluon corrections, the infrared cancellation is not complete. The double logarithms,
appearing in products with the coupling constant αs, such as αs ln2(E/pT ) with the beam energy E and
αs ln(1 − x)/(1 − x)+, deteriorate perturbative expansion. Double logarithms also occur in exclusive
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(a) (b) (c)

Fig. 4: (a) Jet subprocess defined in Eq. (36). (b) and (c) LO diagrams of (a).

Fig. 5: Derivative p+dJ/dp+ in the covariant gauge.

processes, such as Landshoff scattering [39], hadron form factors [40], Compton scattering [41] and
heavy-to-light transitions B → π(ρ) [42] and B → D(∗) [43] at maximal recoil. In order to have a
reliable pQCD analysis of these processes, the important logarithms must be summed to all orders.

The resummation of large logarithms will be demonstrated in the covariant gauge ∂ · A = 0 [38],
in which the role of the Wilson line direction n and the key technique can be explained straightforwardly.
Take as an example a jet subprocess defined by the matrix element

J(p, n)u(p) = 〈0|P exp

[
−ig

∫ ∞
0

dzn ·A(nz)

]
q(0)|p〉 , (36)

where q is a light quark field with momentum p, and u(p) is a spinor. The abelian case of this subprocess
has been discussed in [44]. The path-ordered exponential in Eq. (36) is the consequence of the factor-
ization of collinear gluons with momenta parallel to p from a full process, as explained in the previous
section. For convenience, it is assumed that p has a large light-cone component p+, and all its other com-
ponents vanish. A general diagram of the jet function J is shown in Fig. 4(a), where the path-ordered
exponential is represented by a double line along the vector n. As explained before, varying the direction
n does not change the collinear divergences collected by the Wilson line.

It is easy to see that J contains double logarithms from the overlap of collinear and soft divergences
by calculating the LO diagrams in Fig. 4(b), the self-energy correction, and in Fig. 4(c), the vertex
correction. In the covariant gauge both Figs. 4(b) and 4(c) produce double logarithms. In the axial gauge
n ·A = 0 the path-ordered exponential reduces to an identity, and Fig. 4(c) does not exist. The essential
step in the resummation technique is to derive a differential equation p+dJ/dp+ = CJ [16, 38, 42],
where the coefficient function C contains only single logarithms, and can be treated by RG methods.
Since the path-ordered exponential is scale-invariant in n, J must depend on p and n through the ratio
(p · n)2/n2. The differential operator d/dp+ can then be replaced by d/dn using a chain rule

p+ d

dp+
J = − n2

v · n
vα

d

dnα
J, (37)

with the vector v = (1, 0,0T ) being defined via p = p+v.

Equation (37) simplifies the analysis tremendously, because n appears only in the Feynman rules
for the Wilson line, while p may flow through the whole diagram in Fig. 4(a). The differentiation of each
eikonal vertex and of the associated eikonal propagator with respect to nα,

− n2

v · n
vα

d

dnα

nµ
n · l

=
n2

v · n

(
v · l
n · l

nµ − vµ
)

1

n · l
≡ n̂µ
n · l

, (38)
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Fig. 6: (a) O(α2
s) examples for the differentiated J . (b) Factorization of K at O(αs). (c) Factorization of K at

O(α2
s). (d) Factorization of G at O(αs).

leads to the special vertex n̂µ. The derivative p+dJ/dp+ is thus expressed as a summation over different
attachments of n̂µ, labeled by the symbol + in Fig. 5. If the loop momentum l is parallel to p, the factor
v · l vanishes, and n̂µ is proportional to vµ. When this n̂µ is contracted with a vertex in J , in which all
momenta are mainly parallel to p, the contribution to p+dJ/dp+ is suppressed. Therefore, the leading
regions of l are soft and hard.

According to this observation, we investigate some two-loop examples exhibited in Fig. 6(a). If
the loop momentum flowing through the special vertex is soft but another is not, only the first diagram
is important, giving a large single logarithm. In this soft region the subdiagram containing the special
vertex can be factorized using the eikonal approximation as shown in Fig. 6(b), where the symbol ⊗
represents a convoluting relation. The subdiagram is absorbed into a soft kernel K, and the remainder
is identified as the original jet function J , both being O(αs) contributions. If both the loop momenta
are soft, the four diagrams in Fig. 6(a) are equally important. The subdiagrams, factorized according to
Fig. 6(c), contribute to K at O(α2

s), and the remainder is the LO diagram of J . If the loop momentum
flowing through the special vertex is hard and another is not, the second diagram in Fig. 6(a) dominates.
In this region the subdiagram containing the special vertex is factorized as shown in Fig. 6(d). The right-
hand side of the dashed line is absorbed into a hard kernel G as an O(αs) contribution, and the left-hand
side is identified as the O(αs) diagram of J . If both the loop momenta are hard, all the diagrams in
Fig. 6(a) are absorbed into G, giving the O(α2

s) contributions.

Extending the above reasoning to all orders, one derives the differential equation

p+ d

dp+
J =

[
K(m/µ, αs(µ)) +G(p+ν/µ, αs(µ))

]
J, (39)

where the coefficient function C has been written as the sum of the soft kernel K and the hard kernel G.
In the above expression µ is a factorization scale, the gauge factor inG is defined as ν =

√
(v · n)2/|n2|,
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and a gluon mass m has been introduced to regularize the infrared divergence in K. It has been made
explicit that K and G depend on a single infrared scale m and a single ultraviolet scale p+, respectively.

The O(αs) contribution to K from Fig. 6(b) is written as

K = −ig2CFµ
ε

∫
d4−εl

(2π)4−ε
n̂µ
n · l

gµν

l2 −m2

vν
v · l
− δK, (40)

δK being an additive counterterm. The O(αs) contribution to G from Fig. 6(d) is given by

G = −ig2CFµ
ε

∫
d4−εl

(2π)4−ε
n̂µ
n · l

gµν

l2

(
6 p+ 6 l

(p+ l)2
γν −

vν
v · l

)
− δG, (41)

where the second term in the parentheses acts as a soft subtraction to avoid double counting, and δG is an
additive counterterm. A straightforward evaluation shows that Eqs. (40) and (41) contain only the single
logarithms ln(m/µ) and ln(p+ν/µ), respectively, as claimed before. Organizing these single logarithms
using RG methods, and then solving Eq. (39), one resums the double logarithms ln2(p+/m) in J .

To explain all the known resummations and evolution equations, we first construct a master equa-
tion for the TMD Φ(x, kT ), which is a differential equation in the hadron momentum p+. The depen-
dence on the factorization scale µ is implicit. If the parton is a quark, Φ is defined by Eq. (35). If
the parton is a gluon, the nonlocal operator in the hadronic matrix element of Eq. (35) is replaced by
F+
µ (y−, yT )Fµ+(0). Similarly, n is varied arbitrarily away from the light cone with n2 6= 0. Then Φ

depends on p+ via the ratio (p · n)2/n2, so the chain rule in Eq. (37) relating the derivative dΦ/dp+ to
dΦ/dnα applies. Following the derivation in the previous subsection, one obtains the master equation

p+ d

dp+
Φ(x, kT ) = 2Φ̄(x, kT ), (42)

where Φ̄ contains the special vertex, and the coefficient 2 is attributed to the equality of Φ̄ with the special
vertex on either side of the final-state cut.

The function Φ̄ is factorized into the convolution of the soft and hard kernels with Φ:

Φ̄(x, kT ) = Φ̄s(x, kT ) + Φ̄h(x, kT ), (43)

with the soft contribution

Φ̄s =

[
−ig2CFµ

ε

∫
d4−εl

(2π)4−ε
n̂ · v

n · ll2v · l
− δK

]
Φ(x, kT )

−ig2CFµ
ε

∫
d4−εl

(2π)4−ε
n̂ · v

n · lv · l
2πiδ(l2)Φ(x+ l+/p+, |kT + lT |), (44)

where the first term is the same as in Eq. (40), and the second term proportional to δ(l2) arises from the
real soft gluon emission. The hard contribution is given by Φ̄h(x, kT ) = G(xp+ν/µ, αs(µ))Φ(x, kT ),
in which the hard kernel G is the same as in Eq. (41).

