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1 Introduction

The study of strange baryon resonances in proton-proton (pp) collisions contributes to the
understanding of hadron production mechanisms and provides a reference for tuning QCD-
inspired event generators. The strange-quark content makes these baryons a valuable tool in
understanding production mechanisms, since the initial state colliding projectiles contain no
strange valence quarks and therefore all strange particles are created in the collision.

In addition, a measurement of resonance production in the pp system serves as a reference
for understanding resonance production in heavy-ion collisions, where resonances, due to their
lifetime of a few fm/c being comparable to the lifetime of the hadronic phase, are sensitive
probes of the dynamical evolution of the fireball. Previous measurements at a collision energy
of /s = 0.2 TeV with the STAR detector at the RHIC have shown that the yields of ¥(1385)
in Au—Au in comparison to pp collisions indicate the presence of rescattering and regeneration
in the time span between chemical and kinetic freezeout [1]. Forthcoming analysis of strange
baryon resonances in Pb—Pb collisions by the ALICE collaboration will further explore those
effects at higher energy and density of the colliding system. The results for the ¥(1385)* and
Z(1530)Y baryons in pp collisions will therefore serve as benchmark.

Measurements of differential (d?N/(dydpr)) and integrated (dN/dy) yields of the $(1385)*
and Z(1530)° baryons are presented at mid-rapidity (|y|< 0.5) in inelastic (INEL) pp collisions
at /s = 7 TeV, collected with the ALICE detector [2] at the LHC. The differential spectra
are compared to Monte Carlo (MC) event generators. The mean transverse momentum (pr) is

compared to those of other particles measured in pp collisions with the ALICE detector at both
Vs =7 TeV and /s = 0.9 TeV, and with the STAR detector at /s = 0.2 TeV.

The Z(1530) reconstruction channel =7 is additionally analysed to investigate evidence of the
¢(1860) pentaquark, previously reported by the NA49 experiment [3]. No such signal was ob-
served by other experiments at different energies and with different beams and
reactions [4-14].

This article is organized as follows. Section [2] gives a brief description of the main detectors used
for this analysis and the experimental conditions. Section 2.1] describes track and topological
selections. Signal extraction methods are presented in Section [2.2], and the efficiency corrections
in Section2.3l The evaluation of systematic uncertainties is discussed in Section 2.4l In Section [3]
the pr spectra and the integrated yields of the studied particle species are given and compared to
model predictions. In Section [ the search for the ¢(1860) pentaquark is discussed. Conclusions
are presented in Section [Bl

2 Experiment and data analysis

The ALICE detector [2] is designed to study a variety of colliding systems, including pp and
lead-lead (Pb—Pb) collisions, at TeV-scale energies. The sub-detectors used in this analysis
are described in the following. A six-layer silicon Inner Tracking System (ITS) [15] and a
large-volume Time Projection Chamber (TPC) |16] enable charged particle reconstruction with
excellent momentum and spatial resolution in full azimuth down to a pp of 100 MeV/c in the
pseudorapidity range |n| < 0.9. The primary interaction vertex is determined with the TPC
and ITS detectors with a resolution of 200 pm for events with few tracks (Negp ~ 3) and below
100 pm for events with higher multiplicity (Ng, 2 25). In addition, both detectors are able to
provide particle identification (PID) via energy-loss measurements. The data analysis is carried
out using a sample of ~ 250 million minimum-bias pp collisions at /s = 7 TeV collected during
2010. During the data-taking period, the luminosity at the interaction point was kept in the
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range 0.6 —1.2 x 10%? em~2s~!. Runs with a mean pile-up probability per event larger than 2.9%
are excluded from the analysis. The vertex of each collision is required to be within +10 cm of
the detector’s centre along the beam direction. The event vertex range is selected to optimize
the reconstruction efficiency of particle tracks within the ITS and TPC acceptance.

2.1 Particle selections

The resonances are reconstructed via their hadronic decay channel, shown in Table [1 together
with the branching ratio (BR). For 3(1385), all four charged species (3(1385)%, £(1385)",
33(1385)~ and X(1385)T) are measured separately. Z(1530)? is measured together with its an-
tiparticle (£(1530)°) due to limited statistics. Therefore in this paper, unless otherwise specified,
Z(1530)° = (2(1530)° + Z(1530)°)/2. Note that, for brevity, antiparticles are not listed and the
selection criteria, described in the following, are discussed for particles; equivalent criteria hold
for antiparticles.

| Valence quarks | Mass (MeV/c?) | Width/cr | Decay channel | Branching ratio (%)
¥(1385)* | uus 1382.80 + 0.35 | (36.0 £ 0.7) MeV/c? | A+n™ ‘ 87.0 £ 1.5
¥(1385)~ | dds 1387.2 + 0.5 (39.4 + 2.1) MeV/c? | A~ 87.0 + 1.5
2(1530)° | uss | 1531.80 £ 0.32 | (9.1 £ 0.5) MeV/c? | E 4n* | 66.7
= | dss | 1321.71 £ 0.07 | 491 cm | At | 99.887 + 0.035
A | uds | 1115.683 = 0.006 | 7.89 cm | p+n™ | 63.9 0.5

Table 1: Particles involved in this analysis and their PDG parameters |17]. Antiparticles are
not listed for brevity. From [17], Z(1530)°— =+ 7 has a branching ratio of ~ 100%, then
Z(1530)° —E=~+7* has a branching ratio of ~ 66.7% due to isospin considerations.

