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1 Introduction

In recent years, data from the LHC [1–3] and RHIC [4, 5] have given strong support to the

paradigm that the QCD matter produced in ultra-relativistic heavy-ion collisions evolves

like an almost perfect fluid (for reviews, see refs. [6–9]). Hadronic spectra and particle

correlations at low transverse momentum can be understood as the fluid dynamic response

to fluctuating initial conditions [10, 11] (see also refs. [12–15]). This is by now supported

by a large number of detailed studies [16–31]. Since dissipative QCD hydrodynamics can

be formulated entirely in terms of quantities that are calculable from first principles in

finite temperature QCD, the observed fluid dynamic behaviour is at the basis of connect-

ing measurements in these strongly evolving mesoscopic systems to properties of QCD

thermodynamics.

In practice, testing QCD thermodynamics experimentally is complicated by the fact

that data result from a convoluted time history that depends not only on hydrodynamic

evolution but also on initial conditions and hadronization. In particular, essentially all
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flow measurements are correlation measurements and correlations can be present already

in the initial conditions, or they can arise (or be attenuated) dynamically during the hy-

drodynamic evolution or during hadronization, respectively. The theory framework for

determining the dynamical evolution is clear: once the thermodynamic information and

transport properties entering the equations of dissipative fluid dynamics are specified, the

propagation of a known initial condition can be controlled. A significant number of tools

and techniques has been developed to this end [32, 33]. However, the initial conditions are

arguably less controlled so far. Understanding their dynamical origin and their statistical

properties is now becoming a major focus of current research.

Earlier efforts in this direction have focussed mainly on exploring the density distri-

butions generated in Monte Carlo models that implement variants of the optical Glauber

model [13, 34–37] or supplement these with effects from parton saturation physics [19, 38–

40], or in dynamically more complete code-based formulations [41, 42]. In a different

direction, the simplifying assumption that initial density perturbations follow a Gaussian

distribution has served since long as a baseline for characterizing initial conditions [44–46].

The question arises to what extent such studies explore only a possibly limited range of the

total parameter space of conceivable initial conditions, or whether it is possible to identify

universal features that any phenomenologically relevant model of initial conditions is ex-

pected to satisfy on general grounds. One such general consideration that applies to heavy

ion collisions is that particle production arises from a large number of essentially indepen-

dent sources with identical statistical properties. It is well-known in probability theory [47]

that this alone implies that n-th order cumulants (or connected n-point correlation func-

tions) of variables that are normalized sums of these independent source contributions scale

in a characteristic way ∝ 1/Nn−1 with the number N of sources. Different eccentricities

εm{n} have been calculated for such a model to various orders in 1/N by Bhalerao and Ol-

litrault [48] as well as Alver et al. [10] and where shown to quantitatively reproduce results

of more sophisticated Glauber models in nucleus-nucleus collisions [49]. First indications

that the scaling with n is particularly relevant for initial conditions in proton-nucleus and

nucleus-nucleus collisions go back to numerical findings of Bzdak, Bozek and McLerran [50].

They were sharpened subsequently due to work of Ollitrault and Yan [51] (see also Bzdak

and Skokov [52]) who established a related scaling for eccentricity cumulants at vanishing

impact parameter in an analytically accessible model of independent point sources (IPSM)

and who showed that this reproduces with good numerical accuracy the eccentricity cumu-

lants in other currently used models of initial conditions.

The present paper aims at contributing to this important recent development. To this

end, we shall show how one can solve the IPSM completely, including the set of n-point

correlation functions that characterize completely the information about the radial and

azimuthal dependence at zero and non-zero impact parameter. Based on this differential

information, we shall provide further evidence that the IPSM shares indeed important

commonalities with realistic model distributions. At finite impact parameter b, we shall

find that the 1/Nn−1-scaling is broken for azimuthally averaged event samples. However,

for small b, the leading b-dependence of the terms that break this scaling can be given

analytically. Thus information about this b-dependence, combined with information about

– 2 –



J
H
E
P
0
8
(
2
0
1
4
)
0
0
5

Figure 1. Schematic overview of the operations with which we construct moments or correlation

functions and the corresponding cumulants or connected correlation functions for event ensembles

with fixed and with random reaction plane angle φR. The operations of averaging over φR and of

forming connected correlation functions do not commute, see text for further details.

the 1/Nn−1-scaling for b = 0 can provide an ordering principle that applies more gener-

ally to n-point correlators at zero and non-zero impact parameter. We shall also discuss

how the connected n-point correlation functions of initial fluctuations enter the calcula-

tion of measurable correlators of flow coefficients, and we shall point to possible further

phenomenological applications of these insights.

The main assumption underlying the scaling of connected n-point correlation functions

with 1/Nn−1 is that the transverse density is given by a sum of N independent and iden-

tically distributed random variables or functions of random variables.1 As we discuss in

more detail in the main text, this holds also for ensembles of non-central events, however,

only if impact parameter and reaction plane orientation are kept fixed. In contrast, the

phenomenologically relevant connected n-point correlation functions are defined for ensem-

bles with random azimuthal orientation. To cope with this complication, we find it useful

to work in a framework sketched in figure 1: we denote event averages with fixed azimuthal

orientation by 〈. . .〉 and we construct moments and the corresponding cumulants as usual

from a generating functional and its logarithm, respectively. Randomizing the azimuthal

orientation φR in the averages 〈. . .〉 defines the average 〈. . .〉◦. The scaling with 1/Nn−1

is broken for the ensemble average 〈. . .〉◦ at finite impact parameter, since the operation

of averaging over φR does not commute with the operation of passing from moments to

cumulants. In other words, the cumulants with respect to the randomized ensemble do not

correspond to φR-averages of cumulants evaluated at fixed φR.

As a significant part of this paper will study in detail the independent point-sources

model, we conclude this introduction by asking to what extent the spatial dependence of

correlation functions in the IPSM can be expected to have physical significance. One may

argue that the long-wavelength excitations (small values of azimuthal wave numbers m

1In the concrete realization of the IPSM, these random variables are positions of point-like sources but

the scaling with N actually holds also for extended sources. The azimuthal and radial dependences of

correlation functions change in that case, however. On the other side, the 1/Nn−1 scaling gets violated as

soon as correlation effects between the random variables such as e.g. excluded volume or other interaction

effects are taken into account.
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and radial wave numbers l in a Bessel-Fourier expansion) do not resolve the differences

between a spatially extended but short range source function and a point-like source.

Since these long wavelength modes are most important for the fluid dynamic evolution

(others get damped quickly by dissipative effects), one might expect that also some space-

dependent features of the independent point-sources model contain realistic aspects. They

are universal in the sense that a larger class of models with extended sources (and even some

early non-equilibrium dynamics as long as it is local) lead to equal correlation functions

for the long wavelength modes. If it could be established, such a universality for the

correlations of the most important fluid dynamic modes would have profound consequences.

For instance, in a mode-by-mode fluid dynamics framework one could use this knowledge

of initial conditions for a detailed comparison between experimental results on correlations

of harmonic flow coefficients and fluid dynamic calculations which would allow for a more

detailed determination of thermodynamic and transport properties. These are some of the

considerations that have prompted the following analysis.

