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 Abstract–TCP and the socket abstraction have barely changed 
over the last two decades, but at the network layer there has been 
a giant leap from a few megabits to 100 gigabits in bandwidth. At 
the same time, CPU architectures have evolved into the multi-
core era and applications are expected to make full use of all 
available resources. Applications in the data acquisition domain 
based on the standard socket library running in a Non-Uniform 
Memory Access (NUMA) architecture are unable to reach full 
efficiency and scalability without the software being adequately 
aware about the IRQ (Interrupt Request), CPU and memory 
affinities. During the first long shutdown of LHC, the CMS DAQ 
system is going to be upgraded for operation from 2015 onwards 
and a new software component has been designed and developed 
in the CMS online framework for transferring data with sockets. 
This software attempts to wrap the low-level socket library to 
ease higher-level programming with an API based on an 
asynchronous event driven model similar to the DAT uDAPL 
API. It is an event-based application with NUMA optimizations, 
that allows for a high throughput of data across a large 
distributed system. This paper describes the architecture, the 
technologies involved and the performance measurements of the 
software in the context of the CMS distributed event building. 

 
Index Terms—Data acquisition systems, data communication, 

distributed computing, fast networks, high energy physics 
computing, software performance. 
 

I. INTRODUCTION 

UNDAMENTAL changes have been made to processor 
architectures since the first x86 processor [1] was introduced. 
As shown in Fig. 1, in the middle of 2000’s the processor 
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frequency stabilized and the number of cores per processor 
started to increase. 
 

 
 

Fig.  1. This chart plots for the last 40 years: the number of transistors per 
processor (red line), the single-thread performance (blue line), the frequency 
per core (green line), the typical power consumption (orange line) and the 
number of cores per processor (black line) – (source: Sam Naffziger, AMD). 

With the advent of multi-core architectures and fine grain 
parallel paradigms the “many-core” era started and software 
designed with concurrency in mind resulted in more efficient 
use of new processors [2].  

At the same time the network technology has made a giant 
leap from 10 Mbps to 100 Gbps. Therefore the ability to 
positively affect application performance involves the 
selection of adequate switching fabric type and interconnect. 
In this scope, the two most popular networking solutions in the 
high performance computing are InfiniBand [3] and Ethernet.  

Data Acquisition Systems (DAQ) for High Energy Physics 
(HEP) experiments use Commodity Off-The-Shelf (COTS) 
technologies whenever possible. For example, the DAQ 
system [4] for the Compact Muon Solenoid (CMS) [5] 
experiment in the first run of Large Hadron Collider (LHC) 
[6] was built with COTS hardware with the exception of the 
front-end electronics close to the detector.  For LHC run 2 the 
CMS DAQ system is going to be replaced using state-of-art 
technologies [7], and the DAQ software needs to be adapted to 
the new network technologies (Ethernet and Infiniband) and 
microprocessor architectures. 
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The content of this paper is organized as follows: Section II 
explains the upgrade of CMS DAQ system for LHC run 2. 
Section III details the design of the TCP layered architecture. 
Section IV outlines the tuning for 40 Gbps network using 
custom TCP settings and processor, memory and IRQ 
affinities. The experimental results of the TCP layered 
architecture in the context of the CMS DAQ for run 2 are 
presented in Section V. A brief conclusion and future work are 
described in Section VI. 

II. THE CMS DATA ACQUISITION SYSTEM FOR LHC RUN 2 
The CMS is a general-purpose particle detector designed to 

study both proton-proton and heavy ion collisions produced at 
the LHC at CERN in Geneva, Switzerland. In CMS a rejection 
power of O(104) is required in order to reduce the event rate 
from the 40 MHz LHC beam crossing frequency to an 
acceptable rate of O(1000) Hz for offline processing and 
physics analysis. The detector is comprised of about 71 
million readout channels. Online event selection is performed 
using two trigger levels: a hardware based Level-1 Trigger 
(L1T) and a software-based high-level trigger (HLT).  During 
LHC run 1 (2009-2013) the CMS data acquisition system 
(DAQ) delivered an excellent performance recording proton-
proton collisions at a center-of-mass energy of 7 TeV (2010 
and 2011) and at 8 TeV (2012) with 50 ns bunch spacing. The 
central DAQ availability was more than 99.6 % [8]. 