Several quality criteria, summarized in Table 2] are used for track selection. Charged pi-
ons from the strong decay of both ¥(1385) and Z(1530)° are not distinguishable from pri-
mary particles and therefore primary track selections are used. They are requested to have
a distance of closest approach (DCA) to the primary interaction vertex of less than 2 cm
along the beam direction and a DCA in the transverse plane smaller than 7 opca(pr), where
opca(pr) = (0.0026 + 0.0050 GeV/e x pr~!) cm is the parametrization which accounts for
the pp-dependent resolution of the DCA in the transverse plane |18]. Primary tracks are also
required to have at least one hit in one of the two innermost layers of the ITS (silicon pixel detec-
tor, SPD) and at least 70 reconstructed clusters in the TPC out of the maximum 159 available,

Common selections

ul <0.8

T > 0.15 GeV/e
number of TPC clusters > 70

x? per cluster <4

Primary track selections

DCA, to PV <2 cm
DCA, to PV <7 opca(pr)
number of SPD clusters >1

PID (X(1385) analysis only)
’(dE/dx)measured_(dE/dx)expected’ <3 OTPC

Table 2: Track selection criteria. PV stands for “primary vertex”. DCA, and DCA, are the dis-
tances of closest approach in the transverse plane and in the longitudinal direction, respectively.
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which keeps the contamination from secondary and fake tracks small, while ensuring a high effi-
ciency and good dE/dx resolution. Tracks close to the TPC edge or with transverse momentum
pr < 0.15 GeV/e are rejected because the resolution of track reconstruction deteriorates.

In the ¥(1385) analysis, PID is implemented for 7% and p from A. Particles are identified based
on a comparison of the energy deposited in the TPC drift gas and an expected value computed
using a Bethe-Bloch parametrization [19]. The filter is set to 3 orpc, where o is the resolution
estimated by averaging over reconstructed tracks. An averaged value of orpc = 6.5% is found
over all reconstructed tracks [20]. PID selection criteria are not applied in the Z(1530) analysis
as the combinatorial background is sufficiently removed through topological selection.

A produced in the decay of ¥(1385) decays weakly into 7~ p with ¢7 = 7.89 cm [17]. These pions
and protons do not originate from the primary collision vertex, and thus they are selected using
a DCA to the interaction point greater than 0.05 cm. At least 70 reconstructed clusters in the
TPC are requested for these tracks. Further selection criteria to identify A are applied on the
basis of the decay topology as described in [19]. Selection criteria for A used in the ¥(1385)
analysis are summarized in Table Bl

—

=~ produced in the decay of the Z(1530)° decays weakly into A~ with c¢r = 4.91 cm [17]. Pions
are selected from tracks with a DCA to the interaction point greater than 0.05 cm. Pions and
protons from A are required to have a DCA to the interaction point greater than 0.04 cm. All
pions and protons are requested to have at least 70 reconstructed clusters in the TPC. Decay

topologies for == and A are used as described in [19]. Selection criteria are summarized in
Table [

|ys-| <05
DCA of A decay products to PV > 0.05 cm
DCA between A decay products < 1.6 standard deviations

DCA of A to PV < 0.3 cm

A cosine of pointing angle > 0.99

A fiducial volume (R,) 1.4 < R, < 100 cm
A invariant mass window mppg £ 10 MeV/c?

Table 3: Selection criteria used in the ¥(1385) analysis. PV stands for “primary vertex”. R, is
the transverse radius of the decay vertex.

ly=-| <05
DCA of A decay products to PV~ > 0.04 cm
DCA between A decay products < 1.6 standard deviations

DCA of A to PV > 0.07 cm

A cosine of pointing angle > 0.97

A fiducial volume (R,) 0.8 < R, < 100 cm
A invariant mass window mppg £ 6 MeV/c?

DCA of pion (from E7) to PV > 0.05 cm
DCA between =~ decay products < 1.6 standard deviations

=~ cosine of pointing angle > 0.97
£~ fiducial volume (R,) 0.8 < R, < 100 cm
=~ invariant mass window mppg £ 6 MeV/c?

Table 4: Same as Table B but for the =(1530) analysis.
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All these criteria are optimized to obtain maximum signal significance. Values for the significance
are presented in Section 2.2.31

2.2 Signal extraction

2.2.1 Combinatorial background and event-mizing

Due to their very short lifetime of a few fm /¢, resonance decay products originate from a position
that is indistinguishable from the primary vertex. Thus, the computation of invariant mass
distributions for potential resonance decay candidates has significant combinatorial background
that has to be subtracted to ensure reliable yield determination. This is shown in the left panels
of Figs. Mand B (for ¥(1385)* and ¥(1385)~, respectively) and Fig. 3 (for the Z(1530)°). Figures
similar to Figs. [land 2] are obtained for the antiparticles ¥(1385)~ and X(1385)". In Fig. 2lthe
peak from == — A+ 7~ is visible.
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Fig. 1: (Colour online) (Left panel) The Ar" invariant mass distribution in |y| < 0.5 for the
transverse momentum bin 1.2 < pp < 1.4 GeV/c in pp collisions at /s = 7 TeV. The background
shape estimated using pairs from different events (event-mixing) is shown as open red squares.
The mixed-event background is normalized in the range 1.56 < M < 2.0 GeV/c?, where M
is the A7 invariant mass. (Right panel) The invariant mass distribution after mixed-event
background subtraction for 1.2 < pp < 1.4 GeV/c. The solid curve is the result of the combined
fit (see text for details) and the dashed lines describes the residual background.
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Fig. 2: (Colour online) Same as Fig. [l but for ¥(1385)" —A+n~. Note the peak at around the

=(1321)" mass, which is absent in Fig. [II

The combinatorial background distributions are obtained and subtracted from the invariant mass
distribution by means of a mixed-event technique, in which a reference background distribution
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Fig. 3: (Colour online) (Left panel) The Z- 7" invariant mass distribution in |y| < 0.5 for
the transverse momentum bin 1.2 < pp < 1.6 GeV/c in pp collisions at /s = 7 TeV. The
background shape estimated using pairs from different events (event-mixing) is shown as open
red squares. The mixed-event background is normalized in the range 1.49 < M < 1.51 GeV/c?.
(Right panel) The invariant mass distribution after mixed-event background subtraction for
1.2 < pr < 1.6 GeV/e. The solid curve is the result of the combined fit and the dashed line
describes the residual background.