2 Flow cumulants

In this section, we discuss how flow measurements are related to the n-mode correlation

functions of initial density perturbations that we are going to analyze in sections 3 and 4

below. To focus on the structure of this relation, we shall defer some technical definitions

to section 3. We start from a perturbative expansion of the complex-valued event-wise

flow coefficients in powers of weights w
(m)
l that characterize these density perturbations in

terms of azimuthal (m) and radial (l) wave numbers [53]

V ∗m ≡ vme−imψm =
∑
m1,l1

S(m1)l1 w
(m1)
l1

δm,m1

+
∑

m1,m2,l1,l2

S(m1,m2)l1,l2 w
(m1)
l1

w
(m2)
l2

δm,m1+m2

+
∑

m1,m2,m3,l1,l2,l3

S(m1,m2,m3)l1,l2,l3 w
(m1)
l1

w
(m2)
l2

w
(m3)
l3

δm,m1+m2+m3

+ . . . (2.1)

Here, the indices mi are summed over the range (−∞ . . .∞) and the indices li are

summed over the range (1, . . . ,∞). As coefficients of a Bessel-Fourier expansion, defined in

eq. (3.2) below, the w
(m)
l satisfy w

(m)
l = (−1)mw

(−m)∗
l . The dynamical response functions

S(m1,...,mn)l1,...,ln satisfy then S(m1,...,mn)l1,...,ln = (−1)m1+...+mnS∗(−m1,...,−mn)l1,...,ln
. For the

harmonic flow coefficients one has V−m = V ∗m. In general, n-th order flow cumulants

vm{n}n denote the connected n-point event average of flow coefficients Vm. The lowest

order cumulants take the explicit form [54, 55]

vm{2}2 ≡ 〈VmV−m〉◦ , (2.2)

vm{4}4 ≡ −〈(VmV−m)2〉◦ + 2 〈VmV−m〉2◦ , (2.3)

vm{6}6 ≡
1

4

[
〈(VmV−m)3〉◦ − 9 〈(VmV−m)2〉◦ 〈VmV−m〉◦ + 12 〈VmV−m〉3◦

]
. (2.4)
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These higher order flow cumulants are measured in ion-ion and in proton-ion collisions [1,

56, 57]. With the help of the perturbative expansion (2.1), one can write flow cumulants

as products of event averages of initial fluctuating modes w
(m)
l times dynamical response

functions S(m1,...,mn)l1,...,ln . For the second order flow cumulant, one finds up to fifth order

in initial fluctuations

vm{2}2 = 〈T2〉◦ + 〈T3A〉◦ + 〈T3B〉◦ + 〈T4A〉◦ + 〈T4B〉◦ + 〈T4C〉◦ +O(w5) , (2.5)

where

T2 =
∑
l1,l2

S(m)l1 S(−m)l2 w
(m)
l1

w
(−m)
l2

,

T3A =
∑

m2,m3,
l1,l2,l3

S(m)l1S(−m2,−m3)l2,l3 w
(m)
l1

w
(−m2)
l2

w
(−m3)
l3

δm,m2+m3 ,

T3B =
∑

m1,m2,
l1,l2,l3

S(m1,m2)l1,l2S(−m)l3 w
(m1)
l1

w
(m2)
l2

w
(−m)
l3

δm,m1+m2 ,

T4A =
∑

m1,...,m4,
l1,...,l4

S(m1,m2)l1,l2S(−m3,−m4)l3,l4 w
(m1)
l1

w
(m2)
l2

w
(−m3)
l3

w
(−m4)
l4

δm,m1+m2 δm,m3+m4 ,

T4B =
∑

m2,m3,m4,
l1,l2,l3,l4

S(m)l1S(−m2,−m3,−m4)l2,l3,l4 w
(m)
l1

w
(−m2)
l2

w
(−m3)
l3

w
(−m4)
l4

δm,m2+m3+m4 ,

T4C =
∑

m1,m2,m3,
l1,l2,l3,l4

S(m1,m2,m3)l1,l2,l3S(−m)l4 w
(m1)
l1

w
(m2)
l2

w
(m3)
l3

w
(−m)
l4

δm,m1+m2+m3 . (2.6)

Here, 〈T2〉◦ is the only term that involves only the linear dynamic response terms S(m)l of

the perturbative series (2.1). It is thus the entire linear response contribution to vm{2}2.2

The terms 〈T3A〉◦, 〈T3B〉◦ . . . are higher order (non linear) corrections to this linear response.

In eq. (2.6) we have included terms up to order O(w5) to display the first non-vanishing

correction to linear dynamics in a Gaussian model of initial conditions where it arises at

order w4 (see section 3).

In the same way, we can write the fourth order flow up to seventh order in initial

fluctuations,

vm{4}4 = −〈T2 T2〉◦ + 2〈T2〉2◦
−2〈T2(T3A + T3B)〉◦ + 4〈T2〉◦ 〈T3A + T3B〉◦
−〈(T3A + T3B)(T3A + T3B)〉◦ + 2〈(T3A + T3B)〉2◦
−2 〈T2 T4A〉◦ + 4 〈T2〉◦ 〈T4A〉◦ +O(w7) . (2.7)

2The parametrization of initial fluctuations in terms of eccentricities would amount to neglecting radial

wave numbers and substituting w
(m)
l → εm in our discussion. The linear response contribution to (2.5)

reduces then to the well-known approximate linear relation vm{2}2 ∝ εm{2}2, which is at the basis of

participant eccentricity scaling [23, 28].

– 5 –



J
H
E
P
0
8
(
2
0
1
4
)
0
0
5

The linear response term of (2.7) can be written in terms of a connected four-point function

of initial fluctuations,3

− 〈T2 T2〉◦ + 2〈T2〉2◦ = −S(m)l1 S(−m)l2 S(m)l3 S(−m)l4 〈w
(m)
l1

w
(−m)
l2

w
(m)
l3

w
(−m)
l4
〉◦,c . (2.8)

(Summation over the indices l1, . . . , l4 is implied here and in the following.) In general,

the linear response contribution to vm{2n}2n is proportional to a connected (2n)-mode

correlator

vm{2n}2n = 〈
n∏
i=1

(
S(m)li S(−m)l′i

w
(m)
li

w
(−m)
l′i

)
〉◦,c + non-lin. dynamic response . (2.9)

Flow measurements are not limited to the determination of flow cumulants. In principle,

arbitrary event averages 〈Vm1 Vm2 . . . Vmn〉◦ of products of flow coefficients are experimen-

tally accessible, see e.g. [58]. For event samples with randomized orientation of the reaction

plane, the simplest generalization are 3-flow correlators 〈Vm1 Vm2 Vm3〉◦ with
∑3

i=1mi = 0.

To be specific, let us write here the expansion of one of them,

〈V2 V3 V
∗

5 〉◦ = S(2)l2S(3)l3S(−5)l5〈w
(2)
l2
w

(3)
l3
w

(−5)
l5
〉◦

+S(2)l2S(3)l3S(−2,−3)l5,l̄5
〈w(2)

l2
w

(3)
l3
w

(−2)
l5

w
(−3)

l̄5
〉◦

+S(2)l2S(5,−2)l3,l̄3
S(−5)l5〈w

(2)
l2
w

(5)
l3
w

(−2)

l̄3
w

(−5)
l5
〉◦

+S(5,−3)l2,l̄2
S(3)l3S(5)l5〈w

(5)
l2
w

(−3)

l̄2
w

(3)
l3
w

(−5)
l5
〉◦ + . . . . (2.10)

On the right hand side we have included terms from linear dynamics as well as those

quadratic corrections that contain four point functions with two opposite index pairs

(m,−m). These are the leading contributions for ensembles that are close to Gaussian.

Other experimentally easily accessible 3-flow correlators include 〈V2 V2 V
∗

4 〉◦ and

〈V3 V3 V
∗

6 〉◦, for which similar expansions can be written down. The dynamical response

functions that appear on the right hand side of (2.10) can be found also in the expansion of

the flow cumulants (2.9).4 But in the 3-flow correlators, the linear and non-linear dynamic

response terms are weighted with a different set of informations about the initial condi-

tions, namely a different set of moments 〈w(m1)
l1

. . . w
(mn)
ln
〉◦ that typically involve harmonic

modes with different m.