 In order to reach the energy of 13~14 TeV and a luminosity 
of 2x1034 cm-2s-1  (LHC run 2) the LHC machine needs to be 
upgraded during long shutdown 1 (LS1) 2013-2014. Some 
CMS sub-detector front-end electronics and readout systems 
will also be upgraded using µTCA-based [9] systems. 

The DAQ system must be upgraded in order to cope with 
the increased instantaneous luminosity requirement for LHC 
run 2. Furthermore, the DAQ equipment (PCs, networks, etc.) 
has reached the end of the 5-year replacement cycle. CMS 
decided to build a new DAQ system that will accommodate 
sub-detectors with legacy as well as upgraded new off-
detector electronics. 

A. Requirements for the CMS DAQ System after LS1 
 Table I shows the main parameters of the Trigger and Data 

Acquisition (TriDAS) system in the case of proton-proton 
collisions at LHC for run 1 and 2. The important parameters 
for the capacity of the DAQ are not going to change, in fact 
the LHC beam crossing will stay to 40 MHz and the CMS 
Level-1 at 100 kHz.  The number of Front End Driver (FED) 
will be 620 (~500 legacy FEDs; ~120 µTCA FEDs)  and the 
new µTCA FEDs will use Slink-express as the new interface 
link [9]. The event size will increase to 2 MB and the event 
builder throughput will be 200 GB/s as a result of the 
additional detector readout channels and increase of 
instantaneous luminosity. The high-level trigger (HLT) will be 
file-system-based to reduce the interdependency of the DAQ 
system and the HLT. A more detailed description can be found 
in [10]. 

B. Architecture of the CMS DAQ System After LS1 
The architecture of the CMS DAQ system for LHC run 2 is 

shown in Fig. 2. The system is designed to read out event 
fragments from around 700 detector Front-Ends Drivers 
(FEDs) at the level-1 trigger rate of 100 kHz. For the legacy 
FEDs, data is transferred using SLINK-64 [11] copper links 
from the sub-detector specific FEDs with SLINK-64 sender 
cards to a common Frontend Readout Link (FRL) modules.  

The FRL is a Compact PCI with two boards connected 
through a PCI-X interface. The main board provides the 
interface to the legacy FEDs and the second board is 
Front-End Readout Optical Link (FEROL). The FEROL [12] 
has two possible inputs: data coming from the FRL or from 
the new µTCA FEDs using Slink-Express with a point-to-
point optical connection. The FEDs, FRLs and FEROLs are 
installed in the Underground Service Cavern (USC).  

Using a 10 Gbps Ethernet link, FEROLs send data to a 
Readout Unit (RU) machine with a TCP stream for each FED. 
Data is transferred from the USC to the Surface Counting 
room (SC) over a layer of 10/40 Gbps Ethernet switches. 
The event building is lossless and performed in two different 
steps: the FED builder and the RU builder. In the first step a 
super-fragment is created in the RU from 12 or 16 TCP 
streams coming from FEROLs. The second part the of event 
builder system assembles super-fragments into complete 
events in the Builder Unit (BU) machine.  The Event Manager 
(EVM) supervises the data flow in the RU Builder and 
receives a data record from the Level-1 trigger via a dedicated 
FED Builder. The EVM allocates events on request to a BU, 
which subsequently collects the super-fragments from all RUs. 
The connectivity between EVM, RUs and BUs is based on an 
InfiniBand FDR CLOS network. 