is built with uncorrelated candidates from different events. To avoid mismatch due to different
acceptances and to ensure a similar event structure, only tracks from events with similar vertex
positions z (Az <1 cm) and track multiplicities n (An < 10) are mixed. In order to reduce
statistical uncertainties, each event is mixed with several other events (5 in the ¥(1385) analysis
and > 20 in the Z(1530)° analysis), so that the total number of entries in the mixed-event
invariant mass distribution is higher than the total number of entries in the distribution from
the same event. Thus the mixed-event distribution needs to be scaled before it can be used
to describe the background in the same-event distribution. For ¥(1385), the regions for the
normalization of the mixed-event distribution are selected in the rightmost part of the invariant
mass window, where the residual background is absent (see Section for a description
of the residual background). These regions are different for the different pr bins, ranging from
1.48 < M < 2.0 GeV/c?, for the lowest pr bin, to 1.95 < M < 2.0 GeV/c?, for the highest p bin (M
being the invariant mass of 3(1385) and 2.0 GeV/c? being the upper extreme of the invariant mass
window). The reason for this pp-dependent choice is due to the reach of the residual background,
which is higher in invariant mass for higher pp. Fixed regions, 1.6 < M < 1.8 GeV/c? and
1.8 < M < 2.0 GeV/c?, have also been tried, giving a systematic uncertainty of ~ 1%. For
2(1530)° a fixed region 1.49 < M < 1.51 GeV/c?, just at the left of the signal, is selected.
A fixed region can be selected because for all pr intervals the background shape is similar
and the invariant mass resolution on the reconstructed peak is the same. The uncertainty in
the normalization (~ 1%), which is included in the quoted systematic uncertainty for signal
extraction, is estimated by using another normalization region, 1.56 < M < 1.58 GeV/c?, just at
the right of the signal. The open squares in the left panels of Figs. [l Pl and B correspond to the
properly scaled mixed-event invariant mass distribution. The right panels show the signals for
each resonance after the mixed-event combinatorial background is subtracted.

2.2.2 Residual correlated background

The mixed-event technique removes only uncorrelated background pairs in the invariant mass
spectrum. The consequence is that residual correlations near the signal mass range are not
subtracted by the mixed-event spectrum and correlated background pairs remain [21]. This is
especially dominant for ¥(1385) (see Figs. [l and [ right), for which the correlated residual
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background takes contributions from two dominant sources:

— Type A: correlated Aw pairs coming from the decays of other particles which have A and
7 among the decay products.

— Type B: correlated Aw pairs which come from the dynamics of the collision and are not
removed from the subtraction of the mixed-event background.

All these contributions are present in the MC, albeit with potentially incorrect proportions.
Thus, simulations are used to determine the shapes of such contributions in invariant mass
space and then these contributions are renormalized using data, as described later.

All the sources of contamination of Type A, which can potentially produce correlated Am pairs,
are listed in Table Bl A similar scheme, not discussed for sake of brevity, is valid for the
antiparticles (e.g. the = —sAn" decay channel affects the reconstruction of £(1385)+). Only
sources Al, A5 and A6 in Table [ give a significant contribution to the correlated residual
background of Type A. This is discussed in the following.

Source BR Affects
¥(1385)T  X(1385)~

Al | - —Ar™ 99.9% | a

A2 | £(1530)" — Ex° 33.3% /
SSATT 99.9%

A3 | 2(1530) — =07~ 66.7% y
AR 99.5%

A4 | 2(1530)° — == 7" 66.7% v y
SSATT 99.9%

A5 | ¥(1385)F — X07*E 5.8% o o
SNAy 100%

A6 | A(1520) — ArtnT 5% | d ra

Table 5: Potential sources of contamination in the reconstruction of ¥(1385). Checkmarks show
which species is potentially affected. Checkboxes further indicate whether the source gives a
significant contamination (see text). A similar scheme, not shown for sake of brevity, is valid
for the antiparticles.

Source Al in Table [l is due to the primary =~ which decays weakly to An~, affecting the
reconstruction of ¥(1385)~. Since the Z~ hyperon is metastable, it shows up in the A7~ invariant
mass spectrum as a very narrow peak at around the =~ mass, Mz- = 1321.71 MeV /c? [17], just
on the left tail of the ¥(1385)~ signal. The =~ peak is clearly seen in Fig.[2l This contribution,
which is expected to be important since the yield of Z~ is comparable to the yield of ¥(1385)~,
is in fact suppressed, by an order of magnitude, because the filter on the DCA to the primary
vertex of both A and = filters out most of the Am pairs from =Z~. Indeed, the filter on the DCA
to the primary vertex is optimized for the 3(1385) decay products, which are not distinguishable
from primary particles (see Section 2.]]), whereas A and 7 from =~ come from a secondary vertex,
centimetres away from the primary vertex. Only a small percentage of the Z~ yield survives
the filter on the DCA. Source Al is taken into account by adding a Gaussian function, with the
mean value fixed to the Z~ mass and the width and normalization left free, to the combined fit
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of the invariant mass spectrum in the reconstruction of ¥(1385)~. The contamination from =~
reaches about 5-10% of the raw X(1385) signal and varies little with pr.

Sources A2, A3 and A4 give a negligible contribution. Sources A2 and A3 are due to the hadronic
decay channels of £(1530)~, with BR = 33.3% and BR = 66.7%, respectivelyﬁ, and, like Al,
affect only the ¥(1385)~ reconstruction. Source A4 is due to Z(1530)° and potentially affects the
reconstruction of both 3(1385)" and 3(1385)~, since it involves two opposite-sign pions. The
same topological considerations hold for A2 as they do for Al, since it involves a Z~. Indeed,
this 2~ comes from the strong decay of =(1530)~, therefore it is practically not distinguishable
from the (primary) =~ in Al. Unlike contribution A1, a further suppression, of about an order
of magnitude with respect to A1, comes from both the smaller yield of Z(1530)~ with respect to
the primary Z~, and the BR of the Z(1530)~ — Z~7° channel. This further suppression makes
contribution A2 practically negligible. Similar conclusions hold for contributions A3 and A4.