3.2 kT Resummation and BFKL Equation
The TMD definition in Eq. (35) contains three scales: (1 − x)p+, xp+, and kT . We first consider the
soft approximation corresponding to the rapidity ordering of real gluon emissions in a ladder diagram.
Assume that a parton carries the longitudinal momentum xp+ + l+2 + l+1 , which becomes xp+ + l+1 after
emitting a gluon of longitudinal momentum l+2 and transverse momentum l2T , and then becomes xp+

after emitting a gluon of longitudinal momentum l+1 and transverse momentum l1T . In the kinematic
configuration with l+2 � l+1 and l2T ∼ l1T , the original parton momentum is approximated by xp+ +
l+2 + l+1 ≈ xp+ + l+2 . The loop integral associated with the first gluon emission is then independent
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Fig. 7: Scattering amplitude for direct photon production.

of l+1 , and can be worked out straightforwardly, giving a logarithm. The loop integral associated with
the second gluon emission, involving only l+1 , also gives a logarithm. Therefore, a ladder diagram with
N rung gluons generates the logarithmic correction (αsL)N under the above rapidity ordering, where
L denotes the large logarithm. Following the rapidity ordering, we adopt the approximation for the real
gluon emission in Eq. (44)

Φ(x+ l+/p+, |kT + lT|) ≈ Φ(x, |kT + lT|), (45)

where the l+ dependence has been neglected. The transverse momenta lT , being of the same order as kT
in this kinematic configuration, is kept. The variable l+ in K is then integrated up to infinity, such that
the scale (1− x)p+ disappears.

Equation (44) is Fourier transformed into the impact parameter b space to decouple the lT integra-
tion. Hence, in the intermediate x region Φ involves two scales, the large xp+ that characterizes the hard
kernel G and the small 1/b that characterizes the soft kernel K. The master equation (42) becomes

p+ d

dp+
Φ(x, b) = 2

[
K(1/(bµ), αs(µ)) +G(xp+ν/µ, αs(µ))

]
Φ(x, b), (46)

whose solution with ν = 1 leads to the kT resummation

Φ(x, b) = ∆k(x, b)Φi(x), (47)

with the Sudakov exponential

∆k(x, b) = exp

[
−2

∫ xp+

1/b

dp

p

∫ p

1/b

dµ

µ
γK(αs(µ))

]
, (48)

and the initial condition Φi of the Sudakov evolution. The anomalous dimension ofK, λK = µdδK/dµ,
is given, up to two loops, by [45]

γK =
αs
π
CF +

(αs
π

)2
CF

[
CA

(
67

36
− π2

12

)
− 5

18
nf

]
, (49)

with nf being the number of quark flavors and CA = 3 being a color factor.

The kT resummation effect on the low pT spectra of the direct photon production depicted in
Fig. (7)has been analyzed [46]. The initial-state and final-state radiations are constrained in the low
pT region, where the kT resummation is necessary for improving the perturbation theory. Figure 8
shows the deviation (Data -Theory)/Theory of the NLO pQCD predictions, obtained using the CTEQ4M
PDFs [47], from the experimental data as a function of xt = 2pT /

√
s,
√
s being the center-of-mass

energy. The deviation is huge as expected, especially at low xt of each set of the data. After including
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Fig. 8: Low pT direct photon spectra before (upper) and after (lower) including the kT resummation.

the kT resummation effect [46], it is clear that a significant improvement on the agreement between
theoretical predictions and the data is achieved. As to the intermediate- and high-pT regions of the direct
photon production, NLO pQCD works reasonably well in accommodating the data as indicated in Fig. 9.
The threshold resummation effect, which will be introduced in the next subsection, is more relevant in
these regions: it slightly improves the consistency between predictions and the data [48].

In the small x region with xp+ ∼ kT , or xp+ ∼ 1/b in the b space, the two-scale case reduces
to the single-scale one. In this region contributions from gluonic partons dominate, so Φ represents
the gluon TMD below. The source of double logarithms, i.e., the integral containing the anomalous
dimension γK , is less important. Because only the soft scale exists, one drops the hard kernel G, and
keeps the soft kernel with an ultraviolet cutoff. The right-hand side of Eq. (42) becomes

Φ̄(x, kT ) = −ig2Nc

∫
d4l

(2π)4

n̂ · v
n · lv · l

[
θ(k2

T − l2T )

l2
Φ(x, kT )
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Fig. 9: High pT direct photon spectrum under the threshold resummation.

+2πiδ(l2)φ(x, |kT + lT |)
]
, (50)

where the color factor CF has been replaced by Nc for the gluon TMD. The θ function introduces the
ultraviolet cutoff on lT mentioned above. To make variation in x via variation in p+, a fixed parton
momentum is assumed. Under this assumption, the momentum fraction x is proportional to 1/p+, and
one has p+dΦ/dp+ = −xdΦ/dxΦ [49]. Performing the integrations over l+ and l− in Eq. (50), the
master equation (42) reduces to the BFKL equation [50],

dφ(x, kT )

d ln(1/x)
= ᾱs

∫
d2lT
πl2T

[
φ(x, |kT + lT |)− θ(k2

T − l2T )φ(x, kT )
]
, (51)

with the coupling constant ᾱs = Ncαs/π.

A remarkable prediction of the above LO BFKL equation is that a high-energy cross section in-
creases with the center-of-mass energy,

σ ≈ 1

t

(s
t

)ωP−1
, (52)

with the momentum transfer squared t. It turns out that Eq. (52), with the Pomeron intercept ωP − 1 =
4ᾱs ln 2, violates the Froissart (unitarity) bound σ < const.× ln2 [51]. The unsatisfactory prediction of
the LO BFKL equation called for the NLO corrections [52], which were, however, found to be dramatic
as indicated by the x dependence of the derivative of the structure function dFL/d lnQ2 in Fig. 10
[53]: the NLO effect is nearly as large as the LO result for x ∼ 0.001, and becomes dominant at
lower x. It even turns dFL/d lnQ2 negative below x ∼ 0.0001 in the upper of Fig. 10. That is, the
perturbative solution is not at all stable. Choosing a running coupling constant [53], the NLO effect is
not overwhelming, but still significant as exhibited in the lower of Fig. 10.

3.3 Threshold Resummation and DGLAP Equation
We then consider the soft approximation corresponding to the kT ordering of real gluon emissions in
a ladder diagram. Assume that a parton without the transverse momentum, carries −l1T after emit-
ting a gluon of longitudinal momentum l+1 and transverse momentum l1T , and then carries −l1T − l2T
after emitting a gluon of longitudinal momentum l+2 and transverse momentum l2T . In the kinematic
configuration with l2T � l1T and l+2 ∼ l+1 , the final parton momentum can be approximated by
−l2T − l1T ≈ −l2T , such that the loop integral associated with the first gluon emission involves only
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Fig. 10: Effects from LO and NLO BFKL equations.

l1T , and can be worked out straightforwardly, giving a logarithm. The loop integral associated with the
second gluon emission involves only l2T , and also gives a logarithm. Hence, a ladder diagram with N
rung gluons generates the logarithmic correction (αsL)N under the above kT ordering. In this case Φ is
independent of lT , and we have the approximation for the real gluon emission in Eq. (44)

Φ(x+ l+/p+, |kT + lT|) ≈ Φ(x+ l+/p+, kT ), (53)

in which x and l+/p+ are of the same order. The dependence on kT can then be integrated out from both
sides of the master equation (42), and the TMD Φ reduces to the PDF φ. The scale kT disappears, and
the scale (1− x)p+ is retained.