The file-system-based HLT farm is composed of “BU-FU 
appliances”. One BU and a fixed number of Filter Units (FUs) 
are dedicated for each “BU-FU appliance”. The filter farm 
applications running the physics algorithms read the raw data 
from the file system located in the BU’s RAM disk, and write 
the selected events and monitoring meta-data to a local disk. 
This data is then aggregated over several steps and made 
available for offline reconstruction and online monitoring. 
Data between BUs and FUs is exchanged over 1/10/40 Gbps 
Ethernet switches. Accepted events are transferred over an 
aggregate bandwidth of 60 Gbps fiber optic connection to the  

TABLE I 
NOMINAL PARAMETERS OF THE CMS DAQ 

Parameter LHC RUN I LHC RUN II  VALUE 
Beam crossing rate 40 MHz 40 MHz  40 MHz 
Level-1 trigger rate 100 kHz 100 kHz  100 kHz 

Number of  
front end drivers 640 Legacy  

500 
µTCA 

120 
 700 

Interface link Slink64 Slink64 Slink-
Express 

  

Fragment size 1-2 kB 1-4 kB 2-8 kB   
Event size 1 MB 2 MB  1 MByte 

Event builder 
throughput 100 GB/s 200 GB/s  100 GByte/s 

     
 



 

 

 

 
 

Fig.  2. The diagram shows the CMS data acquisition architecture for LHC run 2. Event data flows from the top to the bottom. The events are built in two 
stages: super-fragments are built in the Readout Unit (RU) and full events are built in the Builder Unit (BU). The Filter Units (FUs) run the high-level trigger 
software.

CERN computer center (Tier-0), where they are processed for 
analysis and archived to a mass storage system. 

C. XDAQ Framework 
The DAQ applications responsible for the data flow in the 

CMS DAQ are written using the XDAQ [13] framework. 
XDAQ is software platform created specifically for the 
development of distributed data acquisition systems. The 
development is carried out at CERN for the CMS experiment. 

 It provides platform independent services, tools for local 
and remote inter-process communication, configuration and 
control, as well as technology independent data storage. To 
achieve these goals, the framework builds upon industrial 
standards, open protocols and libraries, is designed according 
to the object-oriented model, and is implemented using the 
C++ programming language. The distributed processing 
infrastructure is made scalable by the ability to partition 
applications into smaller functional units that can be 
distributed over multiple processing units. 

A core executive provides the basic functionality, which can 
be extended at run time with additional binary plugins 
depending on the requirements, as shown in Fig.  3. Plugins 
exist for a wide range of additional features, including 

network communication, memory management and device 
access.  Software for DAQ should be designed to benefit from 
parallelism available on a hardware/software platform such as 
multi-core or multi-processor systems. The framework 
supports three types of access to multithreaded programming: 
tasks, workloops and timers. 

 

 

Fig.  3. XDAQ Middleware provides an executive function that supports 
plug-in modules for additional functionality. 

 



 

 

A task is a thin layer over the operating system specific 
threading API, similar to the Java Task class. Workloops allow 
for methods to be executed from within a separate thread of 
control to the invoker thread. A timer uses the task object to 
schedule a function to be executed at a specific time and/or 
periodically. In a multiprocessor environment, the framework 
allows threads to be assigned to run on designated cores, 
which allows a high granularity of control over where and 
how processes execute concurrently. 

 Concerning memory management, XDAQ builds upon the 
concepts of memory pools and buffer loaning in order to 
provide an efficient use of memory. The use of memory pools 
allows fast and deterministic allocation time and avoids 
fragmentation of memory over long run periods by allocating 
fixed-sized blocks of memory from one of various buffer 
pools.  With buffer loaning the framework allows applications 
to deal with data as references to buffers, which can be 
exchanged between applications with minimal and constant 
overhead. Such a scheme enables the zero-copy transfer of 
data through different software layers. When a buffer is no 
longer needed, the reference to it can be released, and the 
buffer is returned to the pool and becomes available for re-
allocation. 

Data transmission between XDAQ processes is carried out 
through special plug-in components, named peer transports. 
The peer transport interface relies on the buffer reference 
abstraction for accessing data allowing the plugin 
implementation to maintain a zero-copy architecture 
throughout. By having a peer transport plug-in for each 
required protocol or network medium, applications using the 
framework can be protocol and network independent.  