Source A5 in Table[lis related to the second ¥(1385) decay channel, ¥(1385)* — X97% (BR =
5.8%00), with X0 — Ay (BR ~ 100% [17]). A from 0 is paired with 7% from 3(1385)%. This
gives a Gaussian-like peak at around 1.306 GeV/c?, with a width of ~ 0.059 GeV/c? (FWHM).
This peak is used in the combined fit to the signal (see below) with a relative normalization
with respect to the signal which accounts for the ratio (= 0.067) between the BR (= 5.8%) for
the ¥(1385)* — X07* channel and the BR (= 87%) for the ¥(1385)* — Ar™ channel.

Source A6 in Table [ is due to the A(1520) — An*7T channel (BR = 5%@). The positive
(negative) pion, paired with A, produces a Gaussian-like peak, which contaminates the invariant
mass distribution of ¥(1385)% (X(1385)7). This peak is centred at ~ 1.315 GeV/c? and has a
width of ~ 0.076 GeV/c? (FWHM). The peak is used in the combined fit to the signal. The
normalization of the peak is kept free in the fit since the A(1520) yield is not measured. The
contamination from A(1520) decreases with increasing pr, ranging from about 75% of the raw
Y(1385)~ signal in the first pp interval, down to 0 for pp > 4 GeV/e.

A third-degree polynomial is used to fit the residual background of Type B in the MC. The fit to
MC data is performed in the region from 1.26 GeV/c? (just left of the signal region) to the lower
edge of the event-mixing normalization region. The fitting function is then normalized to the
residual background in real data; the normalization is done in the region from 1.46 GeV/c? (just
right of the signal region) to the lower edge of the event-mixing normalization region, where other
sources of contamination are absent. The lower point of the normalization region is the same for
all pr intervals since the mean, the width and the invariant mass resolution on the reconstructed
peak stay the same over all the pr range considered. Comparable results are obtained from
using different event generators (PYTHIA 6.4, tune Perugia 0 [22], and PHOJET [23]) and
other degrees for the polynomial (second and fourth). The differences of about 2% are included
in the systematic uncertainties.

The invariant mass distribution is fitted with a combined fit function: a (non-relativistic) Breit-
Wigner peak plus the functions that make up the residual background (Figs. [l and 2 right).
The Breit-Wigner width I' is kept fixed to the PDG value to improve the stability of the fit.

For Z(1530)°, the residual background after the mixed-event background subtraction is fitted
with a first-degree polynomial. The fitting procedure is done in three stages. First, the back-

*BR ~ 100% for 2(1530) — = [17], then BR = (§x100)% for £(1530)~ — =~ 7 and BR = (2 x 100)% for
2(1530)~ — Z%7~ due to isospin considerations.

"BR = (11.7+1.5)% [17] for £(1385) — X, then BR = (%xll.?)% for the charged-pion channel ¥(1385)% —
$07% due to isospin considerations.

BR = (10+£1)% [17] for A(1520) — Arr, then BR = (%xlO)% for the charged-pions channel A(1520) —
AnExT due to isospin considerations.
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ground is fitted alone from 1.48 to 1.59 GeV/c? while excluding the Z(1530)° mass region from
1.51 to 1.56 GeV/c?. Second, a combined fit for signal and background is performed over the full
range with the background polynomial fixed to the results from the first fit stage; a Voigtian
function - a convolution of Breit-Wigner and Gaussian functions - is used for the signal. The
Gaussian part accounts for detector resolution. Third, a fit is redone over the full range again
with all parameters free but set initially to the values from the second stage.

2.2.83 Counting signal and signal characteristics

The above procedure is applied for 10 (8) pr bins for ¥(1385) (£(1530)?), from 0.7 to 6.0 (0.8
to 5.6) GeV/e. For 3(1385), the fit is repeated leaving the Breit-Wigner width I' free to move,
and, for each pr interval, the difference in the yield is included in the systematic uncertainties
(~ 4% maximum contribution). The widths of both ¥(1385) and Z(1530)° are consistent with
the PDG values for all pr intervals. In the ¥(1385) analysis, a Gaussian function, centred at
1.321 GeV/c? and with a starting value for the width of 2 MeV /c?, is used to help the combined
fit around the =(1321)~ peak (Fig. ). The value of 2 MeV/c? is obtained from the analysis
of 2(1321)~ [19] and is related to the mass resolution. Since the ¥(1385) mass binning of
8 MeV /c?, which is optimised for the x? of the combined fit, is larger than the mass resolution,
only a rough description of the Z(1321)~ peak is possible. For Z(1530)°, the standard deviation
of the Gaussian component of the Voigtian peak is found to be ~ 2 MeV/c?, which is consistent
with the detector resolution, as obtained from the MC simulation. At low pr, the fitted mass
values for $(1385) are found to be slightly lower (by ~ 5 MeV/c?) than the PDG value, which
is attributed to imperfections in the corrections for energy loss in the detector material. For
Z(1530)Y, the reconstructed masses are found to be in agreement with the PDG value within
the statistical uncertainties.

The raw yields N®AW are obtained by integrating the Breit-Wigner function. As an alternative,
NBRAW s calculated by integrating the invariant mass histogram after the subtraction of the
event-mixing background and subtracting the integral of the residual background (bin-counting
method). The difference between the two methods of integration is lower than 2% on average.
Significance values (defined as S/v/S+ B, where S is the signal and B the background) for
$(1385)F (£(1530)°) are found to be 16.6 (16.5) in the lowest pr interval, and 20.9 (22.8) in the
highest pr interval, and reached 24.2 (52.4) in the intermediate pr interval. Significance values
comparable to those of ¥(1385)" are obtained for the other %(1385) species.