The Mellin transformation is employed to bring φ̄s from the momentum fraction x space to the
moment N space,

φ̄s(N) =

∫ 1

0
dxxN−1φ̄s(x), (54)
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LHC7: Theory Uncertainty
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Fig. 11: Dependence of the total cross section for the top-pair production on the top mass at the LHC with
√
s =

7 TeV.

under which the l+ integration decouples. In the large x region φ involves two scales, the large xp+ ∼ p+

from the hard kernel G and the small (1− x)p+ ∼ p+/N from the soft kernel K. To sum ln(1/N), we
rewrite the derivative p+dφ/dp+ as

p+ dφ

dp+
=
p+

N

dφ

d(p+/N)
. (55)

The solution of the master equation (42) then gives the threshold resummation,

φ(N) = ∆t(N)φi (56)

with the exponential

∆t(N) = exp

[
−2

∫ p+

p+/N

dp

p

∫ p

p+

dµ

µ
γK(αs(µ))

]
, (57)

or its equivalent expression

∆t(N) = exp

[∫ 1

0
dz

1− zN−1

1− z

∫ 1

(1−z)2

dλ

λ
γK(αs(

√
λp+))

]
. (58)

An application of the threshold resummation is found in the analysis of the top-quark pair produc-
tion, which was performed at the next-to-next-to-leading-logarithmic (NNLL) accuracy [54]. It has been
observed that the threshold resummation effect enhances the NLO total cross section by few percents
as shown in Fig. 11, where the bands sandwiched by the thinner lines denote the theory uncertainty.
The above formalism can be used to determine of the top quark mass as indicated in Fig. 12, where the
solid lines represent the central values, and the total uncertainties of the theoretical and experimental
results [55] are given by the external dashed lines.

In the intermediate x region the two-scale case reduces to the single-scale one because of xp+ ∼
(1−x)p+, and the source of double logarithms is less important. Without the Mellin transformation, the
sum in Eq. (43), with the approximation in Eq. (53) being inserted, leads to the DGLAP equation [49],

p+ d

dp+
φ(x) =

∫ 1

x

dξ

ξ
P (x/ξ)φ(ξ) , (59)
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Fig. 12: Mass dependence of the theoretical cross section with the threshold resummation effect (red) and of the
measured cross section (black).

Fig. 13: Diagrams for the DGLAP splitting functions.

with the kernel

P (z) =
αs(p

+)

π
CF

2

(1− z)+
, (60)

where the variable change ξ = x + l+/p+ has been made. The argument of αs, i.e, the factorization
scale µ, has been set to the scale xp+ ∼ (1 − x)p+ ∼ O(p+). Note that the kernel P differs from the
splitting function Pqq in Eq. (22) by the term (z2 − 1)/(1− z)+, which is finite in the z → 1 limit. The
reason is that the real gluon emission was evaluated under the soft approximation as deriving P , while it
was calculated exactly as deriving Pqq.

Gluon emissions in Fig. 13 cause the mixing between the quark and gluon PDFs, giving the com-
plete set of DGLAP equations with four splitting functions

∂

∂ lnQ2

(
φq
φg

)
=

(
Pqq Pqg
Pgq Pgg

)
⊗
(
φq
φg

)
. (61)

The evolution of the u-quark and d-quark PDFs in Q2 predicted by the LO DGLAP equation [56] is
shown in Fig. 14, where the inputs at the initial scale Q0 = 1 GeV were taken from MRST2001 [57].
It is observed that the valence quark PDFs increase with Q2 at small x, namely, they become broader
with Q2, a feature consistent with what was stated in the previous section. The predictions for the
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Fig. 14: Q2 evolutions of the valence quark PDFs for some parameter values in the DGLAP solutions (solid and
dashed lines).
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deuteron structure function derived from the LO, NLO, and NNLO DGLAP equations are displayed in
Fig. 15 [58], which agree with the NMC data [59].

3.4 Joint Resummation and CCFM Equation
At last, a unified resummation formalism for large and intermediate x and a unified evolution equation for
intermediate and small x can be derived by retaining the l+ and lT dependencies of Φ in Eq. (44), which
corresponds to the so-called angular ordering. In this case both the Fourier and Mellin transformations
are applied to Eq. (44), leading to

Φ̄s(N, b) = K(p+/(Nµ), 1/(bµ), αs(µ))Φ(N, b) , (62)
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with the soft kernel [11]

K = −ig2CFµ
ε

∫ 1

0
dz

∫
d4−εl

(2π)4−ε
n̂ · v

n · lv · l

[
δ(1− z)

l2

+2πiδ(l2)δ

(
1− z − l+

p+

)
zN−1eilT ·b

]
− δK,

=
αs(µ)

π
CF

[
ln

1

bµ
−K0

(
2νp+b

N

)]
, (63)

K0 being the modified Bessel function. As p+b� N , we haveK0 → 0, and the soft scale inferred by the
above expression approaches 1/b for the kT resummation. AsN � p+b, we haveK0 ≈ − ln(νp+b/N),
and the soft scale approaches p+/N for the threshold resummation.

Following the procedures similar to Eqs. (46)-(48), we derive the joint resummation

Φ(N, b) = ∆u(N, b)Φi, (64)

with the exponential

∆u(N, b) = exp

[
−2

∫ p+

p+χ−1(N,b)

dp

p

∫ p

p+χ−1(1,b)

dµ

µ
γK(αs(µ))

]
. (65)

The dimensionless function [12]

χ(N, b) =

(
N +

p+b

2

)
eγE , (66)

is motivated by the limits discussed above. It is apparent that Eq. (65) reduces to Eq. (48) and Eq. (57)
in the b→∞ and N →∞ limits, respectively. The effect from the joint resummation on the qT spectra
of selectron pairs produced at the LHC with

√
S = 14 TeV has been investigated in [60]. It is seen in

Fig. 16 that the joint and kT resumations exhibit a similar behavior in the small-qT region as expected,
but the jointly-resummed cross section is about 5%-10% lower than the kT -resummed cross section in
the range 50 GeV < qT < 100 GeV.

In the intermediate and small x regions, it is not necessary to resum the double logarithms ln2(1/N).
After extracting the kT resummation, the remaining single-logarithmic summation corresponds to a uni-
fication of the DGLAP and BFKL equations, since both the l+ and lT dependencies have been retained.
The function Φ(x+ l+/p+, b) in Eq. (44) is reexpressed, after the Fourier transformation, as

Φ(x+ l+/p+, b) = θ((1− x)p+ − l+)Φ(x, b)

+[Φ(x+ l+/p+, b)− θ((1− x)p+ − l+)Φ(x, b)]. (67)

The contribution from the first term is combined with the first term in Eq. (44), giving the soft kernel K
for the kT resummation. The second term in Eq. (67) contributes

− iNcg
2

∫
d4l

(2π)4

n̂ · v
n · lv · l

2πiδ(l2)eilT ·b[Φ(x+ l+/p+, b)− θ((1− x)p+ − l+)Φ(x, b)], (68)

which will generate the splitting function below. The color factor has been replaced by Nc, since the
gluon TMD is considered here.

The master equation (42) then becomes

p+ d

dp+
Φ(x, b) = −2

[∫ xp+

1/b

dµ

µ
γK(αs(µ))− ᾱs(xp+) ln(p+b)

]
Φ(x, b)
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+2ᾱs(xp
+)

∫ 1

x
dzPgg(z)Φ(x/z, b), (69)

with the splitting function

Pgg =

[
1

(1− z)+
+

1

z
− 2 + z(1− z)

]
, (70)

obtained from Eq. (68). The term −2 + z(1 − z) finite as z → 0 and z → 1 has been added. The
exponential ∆ is extracted from the kT resummation,

∆(x, b,Q0) = exp

(
−2

∫ xp+

xQ0

dp

p

[∫ p

1/b

dµ

µ
γK(αs(µ))− ᾱs(p) ln

pb

x

])
, (71)

Q0 being an arbitrary low energy scale. It is trivial to justify by substitution that the solution is given by

Φ(x, b) = ∆(x, b,Q0)Φi

+2

∫ 1

x
dz

∫ p+

Q0

dµ

µ
ᾱs(xµ)∆k(x, b)Pgg(z)Φ(x/z, b), (72)

which can be regarded as a modified version of the CCFM equation [10].

4 PQCD for jet physics
Jets, abundantly produced at colliders [61], carry information of hard scattering and parent particles,
which is crucial for particle identification and new physics search. Study of jet physics is usually done
using event generators, which, however, suffer ambiguity from parameter tuning. Hence, we are moti-
vated to establish an alternative approach free of the ambiguity. I will demonstrate that jet dynamics can
be explored and jet properties can be predicted in the pQCD resummation formalism.

