
G. Avolio3, A. Corso-Radu1, A. Kazarov2, G. Lehmann Miotto3,
L. Papaevgeniou3, I. Soloviev1, G. Unel1

¹University of California, Irvine, USA

2PNPI, St. Petersburg, Russian Federation
3CERN, Geneva, Switzerland

A Dynamic Test Management for the
ATLAS Experiment

1. The Online Software of the ATLAS Trigger and Data Acquisition System

The ATLAS experiment1 at the Large Hadron Collider at CERN relies on a
complex and highly distributed Trigger and Data Acquisition2 (TDAQ) system
to gather and select particle collision data at unprecedented energy and rates.
The TDAQ system is composed of a large number of hardware and software
components (about 3000 machines and more than 20000 concurrent processes)
and is required to handle data coming in parallel from the detector readout over
some 1600 point-to-point readout links.

The Online Software3 encompasses the software to configure, control and
monitor the TDAQ system. It is based on a number of services which provide
essentially the glue that hold the various sub-systems together. The Test
Management is one of these services and is devoted to the verification of the
functioning of the TDAQ system by executing tests on request.

The Test Management is based on several components of the Online Software framework. The three most important
ones are:
•  Configuration Database (DB): this provides the description of the TDAQ system (and tests) configuration;
•  Process Manager (PMG): this offers a service to create, control and monitor the status of all the processes in the

TDAQ system.
•  Inter Process Communication (IPC): this is based on CORBA and allows tests to be invoked on applications as

remote procedure calls.

The Test Management is used by:
•  The Run Control (RC) system that periodically verifies the functioning of the components it is in charge of;
•  The Central Hint and Information Processor (CHIP) that executes tests to diagnose problems;
•  The operator who manually executes tests via a dedicated graphical user interface.

2. The Requirements

3. Design 4. The Diagnostics and Verification GUI

5. Implementation & Performance 6. Conclusions

Testing
Framework
capable of

verifying the
functioning of

the ATLAS
TDAQ in Run 2

Requirements
review after first

production
experience

Modular design

Strict quality control
(robustness,
performance,

scaling)

References
1.  The ATLAS Collaboration, 2008, The ATLAS Experiment at the CERN Large Hadron Collider, J. Instrum. 3
2.  The ATLAS Collaboration, 2002, ATLAS high-level trigger, data-acquisition and controls: Technical Design

Report
3.  Lehmann Miotto G. et al, Configuration & control of the ATLAS trigger and data acquisition,

Nucl.Instrum.Meth. A623 (2010) 549-551
4.  M. Barczyk et al., Verification and diagnostics framework in ATLAS trigger / DAQ, Nov 22, 2003. 5 pp.

Published in eConf C0303241 (2003) TUGP005

Testing

RC

Operator

CHIP

New Test Management Framework

Tests executed
on request

synchronously or
asynchronously

Test are
executables or

remote
procedure calls
returning POSIX

1003.3 codes

No performance
requirement on

tests, but service
should add
minimum
overhead

Execute tests for a
component

•  Dependencies between
tests of one component

•  Process management
•  Form result for

component out of results
of individual tests

Test groups
of composite
components

•  Dependencies between
components

•  Form global result for
composite components
out of results of individual
components

Represent
components
and the test

results

•  Show testable
components

•  Show components status
•  Allow user to select and

execute tests

Operator

Run Control

CHIP

Support for Java
& C++

The GUI allows an operator to test one or more components, or to run individual tests for one component. The tree-
like representation of components indicates their interdependencies (e.g. an application relies on a working computer
to run on).
The operator can browse the detailed output of the tests, as well as the diagnosis that has been created based on
the test results and the follow-up suggestions that have been configured by the experts in the configuration
database.

The test management framework is modular and is
implemented as libraries (java, C++) and a QT
based application for the graphical user interface:
•  A database schema to describe tests,

components, dependencies and follow-up
suggestions with the associated data access
libraries to get the configuration information;

•  A client library to perform tests on individual
components;

•  A client library (C++) to handle the testing of
components taking into account the other
components they depend on (e.g. before
testing an application, test that the computer it
should run on works correctly);

•  A GUI to allow the operator to request the
execution of tests.

Test Configuration fully
defined by system

experts In the
configuration database

The C++ and Java implementations have been developed independently. Both achieve a good, comparable
performance (i.e. are capable of launching many tests in parallel without imposing any significant overhead).
The Java implementation is, at the time being, capable of optimally parallelizing execution using less threads than
the C++ implementation. Its threading model may thus be ported to the C++ implementation as well in future.

The handling of dependencies between components is handled at present only in the C++ implementation. A forward
chaining inference engine is used to launch the testing of every component at the appropriate time, based on the
results obtained for other components.

The Test Management and Diagnostics service4 was
revised after the first data taking period of ATLAS.

A set of new functional requirements were added:
•  “Experts shall be able to define the order in which tests

should be executed for a component; the sequence
may dynamically change based on the result of
completed tests”

•  “Experts shall be able to define the order with which
inter-related components shall be tested; the test
sequence may change depending on the result
obtained for the components.”

•  “Experts shall be able to define what should be done
upon failure of a test or a component to further
diagnose the issue or recover.”

All these requirements point towards an increased
configurability of the system by ATLAS experts. The
description of the testing behavior was thus completely
transferred to the configuration database.

An additional constraint was added, based on the
evolution of other parts of the TDAQ system:
•  “The test management functionality should be

provided in C++ and Java.”

Based on this extension of requirements a complete re-
implementation has been carried out in the past year.

Tests, diagnosis,
follow-up
suggestions fully
configurable
• Dependencies, scope &
level, validity interval, …