2.3 Correction and normalization

In order to extract the baryon yields, NF4W are corrected for BR, the geometrical acceptance
(A), the detector efficiency (€) and the correction factor which accounts for the GEANT3 over-
estimation of the p cross sections (egpanTs/Fruxa) [24]

RAW
N (pr) = Bé\r?% €GEANT3/FLUKA (PT)- (1)

The product of acceptance and efficiency (A X €) is determined from MC simulations with the
PYTHIA 6.4 event generator (tune Perugia 0 [22]) and a GEANT3-based simulation of the
ALICE detector response [25]. The egpanT3 JFLUKA correction factor is equal to 0.99 for the
protons from ¥(1385)* and Z(1530)° and ranges from 0.90 to 0.98, from the lowest to the
highest pr interval, for the antiprotons from (1385)* and Z(1530)°. About 200 x 105 Monte-
Carlo events, with the same vertex distribution as for the real events, were analysed in exactly
the same way as for the data. The A x € is determined from MC simulations as the ratio of the
number of reconstructed resonances to the number of those generated in |y|< 0.5, differentially as
a function of transverse momentum, as shown in Fig.[dl The drop in efficiency at low pr is due to



Production of ¥(1385)* and Z(1530)° ALICE Collaboration

m T T T T T T T T T T T T T T | T T T T | T T T T T
m L _
X ALICE, pp, {s=7 TeV
> 1 |
[&] - —
c - -
q-) [ ¢ o r o s s s s o r o d E o r m S S e r o S M 0o f mm S M M 1§ o f M M 0 mm f mm f mm o  mm r =
= B ° B
L B ——— 1
< | —e— N
3 o —o—— o °
5 10" = -o- —— —
& F e T g
§ - 0 —e— 3(1385)" g
| e T —5— =(1530)° _
- BR for 2(1385)"
10? .( _) o 3
- - BR Ratio for =(1530) :
_I 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | _I
1 2 3 4 5 6

P (GeV/c)

Fig. 4: The product of acceptance, efficiency and branching ratio of ¥(1385)% and Z(1530)",
obtained with PYTHIA 6.4 [22] and GEANTS3 [25], as function of pr in |y|<0.5. Only statistical
uncertainties are reported. The dashed- and the dash-dotted lines indicate the overall branching
ratio for the two reconstruction channels.

the loss of slow pions involved in the decay chain. As a cross-check, the efficiency x acceptance
has also been assessed with PHOJET [23] as event generator. The relative difference of the
resulting A x €, averaged over the various pr intervals, is below 1%.

Finally, corrections for the trigger inefficiency (egrigger) and the loss of candidates outside of the
z-vertex range (€yert) are applied via

1 dzN _ Ncor(PT) €trigger 1 (2)
Niver dydpr AyApr  €vers NumB'

where N and Nyp are the number of reconstructed ¥(1385) or =(1530) and the total number
of minimum bias triggers, respectively. Ay and Apr are the rapidity window width and the
pr bin width, respectively. The trigger selection efficiency for inelastic collisions € igger is equal to
0.8521'8:83(2) [26]. The loss of resonances due to the trigger selection, estimated by MC simulations,
is negligible, less than 0.2%. The €y correction factor accounts for resonance losses (~ 7%)
due to the requirement to have a primary vertex z position in the range +10 cm.

2.4 Systematic uncertainties of pr spectra

Two types of systematic uncertainties in the particle spectra are considered: pp-dependent
systematic uncertainties, which are due to the selection efficiency and signal extraction at a
given pr, and pp-independent uncertainties due to the normalization to inelastic collisions and
other corrections.

The minimum and maximum values of the major contributions to the point-to-point systematic

10
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uncertainties are listed in Table [fl The uncertainties introduced by tracking, topology selection

Source of uncertainty ¥(1385) =(1530)
Point-to-point

signal extraction 8-11% 5-6%
tracks selection ™% 1-3%
topological selection 6-7% 3-4%
PID efficiency 4-6% -
pr-independent

INEL normalization i’gg;‘j f;g;‘j
material budget 4% 4%
GEANT3/FLUKA correction 2% 2%
branching ratio 1.5% -

Table 6: Summary of the systematic uncertainties in the ¥(1385) and =(1530) differential yield,
d*N/(dydpr).

and PID are obtained by varying the selection criteria for the decay products. To this purpose,
the selection criteria listed in Tables 2l B] and M are changed by a certain amount which varies
the raw yield in real data by +10%. The maximum difference between the default yield and
the alternate value obtained by varying the selection, is taken as systematic uncertainty. The
uncertainties introduced by the signal extraction come from several sources: normalization of
the event-mixing background, fitting function and range of the residual background, signal
fitting and integration. For ¥(1385), the contamination from the A(1520) introduced the largest
contribution (~ 8%). All the sources are combined by summing in quadrature the uncertainties
for each pr.

Among the pr-independent uncertainties, the INEL normalization leads to a +7.3% and -3.5%
uncertainty [26], the determination of the material thickness traversed by the particles (material
budget) introduces a 4% uncertainty and the use of FLUKA [27, 28] to correct the antiproton
absorption cross section in GEANT3 leads to a further 2% uncertainty [24]. For 3(1385),
a further 1.5% comes from the uncertainty in the branching ratio. A summary of the prp-
independent uncertainties is presented in Table [6l

3 Results

The corrected baryon yields per pr interval per unit rapidity (1/Ningr, x d2N/(dydpt)) are
shown in Fig.[Bl They cover the ranges 0.7 < pr < 6.0 GeV/c for ¥(1385) and 0.8 < pr < 5.6 GeV/e
for 2(1530)°. The vertical error bars in Fig. Bl represent the sum in quadrature of the statistical
and systematic uncertainties, excluding the pp-independent uncertainties, which affect only the
normalization.