As illustrated by the examples discussed so far, the calculation of flow correla-

tion measurements 〈Vm1 Vm2 Vm3 . . . 〉◦ requires knowing the initial n-mode correlators

〈w(m1)
l1

. . . w
(mn)
ln
〉◦ and the dynamical response functions S(m1,...,mn)l1,...,ln . We note that

the dynamical response functions are known in principle, in the sense that they are cal-

culable once the thermodynamic information entering hydrodynamic evolution and the

3This is well-known, of course. For a parametrization of initial fluctuations in terms of eccentricities

(w
(m)
l → εm), the linear response contribution to (2.7) would reduce to the well-known approximate ansatz

vm{4}2 ∝ εm{4}2 in terms of a connected 4-point function of initial eccentricities εm.
4This is obvious for the linear response terms S(2)l2 , S(3)l3 and S(5)l5 , but one can check for instance

easily that the non-linear response terms in (2.10) appear in the contributions T3A and T3B that enter the

flow cumulants (2.5) and (2.7). In particular, S(2,3)l5,l̄5
appears as a non-linear contribution to v5{2}2 and

v5{4}4.

– 6 –
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event-averaged initial enthalpy density is given. No further model dependent assumption

enters their calculation. A method of how to determine them numerically was given in

ref. [53]. On the other hand, the correlators 〈w(m1)
l1

. . . w
(mn)
ln
〉◦ should be calculable in

principle from a microscopic theory of thermalization dynamics. In practice, however, this

program is not yet carried out, and the initial conditions are currently regarded as the most

significant source of uncertainties in the calculation of flow observables. This motivates us

to investigate in the following what can be said on the basis of general considerations about

the structure of n-mode correlators 〈w(m1)
l1

. . . w
(mn)
ln
〉◦.

3 Gaussian probability distributions of initial conditions

In this section, we introduce Gaussian probability distributions of fluctuations in the initial

transverse enthalpy density w(~x), and we discuss their implications for flow cumulants and

flow probability distributions.

3.1 Gaussian model of initial fluctuations for fixed reaction plane angle φR

We start from the general form of a Gaussian probability distribution of the enthalpy

density written for fixed impact parameter and reaction plane angle φR (see also appendix C

of ref. [46])

p[w] = N exp

(
− 1

2

∫
d2xd2y[w(~x)− w̄(~x)]M(~x, ~y)[w(~y)− w̄(~y)]

)
. (3.1)

As a Gaussian distribution it is specified completely in terms of the expectation value w̄(~x)

and the connected two-point correlation function C(~x, ~y), which is the inverse of M(~x, ~y)

seen as a matrix of infinite dimension with indices ~x and ~y. For an arbitrary event, we

write the enthalpy density in a Bessel-Fourier expansion

w(r, φ) = wBG(r)

[
1 +

∞∑
m=−∞

∞∑
l=1

w
(m)
l eimφJm

(
z

(m)
l ρ(r)

)]
. (3.2)

Here, ρ(r) is a monotonous function that maps r ∈ (0,∞) to ρ ∈ (0, 1). It is specified in

appendix A. The real numbers z
(m)
l denote the l’th zeroes of the Bessel function Jm(z).

The Bessel-Fourier coefficients w
(m)
l are complex (the phase contains information about

the azimuthal orientation), but since the enthalpy density is real, the coefficients satisfy

w
(m)
l = (−1)mw

(−m)∗
l . An inverse relation that expresses w

(m)
l in terms of w(r, φ) is given

in eq. (4.12).

The expectation value at fixed impact parameter and reaction plane angle φR can be

written in the same Bessel-Fourier expansion,

w̄(r, φ) = wBG(r)

[
1 +

∞∑
m=−∞
m even

∞∑
l=1

w̄
(m)
l eim(φ−φR) Jm

(
z

(m)
l ρ(r)

)]
. (3.3)

Here, the sum over m on the right hand side goes only over the even values m = ±2,±4, . . .

as it follows from the discrete symmetry that w̄(r, φ) = w̄(r, φ+ π). The function wBG(r)

– 7 –
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is defined such that the m = 0 component in the sum vanishes. The dimensionless and real

coefficients w̄
(m)
l depend on centrality and they vanish with vanishing impact parameter b,

i.e., for ultra-central collisions. One can show that for small b they behave like w
(m)
l ∼ b|m|,

see appendix C. For the two-point correlation function we write a Bessel-Fourier expansion

in terms of the coefficients C
(m1,m2)
l1,l2

,

C(r1, r2, φ1, φ2) = wBG(r1)wBG(r2)

∞∑
m1,m2=−∞

∞∑
l1,l2=1

C
(m1,m2)
l1,l2

eim1(φ1−φR) eim2(φ2−φR)

× Jm1

(
z

(m1)
l1

ρ(r1)
)
Jm2

(
z

(m2)
l2

ρ(r2)
)
.

(3.4)

Since C(r1, r2, φ1, φ2) is real one has C
(m1,m2)
l1,l2

= (−1)m1+m2C
(−m1,−m2)∗
l1,l2

. Note that

eq. (3.4) contains a factor e−i(m1+m2)φR such that the right hand side vanishes when aver-

aged over the reaction plane angle φR with uniform distribution, except for m1 +m2 = 0.

The expectation value calculated for an event sample with fixed orientation of the reaction

plane reads now

〈w(m)
l 〉 = w̄

(m)
l e−imφR , (3.5)

and the two-mode correlation function is

〈w(m1)
l1

w
(m2)
l2
〉 =

[
C

(m1,m2)
l1,l2

+ w̄
(m1)
l1

w̄
(m2)
l2

]
e−i(m1+m2)φR . (3.6)

The probability distribution in eq. (3.1) can then be written as a function of the (complex)

Bessel-Fourier coefficients w
(m)
l ,

p[w] = N exp

(
− 1

2

∑
m1,m2,l1,l2

[
w

(m1)
l1
− w̄(m1)

l1
e−im1φR

]
×
[
w

(m2)
l2
− w̄(m2)

l2
e−im2φR

]
T

(m1,m2)
l1,l2

ei(m1+m2)φR

)
,

(3.7)

where T
(m1,m2)
l1,l2

is the inverse of C
(m1,m2)
l1,l2

as a matrix with indices (m1, l1) and (m2, l2).

Higher n-mode correlation functions can be calculated directly from p[w], but it is conve-

nient to derive them as n-th derivatives with respect to the source terms of the partition

function

Z[j] =
〈

exp

( ∞∑
m=−∞

∞∑
l=1

j
(−m)
l w

(m)
l

)〉
= exp

( ∞∑
m=−∞

∞∑
l=1

j
(−m)
l w̄

(m)
l e−imφR

+
1

2

∞∑
m1,m2=−∞

∞∑
l1,l2=1

j
(−m1)
l1

j
(−m2)
l2

C
(m1,m2)
l1,l2

e−i(m1+m2)φR

)
. (3.8)

This equation shows nicely that the Gaussian model for a particular centrality class needs

as an input besides the background density wBG(r) only the expectation values w̄
(m)
l that
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can be determined from geometrical considerations, and the two-point correlator C
(m1,m2)
l1,l2

.