III. THE TCP LAYER ARCHITECTURE 
TCP Layered Architecture (TCPLA) is a lightweight, 

transport and platform independent user-level library for 
handling socket processing. TCPLA is modeled against the 
uDAPL [14] specification, in particular the send/receive 
semantics it describes. By implementing a wrapper for 
networking primitives (e.g. sockets), it aims to provide the 
user with an event driven model of handling network 
communications, where all calls to send and receive data are 
performed asynchronously. It supports user defined message 
formats, and allows the user to control the behavior of the 
underlying processes. Programming against such an event 
driven model gives a solid framework to allow well-optimized 
multi-threaded applications.  

The TCPLA represents the various concepts of networking 
as objects. For example, an Interface Adapter (IA) is an object 
used to represent a network adapter and an Event Dispatcher 
(EVD) is an object that queues events for the consumer. These 
objects are related to one another in an ownership hierarchy. 
For example, an EVD object is created as the child of a 
specific IA. Consumers manipulate these objects through 
handles. Each object type has creation and destruction 
functions to allocate and de-allocate object resources. The 
creation functions return a handle with which the consumer 
can manipulate the object and associate it with other objects. 

In TCPLA processes communicate by defining End Points 
(EPs), which need to be connected to each other before 
communication can take place. To send or receive data, work 
requests are posted onto the relative EP’s. The completion 
status of previously posted operations (e.g. work request, 
connection request) can be checked by using a completion 
queue mechanism.  

The TCPLA library is written in C++ using the XDAQ 
framework and takes advantage of the memory and thread 
management facilities that are provided. Fig. 4 shows a UML 
class diagram of the TCPLA library.  

 

Fig.  4. UML class diagram of object relationships within the TCPLA. 

A. TCPLA Design 
Communication is achieved using the standard TCP model 

(socket, bind etc.), but the way data is sent and received from 
a user’s perspective is similar to the uDAPL API. For an 
optimal usage, understanding how TCPLA relates to TCP is 
important for performance tuning. 

1) TCPLA Event System 
TCPLA gives the user an event driven API for 

communication, connection management and error handling. 
The user needs to provide an implementation dealing with 
these events, as what to do can be highly application specific. 
The event system is the heart of the TCPLA model. Nearly all 
API invocations are asynchronous in nature, and results are 
returned in an event.  

Completions are logically grouped into event queues, which 
feed into event dispatchers. Event queue notifications include 
data transfer completions, connection requests, connection 
establishment, disconnect notifications, asynchronous errors, 
and software generated events. Events can be de-queued 
exactly once. Consumers place operations in queues for 
processing and either poll or wait on EVD objects for the 
corresponding events signaling the operation’s result. To assist 
the handling of multiple connections, events contain the 
information that is necessary for the user to provide in-context 
responses. 

TCPLA uses three queues (in, out and event), as shown in 
Fig.  5. The in and out queues are filled with buffers that are to 
be sent or received into. These queues are managed internally, 
but it is up to the user to provide them with buffers to use. The 
third queue is the event queue, which is used to schedule 
events for the ‘EventHandler’ to consume. Due to the nature 



 

 

of asynchronous communication, event ordering is non-
deterministic. 

The event handler is the user-derived object that provides 
implementation for reacting to events. This includes both 
events relating to normal operation, and events relating to 
errors and abnormal operation, including peer rejection, loss 
of connection, timeouts and memory errors. 

 

 
Fig.  5. TCPLA uses three queues to handle events: inbound queue for 

incoming data, outbound queue for outgoing data and completion event queue 
for events. 

 
TCPLA allows for two different types of event dispatch 

queues, waiting and polling. Dispatchers are based on XDAQ 
workloops and allow the association of threads to different 
tasks (e.g. receiving completion thread, error event handling 
thread, send completion thread etc.) 

2) TCPLA Connection 
TCPLA supports reliable connections using a client-server 

connection model. The client side creates an Endpoint (EP) 
object and asynchronously submits a connection request to the 
specified address and port (service point). Upon successful 
negotiation of a connection, the client receives a  ‘connection 
established’ event and can begin transmitting data.  

Servers handle connection requests using a Public Service 
Point (PSP). A PSP creates a persistent listener that can 
service any number of connections. When the socket listen 
function receives a new connection, a ‘connection request’ 
event is dispatched to the user. If the user accepts the 
connection, an EP is created and a ‘connection accepted’ event 
is generated. In turn this triggers the ‘connection established’ 
event in the client side and data can be received. The 
established connection is persistent until either party 
disconnects or the connection is broken due to error. 