All spectra are fitted with a Lévy-Tsallis function [29], which is used for most of the identified
particle spectra in pp collisions |19, 20, 130-32],

— 3
Ningr dydpr nC[nC +mg(n —2)] dy ®)

1 42N (n—1)(n—-2) dN ( mT—mO)_"
p— + - ,
nC
where my = y/mi + p2T and mg denotes the PDG particle mass. This function, quantified by

the inverse slope parameter C' and the exponent parameter n, describes both the exponential
shape of the spectrum at low pp and the power law distribution at large pr. The parameter

11
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Fig. 5: Inelastic baryon yields, d2N/(dydpr), per pr interval per unit rapidity for ¥(1385) and
Z(1530)°. Statistical and systematic uncertainties are summed in quadrature, excluding the
pr-independent uncertainties, which affect only the overall normalization of the spectra and are
not considered in the fit. Spectra are fitted with a Lévy-Tsallis function. The ratio data/fit is
shown in the lower panel. For the sake of visibility, only %(1385)" is shown in the lower panel,
but similar ratios have been obtained for the other three ¥(1385) species. For the ratio, the
integral of the fitting function in each corresponding pr interval is considered. Spectra points
are represented at the centre of the p interval.

dN /dy represents the particle yield per unit rapidity per INEL event. dN/dy, C and n are the
free parameters considered for this function. Table [[ presents the parameter outcome of the
Lévy-Tsallis fit, together with the mean transverse momentum, (pr), and the reduced x2. The
values of AN /dy in Table[7 are obtained by adding the integral of the experimental spectrum in
the measured range and the extrapolations with the fitted Lévy-Tsallis function to both pt =0
and high pr. The contribution of the low-pt extrapolation to the total dN/dy is ~ 30% for
both $(1385) and Z(1530)°. The contribution of the high-pt extrapolation is negligible. For
each species considered here, such a composite dN /dy differs very little (< 1%) from the value
of dN/dy as the first free parameter returned by the fit, i.e. from the integration of the fit

12
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Baryon | dN/dy (LT) (x10-%) C (MeV) n | {pr) (LT) (GeV/e) | x*/ndf
2(1385)+ 9.8+ 0.2%£0.9 301 +£39+15 9.0+£29+05 |1.17£0.02+0.03 | 1.13/7
§(1385)_ 106 £ 0.2 £ 1.1 308+39+20 9.1+£32+08 | 1.17+0.02+0.03 | 1.71/7
§(1385)_ 9.0+ 02=£09 307+£40+15 98 +37+08 | 1.18 £0.02+0.04 | 1.19/7
¥(1385)" 10,0£ 02 £ 1.1 204 + 43+ 17 89+£35+06 | 1.18 +£0.02 £ 0.04 | 1.53/7
2(1530)° | 248 £007+£024 404+£20+21 169£39+19 | 1.33 £ 0.02 £ 0.05 | 2.24/5

Table 7: Parameters extracted from the Lévy-Tsallis (LT) fits (Eq. B]) to the transverse momen-
tum spectra. The values of AN /dy are calculated using the spectra in the measured range and
the extrapolation of the fitted Lévy-Tsallis function outside the measured range. Systematic
uncertainties quoted here are the ones derived from Lévy-Tsallis fit only (see text).

function from 0 to infinity.

In order to obtain the systematic uncertainty on the parameters of the Lévy-Tsallis fit (dN/dy,
C' and n) and on the mean transverse momentum ({pr)), the Lévy-Tsallis fit is repeated for each
pr spectrum obtained by varying separately the selection criteria in each source of systematic
uncertainties. Only statistical uncertainties on the points of the pr spectrum are used for the
fit. The values for dN/dy, C, n and (pr), obtained for each source, are compared to those
from the fit to the reference pt spectrum, obtained with default selection criteria. The fit to the
reference pr spectrum is also done with statistical uncertainties only. The statistically significant

differences are summed in quadrature to contribute to the overall systematic uncertainties on
dN/dy, C, n and (pr).

Although the Lévy-Tsallis function describes the spectra both at low and at large pr, other
functions (e.g. mr exponential or pp power law) are likely to reproduce the low-pp behaviour
and are suitable for the low-pt extrapolation. These functions are fitted to the low-pt part of
the spectrum below 3 GeV/c and used to evaluate the low-pp contribution outside the measured
range. An mt exponential functional form

1 d2N mp
= Aprmre T, 4
NingL dydpr T @

where A is the normalization factor and C' is the inverse slope parameter, gives values for
dN /dy which are ~ 5-6% lower and values for (pp) which are ~ 3% higher than those obtained
with the Lévy-Tsallis function. A pt power law functional form

1 d2N pr\ "
() :
NingL dydpr pr nC (5)

gives values for dN/dy which are ~ 10-15% higher and values for (pr) which are ~ 9-11%
lower than those obtained with the Lévy-Tsallis function. Arithmetic averages of the values
obtained with the three functions (Lévy-Tsallis, my exponential, py power law) are taken for
dN /dy and (pr) and the unbiased estimators of standard deviation are considered as systematic
uncertainties associated to the low-p extrapolation. These systematic uncertainties are summed
in quadrature to contribute to the overall systematic uncertainties on dV/dy and (pt). Table 8
summaries the results.

The anti-baryon to baryon ratios, ¥(1385)~ /% (1385)" and X(1385)" /%(1385)~, are compatible
with unity, although the large uncertainties leave very little predictive power on the mechanisms
of baryon-number transport [33].
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Baryon | dN/dy (x107%) |  (pr) (GeV/c)
»(1385)" | 10.0 £0.2 T35 | 1.15 + 0.02 + 0.07
%(1385)~ | 10.8 £ 0.2 71T | 1.15 + 0.02 £ 0.08
$(1385)~ | 9.1 4+ 0.2 1% | 1.16 £ 0.02 £ 0.08
$(1385)* | 10.3 + 0.2 T1T | 1.16 & 0.02 £ 0.07
=(1530)° | 2.56 £ 0.07 £5:39 | 1.31 & 0.02 £ 0.09

Table 8: Particle yield per unit rapidity, dN/dy, and mean transverse momentum, (p). Val-
ues are obtained as an average of the values calculated with three different functions (Lévy-
Tsallis (Eq. ), mt exponential (Eq. @), pr power law (Eq.[H])), which reproduce the low-pr be-
haviour of the spectrum. Systematic uncertainties include those from the low-pt extrapolation
and (for dN/dy only) the pp-independent uncertainties from Table

3.1 Comparison to models

The transverse momentum spectra of both ¥(1385) and Z(1530)" are compared to standard
tunes of PYTHIA 6 [34] and PYTHIA 8 [35], HERWIG [36] and SHERPA [37]. This is shown
in Figs. [0 and [T for ¥(1385)" and Z(1530)°, respectively. Similar results to those of ¥(1385)"
are obtained for the other ¥(1385) species.