In particular, the three-mode correlator takes the form

〈w(m1)
l1

w
(m2)
l2

w
(m3)
l3
〉 =

[
C

(m1,m2)
l1,l2

w̄
(m3)
l3

+ C
(m2,m3)
l2,l3

w̄
(m1)
l1

+ C
(m3,m1)
l3,l1

w̄
(m2)
l2

+ w̄
(m1)
l1

w̄
(m2)
l2

w̄
(m3)
l3

]
e−i(m1+m2+m3)φR ,

(3.9)

and the four-point correlation function reads

〈w(m1)
l1

w
(m2)
l2

w
(m3)
l3

w
(m4)
l4
〉 =[

C
(m1,m2)
l1,l2

C
(m3,m4)
l3,l4

+ C
(m1,m3)
l1,l3

C
(m2,m4)
l2,l4

+ C
(m1,m4)
l1,l4

C
(m2,m3)
l2,l3

+ C
(m1,m2)
l1,l2

w̄
(m3)
l3

w̄
(m4)
l4

+ C
(m1,m3)
l1,l3

w̄
(m2)
l2

w̄
(m4)
l4

+ C
(m1,m4)
l1,l4

w̄
(m2)
l2

w̄
(m3)
l3

+ C
(m2,m3)
l2,l3

w̄
(m1)
l1

w̄
(m4)
l4

+ C
(m2,m4)
l2,l4

w̄
(m1)
l1

w̄
(m3)
l3

+ C
(m3,m4)
l3,l4

w̄
(m1)
l1

w̄
(m2)
l2

+ w̄
(m1)
l1

w̄
(m2)
l2

w̄
(m3)
l3

w̄
(m4)
l4

]
e−i(m1+m2+m3+m4)φR .

(3.10)

The connected correlation functions can be obtained from derivatives of lnZ[j]. The con-

nected two-mode correlator equals the connected part of eq. (3.6), and the connected

correlators of more than two modes vanish of course for this Gaussian distribution.

3.2 Averaging the Gaussian model of initial fluctuations over φR

So far, we have discussed event averages for ensembles with fixed reaction plane φR. How-

ever, essentially all measurements are for ensembles with randomized orientation of the

reaction plane. One can formally introduce a distribution for an ensemble of events with

random orientation by averaging over φR,

p◦[w] =
1

2π

∫ 2π

0
dφR p[w] . (3.11)

Event averages evaluated with this azimuthally symmetric probability distribution will be

denoted in the following by 〈. . . 〉◦. It is then a consequence of azimuthal symmetry that

〈w(m)
l 〉◦ = 0 ,

〈w(m1)
l1

w
(m2)
l2
〉◦ =

[
C

(m1,m2)
l1,l2

+ w̄
(m1)
l1

w̄
(m2)
l2

]
δm1,−m2 . (3.12)

Similarly, the 3-mode and 4-mode correlation functions for an ensemble of randomized az-

imuthal orientation can be obtained from equations (3.9) and (3.10) by averaging over

φR. The result is obtained from (3.9) and (3.10) by replacing on the left hand side

of these equations 〈. . . 〉 with 〈. . . 〉◦ and by replacing on the right hand side the phases

exp
(
− i(

∑
jmj)φR

)
by their φR-integrals which are Kronecker-δ’s, δ∑

j mj ,0
.

It is important to note that, in general, p◦[w] in (3.11) is not a Gaussian distribution

even if p[w] is one. As a consequence, the connected higher-mode correlators do not vanish

for the azimuthally randomized average 〈. . . 〉◦. To illustrate this point further, we write

– 9 –
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the connected 4-mode correlator that appears in the linear response term to vm{4}4,

〈w(m)
l1

w
(−m)
l2

w
(m)
l3

w
(−m)
l4
〉◦,c = 〈w(m)

l1
w

(−m)
l2

w
(m)
l3

w
(−m)
l4
〉◦

−〈w(m)
l1

w
(−m)
l2
〉◦〈w(m)

l3
w

(−m)
l4
〉◦

−〈w(m)
l1

w
(−m)
l4
〉◦〈w(m)

l3
w

(−m)
l2
〉◦

= C
(m,m)
l1,l3

C
(−m,−m)
l2,l4

+ C
(m,m)
l1,l3

w̄
(−m)
l2

w̄
(−m)
l4

+C
(−m,−m)
l2,l4

w̄
(m)
l1

w̄
(m)
l3
− w̄(m)

l1
w̄

(−m)
l2

w̄
(m)
l3

w̄
(−m)
l4

. (3.13)

Here, C
(m,m)
l1,l3

and C
(−m,−m)
l2,l4

are defined as the connected two-mode correlators with respect

to the event average for fixed φR, see equation (3.6), while the corresponding components

of the connected two-mode correlator for an azimuthally randomized event average van-

ish, see (3.12). We can now make the following remarks about general properties of the

probability distribution p◦[w]:

1. For vanishing impact parameter, the probability distribution (3.7) becomes az-

imuthally symmetric even without averaging over φR. This implies

w̄
(m)
l = 0 for b = 0 . (3.14)

Also, azimuthal symmetry of the event-averaged geometry implies that the two-point

correlation function (3.4) can depend only on φ1 − φ2, and hence

C
(m1,m2)
l1,l2

= C
(m1)
l1,l2

δm1,−m2 for b = 0 . (3.15)

As a consequence, the probability distribution p◦[w] is Gaussian in this limit, and all

connected higher-mode correlators vanish. The distribution is fully characterized by

〈w(m1)
l1

w
(m2)
l2
〉◦ = C

(m1)
l1,l2

δm1,−m2 .

2. At finite impact parameter, the two-point correlation function (3.4) of fluctuations

will depend in general not only on φ1 − φ2, but also on φ1 + φ2. Event-averages are

then still symmetric under reflections on the reaction plane, φ1,2 − φR → φR − φ1,2.

Invariance of (3.4) under this reflection symmetry implies

C
(m1,m2)
l1,l2

= C
(−m1,−m2)
l1,l2

, (3.16)

and thus the coefficients C
(m1,m2)
l1,l2

must be real. Moreover, event averages at finite

impact parameter are symmetric under the rotation φ1,2 → φ1,2 + π. This rotation

changes each term on the right hand side of (3.4) by a phase ei(m1+m2)π. Therefore,

invariance under rotation by π implies

C
(m1,m2)
l1,l2

= 0 for m1 +m2 odd . (3.17)

However, if all C
(m1,m2)
l1,l2

with m1 6= −m2 would vanish, then (3.4) would depend only

on φ1 − φ2, but not φ1 + φ2. This is not the most generic case as fluctuations will

– 10 –
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depend in general on the orientation with respect to the reaction plane and therefore

they will depend on 1
2(φ1 + φ2)− φR. From this, we conclude that

C
(m1,m2)
l1,l2

6= 0 for some m1 +m2 even and non-zero . (3.18)

In particular, the coefficients C
(m,m)
l1,l2

and C
(−m,−m)
l1,l2

in the connected four-mode corre-

lator (3.13) can be expected to take non-vanishing values at finite impact parameter.

The model discussed in section 4 provides an example for which these non-vanishing

terms can be calculated explicitly, see eq. (4.19).

3. The event distribution in eccentricity εm can be calculated from the probability dis-

tribution p[w]. The eccentricity is (up to a small correction to normalization) linear

in the (complex) Bessel-Fourier coefficients w
(m)
l [46],

E∗m = εme
−imψm =

∞∑
l=1

K(m)
l w

(m)
l . (3.19)

(The K(m)
l are real with K(m)

l = (−1)mK(−m)
l .) Since this is a linear relation, eq. (3.7)

implies that at fixed reaction plane angle φR the Em are Gaussian distributed in

the complex plane. An azimuthally randomized distribution for εm is obtained by

integration over φR

p(εm) = εm

∫
dφR

∫
Dw δ(2)

(
E∗m −

∑∞

l=1
K(m)

l w
(m)
l

)
p[w]

=
εm

π
√
τ2
m − τ ′2m

∫ 2π

0
dφ

× exp

(
− ε2m[τm − τ ′m cos(2φ)] + ε̄2m[τm − τ ′m]− 2εmε̄m cos(φ)[τm − τ ′m]

τ2
m − τ ′2m

)
.