All connections are point to point; there is no notion of 
multicast addressing. 

3) TCPLA Communication 
A user can choose to use select or poll as the underlying 

mechanism for reading or writing to a socket. To achieve this, 
TCPLA provides two different versions of InterfaceAdapter 
and PublicServicePoint, which provide optimized concrete 
implementations.  

When using TCPLA, the receiver must pre-emptively 
allocate memory for receiving data. Buffers are en queued by 
the user, and consumed by the TCPLA when needed. When a 
buffer is filled, a ‘receive complete’ event occurs, notifying 
the user that the buffer is ready to be used. The same model is 
used for sending data. The enqueued buffer contains the data 
to be sent, and the return event notifies the user of a send 
completion. This use of queues allows the send and receive 
operations to be executed asynchronously in different threads 
of control. 

B. Developing Peer Transport with TCPLA 
TCPLA provides the building blocks for developing XDAQ 

peer transports to support different higher-level protocols over 
TCP/IP capable networks.   

The XDAQ distribution specifies three ready to use 
communication protocols. One is based on the I2O [15] 
specification and is used for efficient and high performance 
data transmission.  The second one is based on custom binary 
protocol and is used for monitoring communication due to its 
flexibility. The last protocol is based upon SOAP and XML 
[16] and is used for configuration and control.  

Two peer transports have been developed using TCPLA for 
the CMS DAQ system for run 2: the ptFRL to support the 
FEROL protocol [11] and the ptUTCP to support the I2O and 
B2IN protocols. The ptFRL is designed to manage TCP/IP 
streams from FEROLs and runs on RU machines. Its main 
task is to collect and merge data from FEROLs and deliver 
them to the RU applications. The ptUTCP is the peer transport 
used when collecting data flow monitoring information in the 
CMS DAQ system for run 2. 

IV. PERFORMANCE TUNING 
Multi-core architectures and fine grained parallel 

programming paradigms dictate the design of systems and 
augmenting software to take advantage of available hardware 
features enabling greater performance.  
 

 
Fig.  6. This diagram shows the different distance between computational 

core and memory or I/O interrupts in Non-Uniform Memory Access (NUMA) 
memory design used in multi-core processors. 

 
Within Non-Uniform Memory Access (NUMA) [17] 

architectures, the distance between processing cores and 



 

 

memory or I/O interrupts varies, with each core having faster 
access to it’s own local memory or interrupt than others (Fig.  
6). By properly configuring the affinity for interrupt, memory 
and processes, it is possible to minimize the access time to 
memory on multi-core systems. 

The default TCP parameters in most Linux distributions are 
tuned for 100 Mbps or 1 Gbps network interfaces and 
adjustments should be made when a 40 Gbps network card is 
used. In the CMS DAQ for LHC run 2, tuning of the TCP 
settings and the assignment of affinity for memory, CPU’s and 
I/O interrupts are used to achieve maximum performance for 
the reading of incoming data in the RU’s. 

By applying the above optimizations a clear difference in 
performance is observed as shown in Fig.  7. 

 

 
Fig.  7. Throughput in MB/s versus message size in Bytes with point to 

point application using 40 GbE interface without tuning (black line) and with 
tuning (red line). The fragment size axis scale is logarithm. 

A. TCP Custom Kernel Settings 
The most important parameters to change are the kernel 

TCP socket buffer settings [18]. In TCP the Round Trip Time 
(RTT) is the time that a packet takes to reach a destination and 
the acknowledgment packet takes to reach the source. The 
Bandwidth Delay Product (BDP) is the amount of data that 
can be in transit at any given time. The BDP is the result of the 
product of the link bandwidth and the RTT value.  

Buffer sizes should be adjusted according to the BDP to 
allow the maximum number of bytes to be in transit at any 
given time and prevent traffic throttling.  

The Fig.  8 shows the commands used to adjust the TCP 
parameters to achieve the maximum performance in the RU 
machines where window sizes, buffer limits, queue length and 
other TCP parameters are changed. 