The latest release of PYTHIA 6 (6.427) is used. One of its latest tunes (Perugia 2011, tune 350 |22])
is compared with the central parameter set (Perugia 0, tune 320). Perugia 2011 takes into ac-
count some of the early LHC minimum-bias and underlying-event data at 0.9 TeV and 7 TeV
(see [22] and references therein) and describes the 7 TeV pp charged particle spectra reasonably
well [30]. The multi-strange baryon yields are also better described by the Perugia 2011 tune,
even if it still underpredicts the data [31]. Similar conclusions hold for the strange meson reso-
nances ¢ and K* [20]. For both $(1385) and Z(1530)°, the Perugia 2011 tune underestimates the
data, though it gives a better description with respect to Perugia 0. Also the Perugia 2012 tune
of PYTHIA 6 (tune 370 [38]) has been tested with no significant improvement in the predictions
for both ¥(1385) and Z(1530)°. The Perugia 2012 tune [38] is a retune of Perugia 2011 which
utilizes a different parton distribution function, CTEQG6L1 instead of CTEQS5L. The predictions
from the Perugia 2012 tune are not reported in Figs. [ and [7

The latest release of PYTHIA 8 (8.176) is used. The standard 4C tune (CTEQG6L1 [35]) gives
a worse description with respect to the Perugia 2011 tune of PYTHIA 6. The 4C tune has
color reconnection (CR) enabled by default: switching CR off gives a worse description, as
expected [39]. ATLAS tunes A2-MSTW2008LO and AU2-CTEQ6L1 have been considered as
alternatives to the standard 4C tune (CTEQG6L1). The A2-MSTW2008LO utilizes a different
parton distribution function and the AU2-CTEQG6L1 is better tuned for underlying events. None
of them performs better than the 4C tune; therefore, they are not reported in Figs. [l and [71

Also shown in Figs. [6l and [0 are the results from HERWIG (release 6.521) [36] and SHERPA
(release 1.4.6) [37]. HERWIG predicts a much softer production than for both the other models
and the data, for both ¥(1385) and Z(1530)°. For ¥(1385), HERWIG is likely to describe the
data at low pr, but it underpredicts the data by a factor ~ 2—4 in the intermediate-pt region
2 < pr < 3 GeV/e, and more than one order of magnitude at higher pr. For =(1530)°, HERWIG
fails both at low pr, where the predictions are overestimated by a factor ~ 2—4, and at high
pT, where the predictions are underestimated by more than one order of magnitude. SHERPA
gives a better description of the spectral shape for both ¥(1385) and Z(1530)°, but the overall
production cross sections are largely underestimated.

The integrated yields dV/dy are also compared to thermal model calculations by F. Becattini
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Fig. 6: The transverse momentum spectrum of ¥(1385)" is compared to standard tunes of
PYTHIA 6 |34] and PYTHIA 8 [35], the latest release of HERWIG (6.521) [36], and SHERPA
release 1.4.6 |37]. The MC data are binned according to the data. Spectra points are represented
at the centre of the pr interval. The lower panel shows the ratio data/MC. pr-independent
uncertainties are not shown.

et al. [40], tuned on the yields measured by the ALICE experiment at /s = 7 TeV for 7+, K*0,
¢, EF and QF [20, 130, 31], giving a temperature of T = 160 MeV. The other parameters, as
obtained from the fit to the ALICE data, are the strangeness suppression factor, yg = 0.72, the
normalization parameter, A = 0.0355, and VT = 231.2, where V is the volume. The comparison
is done for the ratios ¥(1385)" /A and Z(1530)°/Z~, which are sensitive to the temperature 7.
The experimental yields of A and Z~ are from [31,41]. The theoretical value for the Z(1530)" is
obtained as average of the values for Z(1530)° and Z(1530)", to be compared to the experimental
results of this analysis. The theoretical prediction for 3(1385)" /A (0.13) is in agreement with
the measured value (0.131 £ 0.002 + 0.021). Similar conclusions hold for the other ¥(1385)
species (namely, for the ratios ¥(1385)~ /A, $(1385)~ /A and X(1385)*/A). The prediction for
Z(1530)° /=~ (0.38) is also in agreement with the experimental value (0.324-0.014-0.05) if both
statistical and systematic uncertainties are considered.
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Fig. 7: Same as Fig. B but for Z(1530)°.

3.2 Mean transverse momentum (pr)

The mean transverse momentum (pr) serves as a single variable to characterize the soft part of
the measured particle spectra. Figure[shows the (pr) as a function of the particle mass, covering
a wide range of hadron mass up to the Q. The plot includes %(1385)" and Z(1530)° from this
analysis, and other particles measured in pp collisions at /s = 0.9 TeV and /s = 7 TeV with
the ALICE experiment [19, 120, [30-32]. The STAR pp data at /s = 0.2 TeV [1, 42-45] are
added for comparison. The dashed line in Fig. [§is the ISR parametrization, an empirical curve
proposed originally [46] to describe the ISR [47] and FNAL [48] data for 7, K and p only, at
Vs = 0.025 TeV.

For STAR data, the ISR parametrization still works relatively well for lower-mass particles up to
~ 1 GeV/c? [44], despite the jump in the collision energy by nearly an order of magnitude with
respect to previous experiments, but it fails to describe the dependence of (pr) for higher-
mass particles. At the RHIC energies, this was attributed to an increasing contribution to the
transverse momentum spectra from mini-jet production [49]. In particular, it was noted that
strange baryon resonances (3(1385) and A(1520)) follow a steeper increase, similar to the trend
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Fig. 8: The mean pr as function of the particle mass including ¥(1385)", Z(1530)° and other
particles reconstructed in pp collisions at /s = 7 TeV and /s = 0.9 TeV by the ALICE collab-
oration [19, 120, 130-32] and at /s = 0.2 TeV by the STAR collaboration [1, 42-45]. The lower
panel shows the ratio data/MC. Statistical and systematic uncertainties are shown separately
(vertical solid lines and brackets, respectively).

of heavier mass particles [1].