(3.20)

Here, the expectation value of the eccentricity at fixed φR is

〈E∗m〉 = ε̄me
−imφR =

∞∑
l=1

K(m)
l w̄

(m)
l e−imφR , (3.21)

and the two variance parameters are

τm =

∞∑
l1,l2=1

K(m)
l1
K(−m)

l2
C

(m,−m)
l1,l2

, (3.22)

τ ′m =

∞∑
l1,l2=1

K(m)
l1
K(m)

l2
C

(m,m)
l1,l2

. (3.23)

This distribution is well defined for 0 < |τ ′m| ≤ τm.
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4. At finite impact parameter, the remaining reflection symmetries of the event-averaged

enthalpy density imply that

w̄
(m)
l = 0 for m odd , (3.24)

and therefore

ε̄m = 0 for m odd . (3.25)

For odd m = 1, 3, 5, . . ., one can then perform the integral over φ in equation (3.20)

and one finds for the distribution in eccentricities

p(εm) =
2εm√
τ2
m − τ ′2m

I0

(
τ ′mε

2
m

τ2
m − τ ′2m

)
exp

(
− τmε

2
m

τ2
m − τ ′2m

)
for m odd . (3.26)

5. According to (3.18), C
(m1,m2)
l1,l2

is generally non-vanishing for even and non-vanishing

m1+m2. It is nevertheless interesting to investigate the simplifying ad hoc assumption

that C
(m1,m2)
l1,l2

= C
(m1)
l1,l2

δm1,−m2 at finite impact parameter. For the event distribu-

tion (3.20) in eccentricity, this corresponds to the case τ ′m = 0. The integral over φR
can then be done analytically and one finds

pBG(εm) =
2εm
τm

I0

(
2
εmε̄m
τm

)
exp

(
− ε2m + ε̄2m

τm

)
. (3.27)

This is the “Bessel-Gaussian” distribution proposed in refs. [43, 44] and used by

ATLAS to compare to distributions of event-by-event flow harmonics [59].

6. Finally, for small impact parameter b one has τ ′m ∼ b2m and ε̄m ∼ bm, see appendix C.

For b→ 0 the distribution in eq. (3.20) approaches a Gaussian distribution,

p(εm) =
2εm
τm

exp

(
− ε2m
τm

)
. (3.28)

In the light of these remarks, the use of the Bessel-Gaussian probability distribution

pBG(εm) in (3.27) does not seem to be the best motivated choice for the comparison to

model event distributions in εm (and to measured event distributions in vm). The problem

with pBG[w] is two-fold. First, the derivation of pBG(εm) from a Gaussian distribution at

fixed φR relies on the ad hoc assumption C
(m1,m2)
l1,l2

= C
(m1)
l1,l2

δm1,−m2 that implies that the

correlation of fluctuations is independent of their orientation with respect to the reaction

plane (see discussion of equation (3.18)). Moreover, for odd m = 1, 3, 5, . . ., the Gaussian

model implies ε̄m = 0 (see eq. (3.25)) and this calls into question the very form of (3.27).

In fact, for odd m = 1, 3, 5, . . ., the Gaussian model at fixed φR leads without further

assumption to an explicit analytical expression for p(εm) that is of Bessel-Gaussian form but

that has arguments different from pBG. We emphasize in particular that the argument of I0

in eq. (3.26) is quadratic in εm while it is linear in eq. (3.27). The two distributions can also

be distinguished by the cumulants, see eq. (3.36) and the discussion thereafter. The form

of (3.26) seems better motivated, as it is derived from the general form (3.1) of the Gaussian

distribution without further assumptions. For the same reason, it seems preferable to use
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for even m = 2, 4, 5, . . . the probability distribution (3.20) that depends on three parameter.

The differences between the previously used ansatz (3.27) and the expressions derived here

can be traced back to our observation (3.18) that the connected two-mode correlators

C
(m1,m2)
l1,l2

do not need to vanish for even and non-zero values of m1 +m2.

3.3 Distribution of flow coefficients

3.3.1 Linear dynamic response

If we restrict the relation (2.1) between flow coefficients Vm and initial amplitudes to

the linear dynamic response, V ∗m = S(m)l w
(m)
l , then we can determine the event-by-event

distribution of flow harmonics p(vm) by paralleling exactly the calculation of eccentricities

given above,

p(vm) = vm

∫
dφR

∫
Dw δ(2)

(
V ∗m −

∑∞

l=1
S(m)lw

(m)
l

)
p[w]

=
vm

π
√
κ2
m − κ′2m

∫ 2π

0
dφ

× exp

(
− v2

m[κm − κ′m cos(2φ)] + v̄2
m[κm − κ′m]− 2vmv̄m cos(φ)[κm − κ′m]

κ2
m − κ′2m

)
,

(3.29)

where

v̄m =

∞∑
l=1

S(m)l w̄
(m)
l (3.30)

κm =

∞∑
l1,l2=1

S(m)l1S(−m)l2 C
(m,−m)
l1,l2

, (3.31)

κ′m =

∞∑
l1,l2=1

S(m)l1S(m)l2 C
(m,m)
l1,l2

. (3.32)

We note that we have not made the assumption vm ∼ εm here. In contrast, we assume that

both vm and εm are given as linear combinations of the Bessel-Fourier coefficients w
(m)
l .

This is a weaker assumption since K(m)
l in eq. (3.19) and S(m)l in eq. (3.30), seen as vectors

with index l, do not have to be parallel.

All the remarks made above about event-by-event distributions in eccentricity carry

over trivially to p(vm) if one restricts the discussion to linear dynamic response terms. In

particular, for m even, equation (3.29) depends on the three parameters κm, κ′m and v̄m,

and p(vm) has the same functional form as the eccentricity distribution (3.20). For odd

m, reflection symmetry implies v̄m = 0, and p(vm) reduces to a two-parameter function of

the form of eq. (3.26). And at vanishing impact parameter, azimuthal symmetry implies

that κ′m = v̄m = 0, and one obtains from (3.29) a Gaussian, in complete analogy to (3.28).

Finally, the Bessel-Gaussian distribution proposed in ref. [44] is obtained by assuming

κ′m = 0 but keeping v̄m finite. In figure 2 we compare these four distributions for one set of

parameters κm, κ′m and v̄m. In this section, we have pointed out for the first time that if
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m even, Κ=0.005, Κ'=0.002, vm=0.05

m odd, Κ=0.005, Κ'=0.002

Gauss, Κ=0.005

BG, Κ=0.005, vm=0.05

Figure 2. For m even, the probability distribution of event-by-event flow harmonics (3.29) depends

on two variances κ, κ′ and one expectation value v̄m (solid line). For a choice of these parameters,

the plot compares to the same distribution for m odd (dashed line, v̄m vanishes) and to the cor-

responding Gaussian distribution that results for central collisions (dotted line, v̄m and κ′ vanish).

We also compare to the Bessel-Gaussian distribution that results from the assumption κ′ = 0 at

finite v̄m.

one starts from initial fluctuations that follow a Gaussian distribution at fixed orientation

of the reaction plane, then one can have a non-vanishing off-diagonal variance κ′m in the

distribution of p(vm). Figure 2 serves to illustrate that such a small non-vanishing value

κ′m can affect the shape of event-by-event distributions in flow harmonics.