We start from the dijet production in the e−e+ annihilation, which is part of its total cross section.
The physical dijet final state, described in Fig. 17, contains two jet cones of half angle δ and isotropic
soft gluons within the energy resolution εQ, Q being the e−e+ invariant mass. The Born cross section
is the same as the total one in Eq. (11). With the constrained phase space for real gluons, the infrared
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Fig. 17: Dijet final state in e−e+ annihilation.

cancellation is not complete, and logarithmic enhancement appears. The explicit NLO calculations imply
that the isotropic soft gluons give a contribution proportional to 2 ln2(2εQ/µ)−π2/6, the collinear gluons
in the cones with energy higher than the resolution give−3 ln(Qδ/µ)−2 ln2(2ε)−4 ln(Qδ/µ) ln(2ε)+
17/4− π2/3, and the virtual corrections contribute −2 ln2(Q/µ) + 3 ln(Q/µ)− 7/4 + π2/6. The total
NLO corrections indicate that the dijet cross section is infrared finite, but logarithmically enhanced:

3 ln δ + 4 ln δ ln(2ε) +
π2

3
− 5

2
, (73)

where the double logarithm ln δ ln(2ε) is attributed to the overlap of the collinear and soft logarithms.

4.1 Jet in Experiments
To describe the kinematics for jets, we define the pseudorapidity η = ln[cot(θ/2)], which is related to the
polar angle θ with respect to the beam direction, and the azimuthal angle φ. That is, θ = 0, 90◦, and 180◦

correspond to η = +∞, 0 and −∞, respectively. Comparison of theoretical and experimental descrip-
tions for jet observables is nontrivial. One needs jet algorithms that map experimental measurements
with theoretical calculations as close as possible. The infrared safety [61] is an important guideline for
setting up a jet algorithm. There are two major classes of jet algorithms in the literature: cone algorithms
and sequential algorithms. The former is a geometrical method, which stamps out jets on the η-φ plane
as with a cookie cutter. The latter combines particle four-momenta one by one following given kinematic
criteria.

I take the seeded cone algorithm as an example to explain the operation in the first class of jet
algorithms, which aims at finding stable cones via an iterative procedure. Start from a seed particle i,
and consider a set of particles j with separations smaller than jet cone of radius R,

∆R2
ij ≡ (ηi − ηj)2 + (φi − φj)2 < R2. (74)

Calculate the new cone center J by summing all particle four-momenta in the cone. A stable cone
is composed of a set of particles i satisfying ∆RiJ < R. If the cone is stable, the procedure stops.
Otherwise, take J as a new seed, and repeat the above procedure.

However, the seeded cone algorithm suffers the problem of infrared divergences. Such a geomet-
rical algorithm does not differentiate infrared gluons from energetic gluons, so final outcomes depend
on soft radiation and collinear splitting. This problem can be illustrated by considering a system of two
particles 1 and 2, separated by R12 with R < R12 < 2R. Each of particles 1 and 2, taken as a seed,
forms a stable jet. One then adds a soft gluon to this system. It is obvious that a virtual soft gluon
exchanged between jets 1 and 2 does not change the outcome; namely, a virtual soft gluon contributes to
the dijet cross section. On the contrary, adding a real soft seed between jets 1 and 2 will merge the two
jets because ofR < R12 < 2R. Therefore, a real soft gluon contributes to the single jet cross section. As
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a result, the soft divergences do not cancel between the virtual and real corrections. One may speculate
that starting from the hardest particle may avoid the difficulty caused by the soft seed. It turns out that the
collinear splitting would change the outcome. Including a more energetic particle into the above system,
which is emitted between particles 1 and 2. Taking this central particle as the seed, one constructs a
single stable jet formed by the three particles. A self-energy correction to the central particle does not
change this final state, and contributes to the single jet cross section. However, the splitting of the central
particle may produce two particles, which are less energetic than particles 1 and 2. Then one has to take
particle 1 or 2 as the seed, and ends up with two stable jets. That is, the collinear splitting contributes to
the dijet cross section, and there is no cancellation between virtual and real corrections. It is concluded
that a seeded cone algorithm is not infrared safe.

Next I introduce sequential algorithms by taking the kT algorithm as an example. For any pair of
particles i and j, find the minimum of the following three distances

dij = min(k2
T i, k

2
Tj)

∆R2
ij

R2
, diB = k2

T i, djB = k2
Tj , (75)

with kT being is a jet transverse momentum. If the minimum is diB or djB , i or j is a jet, and removed
from the list of particles. Otherwise, i and j are merged into a new jet. Repeat the above procedure until
no particles are left. The other sequential algorithms include the Cambridge/Aachen and anti-kT ones
with the definitions of the distances

dij =
∆R2

ij

R2
, diB = 1, djB = 1,

dij = min(k−2
T i , k

−2
Tj )

∆R2
ij

R2
, diB = k−2

T i , djB = k−2
Tj , (76)

respectively. The grouping starts from soft (energetic) particles and usually leads to an irregular (round)
jet shape in the kT (anti-kT ) algorithm. Note that a sequential algorithm differentiates infrared gluons
from energetic ones: adding a soft real gluon does not modify a cone center, so it does not change the
outcome.

4.2 Jets in Theory
As outlined in the Introduction, we intend to establish a theoretical framework for jet study, following
the idea of the factorization theorem for the DIS in Sec. 2. At NLO, a jet is produced in DIS, as the
gluon emitted by the initial-state or final-state quark is collimated to the final-state quark. The restricted
phase space of the final-state quark and the gluon in a small angular separation renders an incomplete
cancellation between the virtual and real corrections. Hence, jet production is expected to be enhanced
by collinear dynamics. Similarly, the initial-state quark propagator can be eikonalized in this collinear re-
gion, such that collinear gluons are detached from the initial-state quark and absorbed into a jet function.
To all orders, the collinear gluons are collected by the Wilson link with the path-ordered exponential

W = P exp

[
−ig

∫ ∞
0

dzn ·A(zn)

]
, (77)

with an arbitrary vector n. The collinear gluon emitted by the final-state quark can be factorized into the
jet function straightforwardly by applying the Fierz transformation. A more sophisticated factorization
formula for the jet production in the DIS is then written as a convolution of a hard kernel H with a PDF
and a jet function J . H denotes the contribution with the collinear pieces for the initial and final states
being subtracted. This factorization formalism is the basis for the application of pQCD to jet physics.

The light-quark and gluon jet functions are defined by [62]

Jq(M
2
J , PT , ν

2, R, µ2) =
(2π)3

2
√

2(P 0
J )2Nc

∑
NJ

Tr
{
6 ξ〈0|q(0)W (q̄)†|NJ〉〈NJ |W (q̄)q̄(0)|0〉

}
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(a) (b) (c)

Fig. 18: Some NLO real corrections to the quark jet function.

Fig. 19: Some NLO real corrections to the gluon jet function, where the dashed line represents a ghost field.

×δ(M2
J − M̂2

J (NJ , R))δ(2)(ê− ê(NJ))δ(P 0
J − ω(NJ)),

Jg(M
2
J , PT , ν

2, R, µ2) =
(2π)3

2(P 0
J )3Nc

∑
NJ

〈0|ξσF σν(0)W (g)†|NJ〉〈NJ |W (g)F ρν (0)ξρ|0〉

×δ(M2
J − M̂2

J (NJ , R))δ(2)(ê− ê(NJ))δ(P 0
J − ω(NJ)), (78)

where |NJ〉 denotes the final state with NJ particles within the cone of size R centered in the direction
of the unit vector ê, M̂J(NJ , R) (ω(NJ)) is the invariant mass (total energy) of all NJ particles, and µ is
the factorization scale. The above jet functions absorb the collinear divergences from all-order radiations
associated with the energetic light jet of momentum PµJ = P 0

J v
µ, in which P 0

J is the jet energy, and the

vector v is given by vµ = (1, β, 0, 0) with β =
√

1− (MJ/P 0
J )2. ξµ = (1,−1, 0, 0) is a vector on the

light cone. The coefficients in Eq. (78) have been chosen, such that the LO jet functions are equal to
δ(M2

J ) in a perturbative expansion.