For ALICE data, the ISR parametrization fails to fit the lower-mass particles already at the
collision energy of /s = 0.9 TeV and the dependence of (pr) with the mass is even steeper at
/s = 7 TeV. Unlike STAR, strange baryon resonances follow the same trend as the lower-mass
particles. At the LHC energies, flow-like effects in pp collisions are investigated |39, 50] which
might explain the harder behaviour of transverse momentum spectra, specially for higher mass
particles. The ALICE points at /s = 7 TeV are fitted with a function similar to the ISR

parametrization,
M B
(pT) =« (W) ) (6)

where M is the particle mass, obtaining a = (1.06 £ 0.02) GeV/c and = 0.43 £ 0.02. For the
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fit the statistical and systematic uncertainties are summed in quadrature. A x2?/ndf = 9.61/6
with a probability of 14%, is obtained. The antiproton (pr) is excluded from the fit since it
is off-trend. Including it in the fit changes very little the fit parameters (o = 1.04 GeV/c and
B = 0.41) but increases the x? (x?/ndf = 15.75/7). The values for o and 8 have to be compared
with aisg = 0.7 GeV/e and fSigg = 0.4. The results of the fit are shown with a solid line in
Fig. B

The dash-dotted line in Fig. B is the prediction from PYTHIA 6, tune Perugia 2011. For
$(1385)F and Z(1530)Y the MC predictions are ~ 20% softer than data. The long-dashed line
in Fig. B is the prediction from SHERPA, which is also softer than data.

4 Search for the ¢(1860) pentaquark

In order to explore the existence of the ¢(1860) pentaquark, reported by the NA49 experiment [3],
the =~ 71 invariant mass spectrum in Fig. [3] was extended up to above 2 GeV/c?, as shown
in Fig. The arrow and the shaded area give the region where the ¢(1860) pentaquark is
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Fig. 9: 2 7" and 27~ invariant mass distributions. The arrow and the shaded area indicate
the region where the ¢(1860) pentaquark is expected and where the search was performed.
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expected and where the search was performed. From MC studies with reconstructed particles,
the detector mass resolution of the Z(1530)° is ~ 2 MeV/c? and no significant worsening is
expected at masses around 1860 MeV/c?. The expected theoretical width of the ¢(1860) is
quite narrow (< 10 MeV/c? [3]) so that, eventually, the detector resolution should not affect
the measurement. Also in Fig. [ the like-sign, =~ 7~ , invariant mass distribution is presented.
Both channels could potentially exhibit a signature of the ¢(1860) pentaquark: #(1860)° in
the =~ nTchannel and ¢(1860)~~ in the = 7 channel. Both distributions in Fig. [@ clearly
demonstrate the lack of significant evidence for the ¢(1860) pentaquark.
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No signal of the pentaquark was found by many other experiments [4-14]. A measure of the
maximum likely yield of the ¢(1860) has been made according to the procedure used by the
COMPASS experiment [7]. The background is first estimated by fitting the like-sign distribution
with a 4*"-order polynomial from 1.6 to 2.2 GeV/c? while excluding the supposed pentaquark
range from 1.825 to 1.895 GeV/c?. The signal is counted by integrating the entries in the like-sign
distribution in a 28 MeV/c? interval centred around 1.860 GeV/c?. The maximum likely signal
estimated at the 3 o (99%) confidence level is

S¢(1860) = 3\/5—|— maX(O, S§— b), (7)

where the counted signal and background are given by s and b, respectively. The ratio of
the integrated Z(1530)° yield to the pentaquark yield, Sg(1860), 18 to be compared to other
experiments. This is shown in Table [@ for the ¢(1860)~~. The acceptance effects largely cancel
in the ratio. The pentaquark search was also performed moving the centre of the search interval
by 10 MeV /c? to the left and to the right; the same result is obtained. Similar results for S(1860)
are obtained for ¢(1860)°.

Experiment ‘ Initial state ‘ Energy (TeV) ‘ S4(1860)~— ‘ 2(1530)° /S s(1860)- -

ALICE \ pp \ Vs =1 \ <807 | >44
NA49 [3] \ pp | E,=0158 | 36 | 4.2
ALEPH [4] ete” Vs = myo <24 >13.4
BaBar [5] ete” Vs = myus) not seen

CDF [6] pp Vs = 1.960 <63 >35
COMPASS [7] pt-A E,+ = 0.160 <79 > 21.5
E690 [8] pp E, = 0.800 <310 >302
FOCUS [9] p E, < 0.300 <170 >349
HERA-B [10] p-A E, = 0.920 <56 >25
HERMES [11] e™D E. = 0.0276 <5 >7
WAS9 [12] YA Es,- = 0.340 <760 >79
ZEUS [13] ep Vs = 0.300, 0.318 | not seen

H1 [14] ep Vs = 0.300, 0.318 | not seen >2-8f

Table 9: Summary of ¢(1860) searches in inclusive production. The energies given in the third
column refer to the beam energy in case of fixed-target experiments and to /s in case of collider
experiments. The pentaquark signal is related to the Z(1530)° yield in the last column.

5 Conclusions

The transverse momentum spectra of the baryon resonances $(1385) and =(1530)° have been
measured by the ALICE collaboration in pp collisions at an energy in the centre of mass of
/s =7 TeV. A Lévy-Tsallis function describes the spectra well.

The mean transverse momentum (pr) of both ¥(1385) and Z(1530)°, when plotted as a function
of the particle mass, follows the trend of other particles measured with the ALICE experiment
in pp collisions at /s = 7 TeV.

The differential spectra have been compared to several MC event generators, e.g. standard tunes

of PYTHIA 6 and PYTHIA 8, HERWIG and SHERPA. PYTHIA 6 Perugia 2011 (tune 350)

TAt the 95% C.L.
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performs better than any other tested generator, still underpredicting the data by a factor ~ 2-3
in the intermediate-pr region 2 < pp < 3 GeV/e.

The search for the ¢(1860)° and ¢(1860)~~ pentaquark states in the =7 charged channels has
shown no evidence for the existence of such exotic particles.
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