Event-by-event distributions p(vm) of flow harmonics were measured recently in

Pb+Pb collisions at the LHC for m = 2, 3, 4 and for different centrality classes [59]. These

measured distributions were also characterized in terms of their variance
√
〈v2
m〉 − 〈vm〉2,

their mean 〈vm〉, and the ratio of these quantities that takes the value√
〈v2
m〉 − 〈vm〉2
〈vm〉

=

√
4

π
− 1 for Gaussian distributions . (3.33)

It was found that the distributions for m = 3 and 4 are within errors consistent with (3.33),

while the distribution for m = 2 is characterized by a value significantly smaller than√
4
π − 1 for non-central collisions [59]. One may wonder whether the more general form

of the probability distribution (3.29) derived here can lead to an improved description of

these data. While a comparison to data lies outside the scope of this work, we mention in

this context that the distribution obtained from (3.29) for odd m satisfies√
〈v2
m〉 − 〈vm〉2
〈vm〉

=

√
4

π
− 1 +

1

2π

κ′m
2

κ2
m

+O
(
(κ′m)3

)
for m odd . (3.34)

In contrast, by setting κ′m = 0 in (3.29) we find a deviation from the Gaussian result (3.33)

that has the opposite sign.√
〈v2
m〉−〈vm〉2
〈vm〉

=

√
4

π
−1

(
1− v̄4

m

4κ2
m (4− |!π)

)
+O(v̄6

m)
for a Bessel-Gaussian

distribution .
(3.35)
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Therefore, depending on the choice of input parameters, the full distribution (3.29) valid

for even m can show deviations from (3.33) of either sign.

As stated above, ATLAS data on v3 are consistent with (3.33). One therefore requires

from (3.34) that 1
2π

κ′m
2

κ2
m

is small compared to the value of
√

4
π − 1 ∼ 0.52. We caution,

however, that there may be tests of the distribution p(vm) that are more straightforward

than a comparison to

√
〈v2
m〉−〈vm〉2
〈vm〉 . For instance, it follows from (3.12), (3.13) and the form

of (3.29) that

vm{2}2 = v̄2
m + κm + non-linear terms ,

vm{4}4 = v̄4
m − 2κ′mv̄

2
m − κ′2m + non-linear terms ,

vm{6}6 = v̄6
m − 3v̄4

mκ
′
m + non-linear terms ,

vm{8}8 = v̄8
m − 4v̄6

mκ
′
m + 2v̄4

mκ
′2
m +

12

11
v̄2
mκ
′3
m +

3

11
κ′4m + non-linear terms .

(3.36)

Note that for m odd, this implies in particular vm{4}4 = −κ′2m and vm{6}6 = 0. The

measurements of positive values for v3{4}4 and non-zero values for v3{6}6 thus falsify

the phenomenological validity of the distribution (3.29) for m = 3. This implies that at

least one of the two basic assumptions underlying (3.29) must be wrong: the dynamical

response may not be linear and/or the distribution of initial fluctuations at fixed φR may

not be Gaussian. We shall comment in the next subsection on the first possibility, before

exploring in section 4 in detail the case of universal deviations from a Gaussian distribution

of fluctuations.

3.3.2 Non-linear dynamic response

In principle, the role of the non-linear dynamic response terms in (2.1) on the event-by-

event distributions of vm can still be discussed on the level of the probability distribution

p(vm) by evaluating (3.29) with a non-linear constraint

δ(2)

(
V ∗m −

∑
l1

S(m)l1w
(m)
l1
−

∑
m1,m2.l1,l2

S(m1,m2)l1,l2w
(m1)
l1

w
(m2)
l2

δm,m1+m2 − . . .
)

(3.37)

in the argument. In practice, this evaluation has to be done numerically and is likely to be

involved. To gain insight into the role of non-linear dynamical response terms, we therefore

turn to the study of the cumulants that characterize p(vm). Here, we make the following

remarks:

1. For vanishing impact parameter, the second order cumulant flow is dominated by the

linear dynamical response

vm{2}2 = S(m)l1 S(−m)l2 C
(m,−m)
l1,l2

+O(w3) . (3.38)

In contrast, the connected 4-mode correlator (3.13) vanishes for vanishing impact

parameter. This implies that also the first line on the right hand side of eq. (2.7),

that gives the contribution from linear response dynamics, vanishes. In other words,

vm{4}4 depends only on terms that are proportional to some power of non-linear

– 15 –



J
H
E
P
0
8
(
2
0
1
4
)
0
0
5

dynamic response terms. It is easy to see from (2.7) that these terms are non-zero

in general. For vanishing impact parameter, the probability distribution is Gaussian

with zero mean and the correlators on the right hand side of (2.7) that involve an odd

number of modes vanish. However, there are correlators involving an even number

of modes, e.g.

〈T3AT3B〉◦ =
∑

m2,m3,m4,m5
l1,...,l6

S(m)l1S(−m2,−m3)l2,l3S(m4,m5)l4,l5S(−m)l6 δm,m2+m3δm,m4+m5

× 〈w(m)
l1

w
(−m2)
l2

w
(−m3)
l3

w
(m4)
l4

w
(m5)
l5

w
(−m)
l6
〉 .

(3.39)

The six-point correlation function on the right hand side is non-vanishing for Gaussian

distributions. There are 15 different contractions out of which only some vanish for

symmetry reasons. There is no reason that the other contributions at order w6 should

cancel on the right hand side of eq. (2.7). From this, we conclude that if one assumes

a Gaussian probability distribution of fluctuations in the limit of vanishing impact

parameter, the observation of a finite value for vm{4}4 is an unambiguous sign of

non-linear dynamic response.

2. For the case of an arbitrary, non-linear dynamical response at finite impact parameter,

we know that the higher-order flow cumulant vm{4}4 will depend on physics of two dif-

ferent origins. First, it depends on linear dynamic response to the connected 4-point

correlator 〈w(m)
l1

w
(−m)
l2

w
(m)
l3

w
(−m)
l4
〉◦,c. This connected 4-point correlation function is

non-vanishing only due to deviations of p◦ from a Gaussian probability distribution.

The second source are terms that are proportional to powers of non-linear dynamic

response terms. The latter are not expected to vanish in the limit of small impact

parameter b. As one approaches more and more central collisions and if p◦ becomes

Gaussian in that limit, one expects that the non-linear response terms start to dom-

inate at some point. The linear contribution to vm{n}n in eq. (3.36) vanishes for

b→ 0 like bn·m. In order to estimate from which centrality class the non-linear terms

dominate, one would have to determine their contribution quantitatively. Finally,

we remark that additional terms arise on the linear level if p◦ is not Gaussian. An

example for this is provided in the following section.

4 The independent point-sources model (IPSM)

Essentially all realistic microscopic models of initial conditions incorporate the plausible

assumption that the initial density distribution results from the superposition of a large

number of sources that are well-localized and therefore small compared to the system size.

The independent point-sources model (IPSM) realizes this assumption in a setting in which

all correlation functions of initial fluctuations are analytically calculable, including their

radial dependence, see below. Eccentricities have been calculated in this setting to various

orders in 1/N where N is the number of sources [10, 48, 49, 51, 52]. As emphasized recently

by Ollitrault and Yan [51] as well as Bzdak and Skokov [52], n-mode correlators calculated
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in the IPSM show characteristic deviations from a Gaussian distribution even at vanishing

impact parameter. Remarkably, these deviations from a Gaussian distribution display

universal properties that are shared by the class of currently explored phenomenologically

relevant models of initial conditions [51]. This motivates us to explore in this section the

properties of the IPSM in more detail. In particular, we shall extend the discussion of

the IPSM to the case of finite impact parameter when the parametric counting of n-mode

correlators will be seen to be different, we shall extend the discussion from a Gaussian to an

arbitrary transverse density distribution, and we shall extend it from the characterization

of eccentricity moments to arbitrary correlators of the modes w
(m)
l evaluated for event

samples at fixed and at randomly oriented reaction plane.