B. Assigning Affinity with the XDAQ Framework 
Assigning affinity for processes and memory allocation 

helps to reduce the latency when accessing shared data 
structures and prevents the process scheduler from 
performing unwanted process migration. The process 
affinity represents the mapping between a process (thread) and 
one or a set of processors allowed to run the process. The 

memory affinity indicates the association of future memory 
allocations with a single NUMA node.  

The XDAQ framework provides configurable allocation 
and thread policies which are set at runtime according to an 
XML configuration file. Policies are matched to thread 
(workloop) or allocator (memory pool) identifiers using 
regular expressions. 

 

 
Fig.  8. These commands are used to adjust the TCP parameters in the RU 

machine for use with 40 Gbps network interfaces. 
 
Within a RU machine, the processor setup is a dual socket 

8-core processor with a 16GB NUMA memory node per 
socket. To take full advantage of the processor architecture, 
the TCPLA is set to use two dedicated threads for reading 
sockets, as shown in Fig.  9. These threads are assigned 
affinities that place them on either side of the core handling 
the interrupts for the 40 Gbps network card. For the other 
processor socket, all cores are assigned to run DAQ 
application tasks with one core kept aside for handling the 
Infiniband card’s interrupts. 

 

 
Fig.  9. This diagram shows the I/O interrupt, CPU and memory affinities 

in the RU Machine. 
 
The memory pools used for DAQ applications allocate 

buffers on the NUMA node located closest to the 40 Gbps 
network card. This gives the quickest access time to the 
threads responsible for reading the sockets, thus reducing the 
overhead from copying data. 



 

 

C. Setting IRQ Affinities 
I/O interrupts are used by I/O devices to notify processors 

of the completion of an operation. The Advanced 
Programmable Interrupt Controller (APIC) routes the 
interrupts to one processor in the system based on the interrupt 
redirection table. In Linux, it is possible to edit the redirection 
table using the smp_affinity file of each device in the /proc file 
system. The irqbalance daemon dynamically changes the table 
based on the number of interrupts generated for a certain time 
interval. 

The interrupt affinity defines a fixed mapping in the 
redirection table. In RU machines the interrupt from the 40 
Gbps Ethernet card is redirected to a single processor that has 
local access to the card. To ensure this mapping is fixed, the 
processors used by DAQ applications and the interrupts from 
the 40 Gbps Ethernet card have been removed from the 
resource available to the irqbalance daemon. 

V. PRELIMINARY RESULTS 
In the RU’s, the ptFRL peer transport is responsible to 

readout fragment data from FEROLs. The goal is to 
concentrate FED streams in order to optimize the number of 
RU machines in the system. The following DAQ requirements 
need to be considered for an L1 trigger operating at 100 kHz:  

• 1 FED connected to FRLs/FEROLs with a 
fragment size between 2 and 4 kB; 

• 2 FEDs connected FRLs/FEROLs with a fragment 
size between 1 and 2 kB. 

To perform benchmark evaluation of the new peer 
transports a DAQ test bed was used. 

A. DAQ Test Bed 
The CMS DAQ group has built a DAQ test bed in order to 

develop and test software, which allows the testing of various 
configurations of the DAQ system for LHC run 2. For the 
purposes of testing the TCPLA, the DAQ test bed consisted of 
the subset of the CMS DAQ column as required.   

 

 
Fig.  10. This diagram shows the DAQ test bed used to evaluate the ptFRL. 

It composed of 47 FRLs/FEROLs, 4 RUs and 8 BUs. The Mellanox SX 1024 
and the Mellanox SX 6036 were used for 10/40 Gbps and 56 Gbps Infiniband 
interconnections.  

 

The final performance indicator of the ptFRL is based upon 
the performance achieved while executing simultaneous input 
and output in the RU. To accommodate this requirement, the 
tests used the CMS event builder software in emulator mode. 
FRLs generate the event fragment data (virtual FED) and BUs 
discard the event data once an event is fully assembled. The 
L1 trigger is not emulated and all measurements correspond to 
the saturation limit. The connection between the RU’s and 
BU’s is a 56 Gbps Infiniband network. 