Underlying events include everything but hard scattering, such as initial-state radiation, final-state
radiation, and multiple parton interaction (MPI). The Wilson lines in Eq. (78) have collected gluons
radiated from both initial states and other final states in a scattering process, and collimated to the light-
particle jets. Gluon exchanges between the quark fields q (or the gluon fields F σν and F ρν ) correspond to
the final-state radiations. Both the initial-state and final-state radiations are leading-power effects in the
factorization theorem, and have been included in the jet function definition. A chance of involving more
partons in hard scattering is low, so the contribution from MPI is regarded as being subleading-power.
This contribution should be excluded from data, but it is certainly difficult to achieve in experiments.
Nevertheless, it still makes sense to compare predictions for jet observables based on Eq. (78) at the
current leading-power accuracy with experimental data. At last, pile-up events must be removed in
experiments [63], since they cannot be handled theoretically so far.

The NLO diagrams for the light-quark and gluon jet functions are displayed in Figs. 18 and 19,
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Fig. 20: Jet mass distribution at NLO.

respectively. Evaluating the jet functions up to NLO, a divergence is observed at small jet invariant mass
MJ as shown in Fig. 20, that implies the nonperturbtive nature of the jet functions. The total NLO
corrections in Mellin space indicate the existence of double logarithms, which hint the implementation
of the resummation technique. Both the angular and energy resolutions are related to the jet mass: when
MJ is not zero, particles in a jet cannot be completely collimated, and the jet must have finite minimal
energy. This accounts for the source of the double logarithms. Recall that low pT spectra of direct
photons, dominated by soft and collinear radiations, are treated by the kT resummation. The jet invariant
mass is attributed to soft and collinear radiations, so the mass distribution can also be derived in the
resummation formalism.

Varying the Wilson line direction n, we derive the differential equation for the light-quark jet
function [64]

− n2

v · n
vα

d

dnα
Jq(M

2
J , PT , ν

2, R, µ2) = 2(K +G)⊗ Jq(M2
J , PT , ν

2, R, µ2). (79)

The above equation implies that the soft gluons in K are associated with the jet function J , a feature
consistent with the anti-kT algorithm. The solution to Eq. (79) resums the double logarithms in the jet
function. One then convolutes the light-quark and gluon jet functions with the constituent cross sections
of LO partonic dijet processes at the Tevatron and the PDF CTEQ6L [65]. The resummation predictions
for the jet mass distributions at R = 0.4 and R = 0.7 are compared to the Tevatron CDF data [66] in
Fig. 21 [67] with the kinematic cuts PT > 400 GeV and the rapidity interval 0.1 < |Y | < 0.7. The
abbreviation NLL refers to the accuracy of the resummation, and NLO to the accuracy of the initial
condition of the jet function solved from Eq. (79). The consistency of the resummation results with the
CDF data is satisfactory.

4.3 Jet Substructure
It is known that a top quark produced almost at rest at the Tevatron can be identified by measuring iso-
lated jets from its decay. However, this strategy does not work for identifying a highly-boosted top quark
produced at the LHC. It has been observed that an ordinary high-energy QCD jet [68, 69] can have an
invariant mass close to the top quark mass. A highly-boosted top quark, producing only a single jet, is
then difficult to be distinguished from a QCD jet. This difficulty also appears in the identification of a
highly-boosted new-physics resonance decaying into standard-model particles, or Higgs boson decaying
into a bottom-quark pair. Hence, additional information needs to be extracted from jet internal structures
in order to improve the jet identification at the LHC. The quantity, called planar flow [70], has been pro-
posed for this purpose, which utilizes the geometrical shape of a jet: a QCD jet with large invariant mass
mainly involves one-to-two splitting, so it leaves a linear energy deposition in a detector. A top-quark jet,
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proceeding with a weak decay, mainly involves one-to-three splitting, so it leaves a planar energy depo-
sition. Measuring this additional information, it has been shown with event generators that the top-quark
identification can be improved to some extent. Investigations on various observables associated with jet
substructures are usually done using event generators. For a review on recent theoretical progress and
the latest experimental results in jet substructures, see [71].

Here I focus on a jet substructure, called the energy profile, and explain how to calculate it in the
resummation formalism [64]. This quantity describes the energy fraction accumulated in the cone of size
r within a jet cone R, i.e., r < R. Its explicit definition is given by [72]

Ψ(r) =
1

NJ

∑
J

∑
ri<r,i∈J PT i∑
ri<R,i∈J PT i

, (80)

with the normalization Ψ(R) = 1, where PT i is the transverse momentum carried by particle i in the
jet J , and ri < r (ri < R) means the flow of particle i into the jet cone r (R). Different types of
jets are expected to exhibit different energy profiles. For example, a light-quark jet is narrower than
a gluon jet; that is, energy is accumulated faster with r in a light-quark jet than in a gluon jet. A
heavy-particle jet certainly has a distinct energy profile, which can be used for its identification. The
importance of higher-order corrections and their resummation for studying a jet energy profile have been
first emphasized in [73]. Another approach based on the soft-collinear effective theory and its application
to jet production at an electron-positron collider can be found in Refs. [74–76].

We first define the jet energy functions JEf (M2
J , PT , ν

2, R, r) with f = q(g) denoting the light-
quark (gluon), which describe the energy accumulation within the cone of size r < R. The definition
is chosen, such that JE(0)

f = PT δ(M
2
J ) at LO. The Feynman rules for JEf are similar to those for the

jet functions Jf at each order of αs, except that a sum of the step functions
∑

i k
0
i Θ(r − θi) is inserted,

where k0
i (θi) is the energy (the angle with respect to the jet axis) of particle i. For example, the jet

energy functions JEf are expressed, at NLO, as

JE(1)
q (M2

J , PT , ν
2, R, r, µ2) =

(2π)3

2
√

2(P 0
J )2Nc

∑
σ,λ

∫
d3p

(2π)32p0

d3k

(2π)32k0

×[p0Θ(r − θp) + k0Θ(r − θk)]

×Tr
{
6 ξ〈0|q(0)W (q̄)†|p, σ; k, λ〉〈k, λ; p, σ|W (q̄)q̄(0)|0〉

}
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×δ(M2
J − (p+ k)2)δ(2)(ê− êp+k)δ(P 0

J − p0 − k0),

JE(1)
g (M2

J , PT , ν
2, R, r, µ2) =

(2π)3

2(P 0
J )3Nc

∑
σ,λ

∫
d3p

(2π)32p0

d3k

(2π)32k0

×[p0Θ(r − θp) + k0Θ(r − θk)]
×〈0|ξσF σν(0)W (g)†|p, σ; k, λ〉〈k, λ; p, σ|W (g)F ρν (0)ξρ|0〉
×δ(M2

J − (p+ k)2)δ(2)(ê− êp+k)δ(P 0
J − p0 − k0), (81)

where the expansion of the Wilson links in αs is understood. The factorization scale is set to µ = PT to
remove the associated logarithms, so its dependence will be suppressed below.

The Mellin-transformed jet energy function J̄Eq obeys a similar differential equation [64]

− n2

v · n
vα

d

dnα
J̄Eq (N = 1, PT , ν

2, R, r) = 2(K̄ +G)J̄Eq (N = 1, PT , ν
2, R, r), (82)

which can be solved simply. Inserting the solutions to Eq. (82) into Eq. (80), the jet energy profile is
derived. Note that a jet energy profile with N = 1 is not sensitive to the nonperturbative contribution,
so the predictions are free of the nonperturbative parameter dependence, in contrast to the case of the jet
invariant mass distribution. It has been found that the light-quark jet has a narrower energy profile than
the gluon jet, as exhibited in Fig. 22 for

√
s = 7 TeV and the interval 80 GeV < PT < 100 GeV of

the jet transverse momentum. The broader distribution of the gluon jet results from stronger radiations
caused by the larger color factor CA = 3, compared to CF = 4/3 for a light-quark jet.

r
0.1 0.2 0.3 0.4 0.5 0.6 0.7

(r
)

Ψ

0

0.2

0.4

0.6

0.8

1

1.2

Quark Resum

Gluon Resum

 < 100 GeV
T

80 GeV < P

Fig. 22: Resummation predictions for the energy profiles of the light-quark (solid curve) and gluon (dotted curve)
jets with
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s = 7 TeV and 80 GeV < PT < 100 GeV.
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Fig. 23: Comparison of resummation predictions for the jet energy profiles with R = 0.7 to Tevatron CDF data in
various PT intervals. The NLO predictions denoted by the dotted curves are also displayed.