4.1 1/Nn−1 scaling for fixed reaction plane orientation

In the IPSM, the transverse enthalpy density w(~x) of a particular event is defined as a

linear superposition of contributions from N point sources,5

w(~x) =

[
1

τ0

dWBG

dη

]
1

N

N∑
j=1

δ(2)(~x− ~xj) . (4.1)

Here, 1
τ0
dWBG
dη is the event-averaged enthalpy per unit rapidity at initial time τ0. The

source positions ~xj are random two-dimensional vectors that follow the same probability

distribution p(~xj) for all j. This probability distribution is normalized,∫
d2x p(~x) = 1 . (4.2)

At fixed impact parameter, event-by-event fluctuations in the positions ~xj are the only

source of fluctuations in the IPSM. The probability distribution p(~x) is azimuthally asym-

metric as a function of impact parameter and it becomes azimuthally symmetric for an

ensemble of central events. The transverse profile of p(~x) determines the expectation value

of the enthalpy density for an ensemble of collisions with fixed orientation of the reaction

plane

〈w(~x)〉 =

[
1

τ0

dWBG

dη

]
p(~x) . (4.3)

For the calculation of n-point correlation functions, it is useful to introduce the partition

function

Z[j] =
〈
e
∫
d2x′ j(~x′)w(~x′)

〉
. (4.4)

Due to the assumption that the ~x are independently and identically distributed, this par-

tition function factorizes into a product of contributions from each source,

Z[j] =

[ ∫
d2x p(~x) e

1
τ0

dWBG
dη

1
N
j(~x)
]N
. (4.5)

5It is relatively easy to generalize the model to situations where the number of contributing sources

is itself fluctuating or where the contribution of each point source fluctuates in strength. Also extended

sources can be treated. All these modifications do not change the feature that w(~x) is a superposition of

independently and identically distributed random variables with a certain distribution.
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Correlation functions can now be obtained as functional derivatives of Z[j], for example

〈w(~x)w(~y)〉 =
δ2

δj(~x)δj(~y)
Z[j]

∣∣
j=0

=

[
1

τ0

dWBG

dη

]2
(

1

N
p(~x)δ(2)(~x− ~y) +

(
1− 1

N

)
p(~x)p(~y)

)
.

(4.6)

Similarly, connected correlation functions can be obtained from functional derivatives of

lnZ[j], for example

〈w(~x)w(~y)〉c = 〈w(~x)w(~y)〉 − 〈w(~x)〉〈w(~y)〉

=
δ2

δj(~x)δj(~y)
lnZ[j]

∣∣
j=0

=

[
1

τ0

dWBG

dη

]2 1

N

[
p(~x)δ(2)(~x− ~y)− p(~x)p(~y)

]
.

(4.7)

Observe in particular the first term in the second line of eq. (4.7). It has the form of a

contact term which is due to the point-like shape of the sources. For more realistic source

shape this term decays with |~x− ~y| on a length scale that is characteristic of its size. The

second term in the second line of (4.7) can be seen as a correction to the disconnected

part and is closely related to the model assumption of exactly N sources. The prefactor

changes when this number is allowed to fluctuate. For the further discussion, it is useful

to give also the explicit form of the 3-point correlation function

〈w(~x)w(~y)w(~z)〉 =
δ3

δj(~x)δj(~y)δj(~z)
Z[j]

∣∣
j=0

=

[
1

τ0

dWBG

dη

]3[ 1

N2
p(~x)δ(2)(~x− ~y)δ(2)(~x− ~z)

+
1− 1

N

N
p(~x)δ(2)(~x− ~y)p(~z) [3 perm.]

+

(
1− 3

N
+

2

N2

)
p(~x)p(~y)p(~z)

]
.

(4.8)

The corresponding connected 3-point correlation function takes the explicit form

〈w(~x)w(~y)w(~z)〉c =
δ3

δj(~x)δj(~y)δj(~z)
lnZ[j]

∣∣
j=0

=

[
1

τ0

dWBG

dη

]3 1

N2

[
p(~x)δ(2)(~x− ~y)δ(2)(~x− ~z)

− p(~x)δ(2)(~x− ~y)p(~z)− p(~y)δ(2)(~y − ~z)p(~x)

− p(~z)δ(2)(~z − ~x)p(~y) + 2p(~x)p(~y)p(~z)
]
.

(4.9)
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Also higher n-mode correlation functions can be given explicitly, e.g.

〈w(~x)w(~y)w(~z)w(~u)〉 =
δ4

δj(~x)δj(~y)δj(~z)δj(~u)
Z[j]

∣∣
j=0

=

[
1

τ0

dWBG

dη

]4[ 1

N3
p(~x)δ(2)(~x− ~y)δ(2)(~x− ~z)δ(2)(~x− ~u)

+
1− 1

N

N2
p(~x)δ(2)(~x− ~y)δ(2)(~x− ~z)p(~u) [4 perm.]

+
1− 1

N

N2
p(~x)δ(2)(~x− ~y)p(~z)δ(2)(~z − ~u) [3 perm.]

+
1− 3

N + 2
N2

N
p(~x)δ(2)(~x− ~y)p(~z)p(~u) [6 perm.]

+

(
1− 6

N
+

11

N2
− 6

N3

)
p(~x)p(~y)p(~z)p(~u)

]
.

(4.10)

We use in eqs. (4.8) and (4.10) a notation where not all permutations of space arguments

are written down. The number in square brackets denotes how many there are. The

connected 3-point correlation function can be obtained from (4.8) by keeping only the

terms ∼ 1/N2 and the connected 4-point correlation function from (4.10) by keeping only

the terms ∼ 1/N3. In fact, one can show that for arbitrary n, the n-th functional derivative

of lnZ[j] at j = 0 scales with 1/Nn−1. A closely related scaling was observed in ref. [51]

for eccentricity cumulants εm{2n}2n in central events. The connected 2-, 3-, and 4-point

correlation functions in equations (4.7), (4.9) and (4.10) illustrate this scaling. In the IPSM,

the 1/Nn−1 scaling holds at arbitrary impact impact parameter if the event average 〈. . .〉 is

defined with respect to a fixed orientation of the reaction plane. However, we anticipate here

that for an ensemble 〈. . .〉◦ with randomized reaction plane, the N -dependence of connected

n-mode correlation functions does not follow this scaling (see discussion of eq. (4.18)).

4.2 Bessel-Fourier coefficients in the IPSM

So far, we have derived n-point correlation functions of w(~x) in position space. Similar

to our discussion of the Gaussian model in section 3, it is useful to consider the Bessel-

Fourier transformation (3.2). The entire information about n-point correlation functions,

that are functions of n continuous variables ~xj , is then encoded in the n-mode correla-

tors 〈w(m1)
l1

. . . w
(mn)
ln
〉 that are sets of complex-valued numbers. As shown in section 2,

these n-mode correlators specify the information about initial conditions that enters flow

measurements.

To write the Bessel-Fourier transform, we start from equation (4.3) for the average en-

thalpy density in an event ensemble with fixed orientation of the reaction plane. From this,

one finds the corresponding average enthalpy density for an event sample with randomized

orientation of the reaction plane,

wBG(r) =
1

τ0

dWBG

dη
〈p(r, φ)〉◦ =

1

2π

∫ 2π

0
dφR w̄(r, φ) . (4.11)
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The event-averaged enthalpy density w̄(r, φ) can then be written as a Bessel-Fourier ex-

pansion of the form of eq. (3.3), where the coefficients w̄
(m)
l are determined from the

orthogonality relation,

w̄
(m)
l =

τ0

dWBG
dη [Jm+1(z

(m)
l )]2

∫ 2π

0
dφ

∫ ∞
0
dr r[w̄(r, φ)−wBG(r)]e−imφJm

(
z

(m)
l ρ(r)

)
. (4.12)

For an event average with fixed orientation of the reaction plane, the expectation values

read now

〈w(m)
l 〉 = w̄

(m)
l e−imφR . (4.13)

The dimensionless and real coefficients w̄
(m)
l depend on centrality and they vanish in the

limit of ultra-central collisions when the difference w̄(r, φ) − wBG(r) vanishes. At finite

impact parameter, the discrete symmetry w̄(r, φ) = w̄(r, φ+ π) implies that

w̄
(m)
l = 0 for odd m = 1, 3, 5, . . . . (4.14)

With the help of the orthogonality relation (4.12), we can obtain from equation (4.7) the

connected 2-mode correlator

〈w(m)
l w

(m′)
l′ 〉c =

1

N

[
1

2
δm+m′,0 b

(m,m′)
l,l′

+
∞∑
l̂=1

w̄
(m+m′)

l̂

[Jm+m′+1(z
(m+m′)

l̂
)]2

4
b
(m,m′,−m−m′)
l,l′,l̂

e−i(m+m′)φR

]
− 1

N

[
δm,0 b

(0)
l + w̄

(m)
l e−imφR

][
δm′,0 b

(0)
l′ + w̄

(m′)
l′ e−im

′φR
]
.