The setup consisted of 47 FRLs/FEROLs in 3 crates with 4 
RUs and 8 BUs, as shown in Fig.  10. The FEROLs were 
connected to Mellanox SX 1024 switch using 10 Gbps links.  
RU nodes are DELL PowerEdge R620’s with dual socket Intel 
Xeon E5-2670 8-core processors at 2.6 GHz and 32GB of 
memory. Each RU was equipped with two Mellanox 
ConnectX-3 VPI network cards for 40 GbE and FDR 
Infiniband connections. DELL PowerEdge C6220’s with dual 
socket Intel Xeon E5-2670 8-core processors at 2.6 GHz and 
32GB of memory were used for BU nodes. Each BU had a 
DELL mezzanine with a Mellanox ConnectX-3 VPI for FDR 
Infiniband connection.  RUs and BUs were connected through 
a Mellanox SX 1036 and the pause frames were enabled in the 
switch. The operating system running on the nodes was 
Scientific Linux CERN 6 (SLC6) with the 2.6.32-279.5.2.el6 
kernel. 

B. Performance Measurements 
Preliminary results are presented on throughput 

measurements for two tests: the first test with one virtual FED 
per FRL, and the second with two virtual FEDs per FRL. The 
results are obtained by runs of typically 3 minutes for each 
measurement. 

 

 
Fig.  11. Incoming throughput per RU in MB/s using event builder 

software versus fragment size in Bytes for the following configurations: 12 
TCP streams from 12 FEROLs, 1 RU and 4 BUs (black line); 24 TCP streams 
from 24 FEROLs, 2 RUs and 4 BUs (red line); 47 TCP streams from 47 
FEROLs, 4 RUs and 8 BUs (green line); 100 kHz for 12 streams L1 trigger 
requirement for DAQ 2 (dashed line). The fragment size axis scale is 
logarithm. 
 

For the first test, the incoming throughput per RU as a 
function of fragment size is shown in Fig.  11 where 12 TCP 



 

 

streams from 12 FEROLs are concentrated in one RU 
machine.  The saturation of the 40 Gbps link (around 5000 
MB/s) is reached in all three configurations for fragment sizes 
above 2.3 kB. When operating at 90% of the 40 Gbps 
bandwidth with merging from 12 FEDs, the 100 kHz 
requirement for fragment sizes below 3.7 kB is satisfied.  

For the second test, the incoming throughput per RU as a 
function of fragment size is shown in Fig.  12 where 16 TCP 
streams from 8 FEROLs are concentrated in one RU machine.  
Again, the saturation of the 40 Gbps link is reached in all three 
configurations for fragment sizes above 2.3 kB, and the 100 
kHz requirement is met when using 90% of the 40 Gbps 
bandwidth for fragment sizes less than 2.8 kB. 

 

 
Fig.  12. Incoming throughput per RU in MB/s using event builder 

software versus fragment size in Bytes for the following configurations: 16 
TCP streams from 8 FEROLs, 1 RU and 4 BUs (black line); 32 TCP streams 
from 16 FEROLs, 2 RUs and 4 BUs (red line); 64 TCP streams from 24 
FEROLs, 4 RUs and 8 BUs (green line); 100 kHz for 16 streams L1 trigger 
requirement for DAQ 2 (dashed line). The fragment size axis scale is 
logarithm. 

VI. SUMMARY 
This paper has shown the TCP Layer Architecture approach 

in the context of the CMS DAQ system for run 2. TCPLA is 
based on the standard socket library with optimizations for 
NUMA environments using the XDAQ framework. It has 
been developed to allow high performance of critical 
applications in the new CMS DAQ system. This was achieved 
by exploiting multi-core architectures and optimizing TCP 
settings. Considerable success has been achieved in modeling 
the uDAPL API using socket based programming. The XDAQ 
peer transports that were developed have been shown to 
operate above the requirements for the LHC run 2, and will be 
used for both data acquisition and data flow monitoring. 
Future work will be to demonstrate scalability by expanding 
the tests over the full DAQ system. 
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