One then convolutes the light-quark and gluon jet energy functions with the constituent cross sec-
tions of the LO partonic subprocess and CTEQ6L PDFs [65] at certain collider energy. The predictions
are directly compared with the Tevatron CDF data [72] as shown in Fig. 23. It is evident that the re-
summation predictions agree well with the data in all PT intervals. The NLO predictions derived from
J̄
E(1)
f (1, PT , ν

2
fi, R, r) are also displayed for comparison, which obviously overshoot the data. The re-

summation predictions for the jet energy profiles are compared with the LHC CMS data at 7 TeV [77]
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from the anti-kT jet algorithm [78] in Fig. 24, which are also consistent with the data in various PT
intervals. Since one can separate the contributions from the light-quark jet and the gluon jet, the com-
parison with the CDF and CMS data implies that high-energy (low-energy) jets are mainly composed of
the light-quark (gluon) jets. Hence, a precise measurement of the jet energy profile as a function of jet
transverse momentum can be used to experimentally discriminate the production mechanism of jets in
association with other particles, such as electroweak gauge bosons, top quarks and Higgs bosons.
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Fig. 24: Resummation predictions for the jet energy profiles with R = 0.7 compared to LHC CMS data in various
PT intervals. The NLO predictions denoted by the dotted curves are also displayed.

5 Hadronic heavy-quark decays
Hadronic decays of heavy-quark bound states, such as B, Bs, and Λb, are one of the focuses of LHCb
physics, whose precision measurement may reveal new physics in the flavor sector. They are difficult
to analyze theoretically because of complicated QCD dynamics and multiple characteristic scales they
involve: theW boson massmW , the b quark massmb, and the QCD scale ΛQCD. The standard procedure
is first to integrate out the scale mW , such that QCD dynamics is organized into an effective weak
Hamiltonian [79]. For the B → Dπ decays, the effective Hamiltonian is written as

Heff =
GF√

2
VcbV

∗
ud

[
C1(µ)O1(µ) + C2(µ)O2(µ)

]
, (83)

where GF is the Fermi coupling constant, VcbV ∗ud is the product of the Cabibbo-Kobayashi-Maskawa
matrix elements, µ is the renormalization scale, C1,2 are the Wilson coefficients, and the four-fermion
operators are defined by

O1 = (d̄b)V−A(c̄u)V−A , O2 = (c̄b)V−A(d̄u)V−A. (84)

For exclusive processes, such as hadron form factors, the collinear factorization was developed
in [80–83]. The range of a parton momentum fraction x, contrary to that in the inclusive case, is not
experimentally controllable, and must be integrated over between 0 and 1. Hence, the end-point region
with a small x is not avoidable. If there is no end-point singularity developed in a hard kernel, the
collinear factorization works. If such a singularity occurs, indicating the breakdown of the collinear
factorization, the kT factorization should be employed, because the parton transverse momentum kT
is not negligible. To derive B → Dπ decay amplitudes, one evaluates the hadronic matrix elements
〈Dπ|Oi(µ)|B〉. Different theoretical approaches have been developed for this purpose, which include
the factorization assumption, the QCD-improved factorization, the perturbative QCD, the soft-collinear
effective theory, the light-cone QCD sum rules, and the quark-diagram parametrization. In this section I
briefly introduce the basic ideas of the first three approaches [24].

5.1 Factorization Assumption
Intuitively, decay products from a heavy b quark move fast without further interaction between them.
This naive picture is supported by the color-transparency argument [84]: the Lorentz contraction renders
energetic final states emitted from the weak vertex have small longitudinal color dipoles, which cannot
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be resolved by soft gluons. Therefore, the hadronic matrix element 〈O(µ)〉 is factorized into a product of
two matrix elements of single currents, governed by decay constants and form factors, without soft gluon
exchanges between them. This factorization assumption (FA) [14] was first proved in the framework of
large energy effective theory [85], and justified in the large Nc limit [86]. For the B → Dπ decays, the
color-allowed (color-suppressed) amplitude, involving the B → D (B → π) transition form factor, is
proportional to the Wilson coefficient a1 = C2 + C1/Nc (a2 = C1 + C2/Nc).

In spite of its simplicity, the FA encounters three principal difficulties. First, a hadronic matrix
element under the FA is independent of the renormalization scale µ, as the vector or axial-vector cur-
rent is partially conserved. Consequently, the amplitude C(µ)〈O〉fact is not truly physical as the scale
dependence of the Wilson coefficient does not get compensation from the matrix element. This prob-
lem may not be serious for color-allowed modes, because the parameter a1 is roughly independent of
µ. It is then not a surprise that the simple FA gives predictions in relatively good agreement with data
of these modes. However, the parameter a2 depends strongly on the renormalization scale and on the
renormalization scheme, because of the similar magnitude and different sign of the C1(µ) and C2(µ)/Nc

terms (calculated in the NDR scheme and for Λ
(5)

MS
= 225 GeV, the Wilson coefficients have the values

C1(mB) = −0.185 and C2(mB) = 1.082 [79], mB being the B meson mass). This may be the reason
why the FA fails to accommodate data of color-suppressed modes. It also means that a2 is more sensitive
to subleading contributions.

The second difficulty is related to the first one: nonfactorizable effects have been neglected in the
FA. This neglect may be justified for color-allowed modes due to the large and roughly µ-independent
value of a1, but not for color-suppressed modes, such as B → J/ψK(∗). The J/ψ meson emitted from
the weak vertex is not energetic, and the color-transparency argument does not apply. To circumvent this
difficulty, nonfactorizable contributions were parameterized into the parameters χi [87, 88],

aeff
1 = C2(µ) + C1(µ)

[
1

Nc
+ χ1(µ)

]
,

aeff
2 = C1(µ) + C2(µ)

[
1

Nc
+ χ2(µ)

]
. (85)

The µ dependence of the Wilson coefficients is assumed to be exactly compensated by that of χi(µ) [89].
It is obvious that the introduction of χi does not really resolve the scale problem in the FA.

Third, strong phases are essential for predicting CP asymmetries in exclusive B meson decays.
These phases, arising from the Bander-Silverman-Soni (BSS) mechanism [90], are ambiguous in the FA:
the charm quark loop contributes an imaginary piece proportional to∫

duu(1− u)θ(q2u(1− u)−m2
c), (86)

where q2 is the invariant mass of the gluon attaching to the charm loop. Since q2 is not precisely de-
fined in the FA, one cannot obtain definite information of strong phases from Eq. (86). Moreover, it is
legitimate to question whether the BSS mechanism is an important source of strong phases in B meson
decays. Viewing the above difficulties, the FA is not a complete model, and it is necessary to go beyond
the FA by developing reliable and systematic theoretical approaches.

5.2 QCD-improved Factorization
The color-transparency argument allows the addition of hard gluons between the energetic mesons emit-
ted from the weak vertex and the B meson transition form factors. These hard gluon exchanges lead to
higher-order corrections in the coupling constant αs to the FA. By means of Feynman diagrams, they
appear as the vertex corrections in the first two rows of Fig. 25 [15]. It has been shown that soft di-
vergences cancel among them, when computed in the collinear factorization theorem. These O(αs)
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Fig. 25: O(αs) corrections to the FA in the QCDF approach.
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Fig. 26: Annihilation contributions.

corrections weaken the µ dependence in the Wilson coefficients, and generate strong phases. Besides,
hard gluons can also be added to form the spectator diagrams in the last row of Fig. 25. Feynman rules
of these two diagrams differ by a minus sign in the soft region resulting from the involved quark and
anti-quark propagators. Including the above nonfactorizable corrections to the FA leads to the QCD-
improved factorization (QCDF) approach [15]. The gluon invariant mass q2 in the BSS mechanism can
be unambiguously defined and related to parton momentum fractions in QCDF. Hence, the theoretical
difficulties in the FA are resolved. This is a breakthrough towards a rigorous framework for two-body
hadronic B meson decays in the heavy quark limit.

Corrections in higher powers of 1/mb to the FA can also be included into QCDF, such as those
from the annihilation topology in Fig. 26, and from twist-3 contributions to the spectator amplitudes.
However, it has been found that endpoint singularities exist in these high-power contributions, which
arise from the divergent integral

∫ 1
0 dx/x, x being a momentum fraction. These singularities have the

same origin as those in the collinear collinear factorization formulas for B meson transition form factors
[91]. Because of the endpoint singularities, the annihilation and twist-3 spectator contributions must be
parameterized as [15]

ln
mB

Λh

(
1 + ρAe

iδA
)
, ln

mB

Λh

(
1 + ρHe

iδH
)
, (87)

respectively, with the hadronic scale Λh. A QCDF formula then contains the arbitrary parameters ρA,H
and δA,H . Setting these parameters to zero, one obtains predictions in the “default” scenario, and the
variation of the arbitrary parameters gives theoretical uncertainties. If tuning these parameters to fit data,
one obtains results in the scenarios “S”, “S2”,... [92].
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5.3 Perturbative QCD
The endpoint singularities signal the breakdown of the collinear factorization for two-body hadronic B
meson decays. Motivated by the removal of these singularities, the perturbative QCD (PQCD) approach
based on the kT factorization theorem was developed [16–19]. A parton transverse momentum kT can
be generated by gluon radiations, before hard scattering occurs. The endpoint singularities from the
small x region simply indicate that kT is not negligible. Taking into account kT , a particle propagator
does not diverge as x → 0. The B meson transition form factors, and the spectator and annihilation
contributions are then all calculable in the framework of the kT factorization theorem. It has been shown
that a B → M1M2 decay amplitude is factorized into the convolution of the six-quark hard kernel, the
jet function and the Sudakov factor with the bound-state wave functions as shown in Fig. 27,

A(B →M1M2) = φB ⊗H ⊗ J ⊗ S ⊗ φM1 ⊗ φM2 . (88)

The jet function J comes from the threshold resummation, which exhibits suppression in the small x
region [93]. The Sudakov factor S comes from the kT resummation, which exhibits suppression in the
small kT region [39,40]. These resummation effects guarantee the removal of the endpoint singularities.
J (S), organizing double logarithms in the hard kernel (meson wave functions), is hidden in H (the three
meson states) in Fig. 27. The arbitrary parameters introduced in QCDF are not necessary, and PQCD
involves only universal and controllable inputs.

The theoretical difficulties in the FA are also resolved in PQCD but in a different manner. The FA
limit of the PQCD approach at large mb, which is not as obvious as in QCDF, has been examined [93]. It
was found that the factorizable emission amplitude decreases like m−3/2

b , if the B meson decay constant
fB scales like fB ∝ m

−1/2
b . This power-law behavior is consistent with that obtained in [15, 94].

The higher-order corrections to the FA have been included in PQCD, which moderate the dependence
on the renormalization scale µ. The ratio of the spectator contribution over the factorizable emission
contribution decreases withmb in PQCD, showing a behavior close to that in QCDF. The gluon invariant
mass q2 in the BSS mechanism is unambiguously defined and related to parton momentum fractions.
The penguin annihilation amplitude is almost imaginary in PQCD [18], whose mechanism is similar to
the BSS one [90]: in the annihilation topology, the loop is formed by the internal particles in the LO hard
kernel and by infinitely many Sudakov gluons exchanged between two partons in a light meson. A sizable
strong phase is generated, when the internal particles go on mass shell. In terms of the principal-value
prescription for the internal particle propagator, the strong phase is given by [18]

1

xm2
B − k2

T + iε
=

P

xm2
B − k2

T

− iπδ(xm2
B − k2

T ). (89)

33



a)

mbv+k p1

p2r

Γ

pg
b)

mbv+k Γ p1

r p2
pg

pq

Fig. 28: Diagrams for the B → π form factor in QCD.

Fig. 29: Diagrams for the B → π form factor in SCETI.

5.4 Soft-Collinear Effective Theory
The soft-collinear effective theory (SCET) based on the collinear factorization is formulated in the frame-
work of OPE [20–23]. The matching at different scales involved in B meson decays has been carefully
handled in SCET. Take the simple B → π transition form factor in Fig. 28 as an example. The soft spec-
tator in the B meson carries the momentum r ∼ O(ΛQCD), because it is dominated by soft dynamics.
If the spectator in the energetic pion carries the momentum p2 ∼ O(mb), the virtual gluon in Fig. 28 is
off-shell by p2

g = (p2− r)2 = −2p2 · r ∼ O(mbΛQCD). Then the virtual quark in Figs. 28(a) is off-shell
by (mbv + k + pg)

2 −m2
b ∼ O(m2

b), where v is the b quark velocity and k ∼ O(ΛQCD) denotes the
Fermi motion of the b quark. Hence, B meson decays contain three scales below mW : mb,

√
mbΛQCD,

and ΛQCD.

The separate matching at the two scales mb and
√
mbΛQCD is briefly explained below [95]. The

first step is to integrate out the lines off-shell by m2
b in QCD, and the resultant effective theory is called

SCETI. One then derives the zeroth-order effective current J (0) from the b → u weak vertex, and the
first-order effective current J (1) by shrinking the virtual b quark line in Fig. 28(a). The next step is to
integrate out the lines off-shell by mbΛQCD in SCETI, arriving at SCETII. The relevant diagrams to start
with are displayed in Fig. 29. Shrinking all the lines off-shell bymbΛQCD, one derives the corresponding
Wilson coefficients, i.e., the jet functions, and the effective four-fermion operators. Sandwiching these
four-fermion operators by the initial B meson state and the final pion state leads to the B meson and
pion distribution amplitudes. The B → π transition form factor is then factorized as depicted in Fig. 30.
The factorization of two-body hadronic B meson decays is constructed in a similar way, and the result is
also shown in Fig. 30.

At leading power in 1/mb, there is no large source of strong phases in SCET (the annihilation
contribution is parametrically power-suppressed). To acquire strong phases, it has been argued that
cc̄ (charming) penguins could give long-distance effects at leading power [96]. This contribution is
nonperturbative, so it must be parameterized as an arbitrary amplitude Acc̄. Including the charming
penguin, SCET has been applied as an QCD-improved parametrization, and Acc̄ is determined together
with other hadronic inputs from data. It should be mentioned that the long-distance charming-penguin
contribution is power-suppressed according to QCDF, PQCD and light-cone sum rules [97].
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Fig. 30: Factorization of the B → π form factor and of the B →M1M2 decay in SCET.

5.5 Puzzles in B Physics
Before concluding, I review the long-standing puzzles in hadronic two-body B meson decays, which
have not yet been fully resolved so far. According to a naive estimate of the color-suppressed tree
amplitude, the hierarchy of the branching ratios B(B0 → π0π0) ∼ O(λ2)B(B0 → π∓π±) with the
CKM parameter λ ≈ 0.2 is expected. However, the data [98]

B(B0 → π∓π±) = (5.10± 0.19)× 10−6 ,

B(B0 → π0π0) = (1.91+0.22
−0.23)× 10−6 , (90)

imply B(B0 → π0π0) ∼ O(λ)B(B0 → π∓π±), giving rise to the B → ππ puzzle. As observed
in [99], the NLO corrections, despite of increasing the color-suppressed tree amplitude significantly, are
not enough to enhance the B0 → π0π0 branching ratio to the measured value. A much larger color-
suppressed tree amplitude, about the same order as the color-allowed tree amplitude, must be obtained in
order to resolve the puzzle [100,101]. To make sure that the above NLO effects are reasonable, the PQCD
formalism has been applied to the B → ρρ decays [99], which also receive the color-suppressed tree
contribution. It was observed that the NLO PQCD predictions are in agreement with the data B(B0 →
ρ0ρ0) = (0.73+0.27

−0.28) × 10−6 [98]. One concludes that it is unlikely to accommodate the measured
B0 → π0π0 and ρ0ρ0 branching ratios simultaneously in PQCD, and that the B → ππ puzzle remains.

It has been claimed that the B → ππ puzzle has been resolved in the QCDF approach [15]
with an input from SCET [102–104]: the inclusion of the NLO jet function, the hard coefficient of
SCETII, into the QCDF formula for the color-suppressed tree amplitude gives sufficient enhancement
of the B0 → π0π0 branching ratio, if adopting the parameter scenario ”S4" [105]. It is necessary to
investigate whether the proposed new mechanism deteriorates the consistency of theoretical results with
other data. The formalism in [102] has been extended to theB → ρρ decays as a check [99]. It was found
that the NLO jet function overshoots the observed B0 → ρ0ρ0 branching ratio very much as adopting
”S4". That is, it is also unlikely to accommodate the B → ππ and ρρ data simultaneously in QCDF.

Table 1: Polarization fractions in the penguin-dominated B → V V decays.

Mode BABAR Belle
φK∗+ 0.49± 0.05± 0.03 0.52± 0.08± 0.03

K∗+ρ0 0.78± 0.12± 0.03

K∗0ρ+ 0.52± 0.10± 0.04 0.43± 0.11+0.05
−0.02

K∗+K∗0 0.75+0.16
−0.26 ± 0.03
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For penguin-dominated B → V V decays, such as those listed in Table 1 [98], the polarization
fractions deviate from the naive counting rules based on kinematics [106]. This is the so-called the B →
φK∗ puzzle. Many attempts to resolve theB → φK∗ polarizations have been made [107], which include
new physics [108–112], the annihilation contribution [113, 114] in the QCDF approach, the charming
penguin in SCET [115], the rescattering effect [116–118], and the b→ sg (the magnetic penguin) [119]
and b→ sγ [120] transitions. The annihilation contribution from the scalar penguin operators improves
the consistency with the data, because it is of the same order for all the three final helicity states, and could
enhance the transverse polarization fractions [106]. However, the PQCD analysis of the scalar penguin
annihilation amplitudes indicates that the B → φK∗ puzzle cannot be resolved completely [107]. A
reduction of the B → K∗ form factor A0, which is associated with the longitudinal polarization, further
helps accommodating the data [121].

The penguin-dominated B → K∗ρ decays are expected to exhibit similar polarization frac-
tions. This is the reason why the longitudinal polarization fraction in the B+ → K∗0ρ+ decay, which
contains only the penguin contribution, is close to fL(φK∗) ∼ 0.5 as listed in Table 1. Another
mode B+ → K∗+ρ0, nevertheless, exhibits a large longitudinal polarization fraction around 0.8. This
mode involves tree amplitudes, which are subdominant, and should not cause a significant deviation
from fL ∼ 0.5. Though the data of fL(K∗0ρ+) from BABAR still suffer a large error, the different
longitudinal polarization fractions, fL(K∗+ρ0) 6= fL(K∗0ρ+), call for a deeper understanding. The
B+ → K∗+K∗0 decay shows a longitudinal polarization fraction smaller than unity, but larger than 0.5.
A more thorough study of the B → K∗K∗ decays can help discriminating the various resolutions for
the B → φK∗ puzzle [121, 122].

The B0 → K±π∓ decays depend on the tree amplitude T and the QCD penguin amplitude P .
The data of the direct CP asymmetry ACP (B0 → K±π∓) ≈ −10% then imply a sizable relative strong
phase between T and P , which verifies the LO PQCD prediction made years ago [18]: the scalar pen-
guin annihilation provides an important source of strong phases. The PQCD predictions for significant
penguin annihilation have been confirmed by the recent measurement of the pure annihilation mode,
B(Bs → π+π−) = (0.73 ± 0.14) × 10−6, which is consistent with 0.57 × 10−6 obtained in the LO
PQCD approach [123]. TheB± → K±π0 decays contain the additional color-suppressed tree amplitude
C and electroweak penguin amplitude Pew. Since both C and Pew are subdominant, the approximate
equality for the direct CP asymmetries ACP (B± → K±π0) ≈ ACP (B0 → K±π∓) is expected. How-
ever, this naive expectation is in conflict with the data [98],

ACP (B0 → K±π∓) = −0.086± 0.007

ACP (B± → K±π0) = 0.040± 0.021, (91)

making the B → Kπ puzzle.

While LO PQCD gives a negligible C [18, 19], it is possible that this supposedly tiny amplitude
receives a significant subleading correction. Note that the small C is attributed to the accidental cancel-
lation between the Wilson coefficients C1 and C2/Nc at the scale of mb. In [124] the important NLO
contributions to the B → Kπ decays from the vertex corrections, the quark loops, and the magnetic
penguins were calculated. It was observed that the vertex corrections increase C by a factor of 3, and
induce a large phase about−80o relative to T . The large and imaginaryC renders the total tree amplitude
T +C more or less parallel to the total penguin amplitude P +Pew in the B± → K±π0 decays, leading
to nearly vanishing ACP (B± → K±π0) = (−1+3

−6)% at NLO (it is about -8% at LO). One concludes
that the B → Kπ puzzle has been alleviated, but not yet gone away completely. Whether new physics
effects [125, 126] are needed will become clear when the data get precise. More detailed discussion on
this subject can be found in [127].
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6 Summary
Despite of nonperturbative nature of QCD, theoretical frameworks with predictive power can be devel-
oped. They are based on the factorization theorems, in which nonperturbative dynamics is absorbed into
PDFs, and the remaining infrared finite contributions go to hard kernels. A PDF is universal (process-
independent) and can be extracted from data, while a hard kernel is calculable in perturbation theory.
Both the collinear and kT factorization theorems are the fundamental tools of pQCD. The collinear fac-
torization theorem is a simpler version, and has been intensively studied and widely applied. The kT
factorization theorem is more complicated, and many of its aspects have not been completely explored.

Sophisticated evolution equations and resummation techniques have been developed in pQCD,
which enhance predictive power, and increase theoretical precision. All the known single- and double-
logarithm summations, including their unifications, have been explained in the CSS resummation for-
malism. The point is the treatment of real gluon emissions under different kinematic orderings, and the
resultant logarithmic summations are summarized in Table 2. The kT and threshold resummations, and
the DGLAP and BFKL equations have been applied to various QCD processes.

Table 2: Single- and double-logarithmic summations under different kinematic orderings.

| small x | intermediate x | large x
rapidity ordering | BFKL equation | kT resummation |
kT ordering | | DGLAP equation | threshold resummation

angular ordering | CCFM equation; joint resummation

Experimental and theoretical studies of jet physics have been reviewed. Especially, it was pointed
out that jet substructures could be calculated in pQCD: starting with the jet function definition, applying
the factorization theorem and the resummation technique, one can predict observables, which are con-
sistent with data. Because fixed-order calculations are not reliable at small jet invariant mass, and event
generators have ambiguities, pQCD provides an alternative approach, that resolves the above difficulties.
The pQCD formalism will improve the jet identification and new particle search at the LHC.

We have been able to go beyond the factorization assumption fr hadronic two-body heavy-quark
decays by including QCD corrections. Different approaches have been discussed and commented: in
QCDF the high-power corrections must be parameterized due to the existence of the endpoint singulari-
ties. There are no endpoint singularities in PQCD, which is based on the kT factorization theorem, and
in SCET, which employs the zero-bin subtraction [128]. A major difference arises from the treatment of
the annihilation contribution, which is parameterized in QCDF and neglected in SCET, but is the main
source of strong phases in PQCD.

Many subtle subjects on pQCD deserve more exploration, including the legitimate definition of
TMDs, the gauge invariance of the kT factorization, resummations of other types of logarithms, such
as rapidity logarithms, non-global logarithms, and etc., jet substructures of boosted heavy particles, and
the long-standing puzzles in B physics. pQCD remains as one of the most challenging research fields in
high-energy physics.
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