(4.15)

The symbols b
(m1,...,mn)
l1,...,ln

are defined in appendix B. They are numbers defined in terms of

integrals over products of Bessel functions. For non-central collisions, the connected part

of the two-point function in eq. (4.16) gets supplemented by a disconnected part,

〈w(m)
l w

(m′)
l′ 〉 = 〈w(m)

l w
(m′)
l′ 〉c + 〈w(m)

l 〉〈w
(m′)
l′ 〉

= 〈w(m)
l w

(m′)
l′ 〉c + w̄

(m)
l w̄

(m′)
l e−i(m+m′)φR .

(4.16)

We pass now from averages 〈. . .〉 for event ensembles with fixed orientation of the reac-

tion plane to averages 〈. . .〉◦ for ensembles with randomized orientation of φR, 〈. . .〉◦ ≡
1

2π

∫
dφR 〈. . .〉. We find from (4.16)

〈w(m)
l w

(m′)
l′ 〉◦ = 〈w(m)

l w
(m′)
l′ 〉◦,c = 〈w(m)

l w
(m′)
l′ 〉c,◦ + w̄

(m)
l w̄

(m′)
l′ δm+m′,0

=
1

N

[
1

2
δm+m′,0 b

(m,m′)
l,l′

]
− 1

N

[
δm,0 δm′,0 b

(0)
l b

(0)
l′
]

+

(
1− 1

N

)
w̄

(m)
l w̄

(m′)
l′ δm+m′,0 . (4.17)
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Based on these calculations, we make the following comments and observations:

1. 1/Nn−1-scaling is broken at finite impact parameter for event samples 〈. . .〉◦ with

randomized orientation of the reaction plane.

In general, this follows form the fact that the operation of passing from moments to

connected n-mode correlators does not commute with the operation of randomizing

φR, that means

〈. . .〉◦,c 6= 〈. . .〉c,◦ . (4.18)

The simplest illustration of this fact is provided by the connected two-mode corre-

lator (4.17). For modes with even m = ±2,±4, . . . when w̄
(m)
l does not vanish, the

connected two-mode correlator 〈w(m)
l w

(m′)
l′ 〉◦,c for a randomized ensemble contains a

term that is O(1) and that thus deviates from the O(1/N) scaling of 〈w(m)
l w

(m′)
l′ 〉c.

(We note as an aside that for the specific 2-mode correlator (4.17), O(1/N) scaling

holds for m odd. However, as shown later, this is not necessarily the case for higher

connected correlators of odd modes.)

2. For small impact parameter, the b-dependence of 1/Nn−1-scaling breaking terms can

be given explicitly.

The 1/Nn−1-scaling is restored for central collisions when the event averages 〈. . .〉◦
and 〈. . .〉 become identical. As a consequence, the terms that break 1/Nn−1-scaling

must vanish in the limit of vanishing impact parameter. Remarkably, as explained

in appendix B, the powerlaw dependence with which these terms vanish can be de-

termined analytically for small impact parameter. In particular, the relevant term

in the connected 2-mode correlator (4.17) scales like w
(m)
l w̄

(m′)
l′ ∝ b|m|+|m

′|. Here,

the dimensionless scale is set by the system size that we identify roughly with the

Woods-Saxon diameter DWS. The term that breaks 1/Nn−1-scaling is then of order

(b/DWS)|m|+|m
′| and 1/Nn−1-scaling is effectively restored if the impact parameter

is sufficiently small such that (b/DWS)|m|+|m
′| becomes comparable to 1/N . For in-

stance, for m = −m′ = 2 and DWS ∼ 10 fm, this is the case for b = 3 fm (assuming

N ∼ O(100) which is realistic for lead-lead collisions as we shall see below). This

illustrates that the expansion in small b is not only of academic interest but applies

to event samples for an experimentally accessible range of impact parameter. By

varying centrality and thus varying b, it is possible to move from samples that satisfy

1/Nn−1-scaling to samples in which this scaling is broken with known parametric

dependence.

3. The non-vanishing off-diagonal variance C
(m,m)
l,l′ identified for Gaussian distributions

in section 3 and characterized by equations (3.15)–(3.18) has a direct analogue in

the IPSM.

Comparing eq. (3.6) to (4.16), one identifies C
(m1,m2)
l1,l2

(up to a factor e−i(m1+m2)φR)

with the right hand side of equation (4.15). This expression satisfies the proper-

ties (3.15)–(3.18). In particular, the properties of w̄
(m)
l imply that C

(m1,m2)
l1,l2

can be

– 21 –



J
H
E
P
0
8
(
2
0
1
4
)
0
0
5

non-vanishing for even m1 +m2 only. For m1 = m2 = m 6= 0 one finds

C
(m,m)
l1,l2

=
1

N

[ ∞∑
l̂=1

w̄
(2m)

l̂

[J2m+1(z
(2m)

l̂
)]2

4
b
(m,m,−2m)

l1,l2,l̂
− w̄(m)

l1
w̄

(m)
l2

]
. (4.19)

The properties of w̄
(m)
l imply that (4.19) vanishes for vanishing impact parameter

like b2|m|. We conclude that a finite value of C
(m,m)
l1,l2

is not only allowed by symmetry

considerations, but it is actually of the same parametric order O(1/N) as C
(m,−m)
l1,l2

in

an explicit model of the initial conditions.

4. The short hands b
(m1,...,mn)
l1,...,ln

that appear in the results for n-mode correlators do not

depend on details of the collisons geometry.

In fact, as seen in appendix B, these symbols are simply real numbers corresponding

to certain integrals over Bessel functions and independent of w̄
(m)
l and of wBG(r).

They are therefore independent of the impact parameter, and they are independent

of the azimuthal orientation of the collision. In n-mode correlators, they appear

multiplied with a characteristic dependence in the number of sources N .

5. Defining the Bessel expansion with ρ(r) in terms of background density coordinates

has technical advantages.

In this work, we define the Bessel-Fourier decomposition (3.2) with the help of the

function ρ(r) that maps r ∈ [0,∞] monotonously to the range [0, 1] and that we define

in appendix A. This is different from previous works where we used ρ(r) = r/R, R

fixed, and where we denoted the weights w̃
(m)
l of the corresponding Bessel-Fourier

expansion by a tilde. The new choice has various technical advantages. In particular,

all basis functions in the sum of equation (3.3) approach zero smoothly for r → ∞
corresponding to ρ → 1. Also, remarkably, in this representation there is no further

dependence on wBG(r) in the result for the 2-mode correlator (4.15). This statement

generalizes to all higher n-mode correlators in the IPSM. Thus, information about

initial geometry enters these results only via w̄
(m)
l . Finally, for the connected part

of (4.17), we have (see appendix B)

b
(m,−m)
l1,l2

= δl1l2
2 (−1)m

[Jm+1(z
(m)
l1

)]2
. (4.20)

This implies in particular that at vanishing impact parameter, 〈w(m)
l w

(m′)
l′ 〉◦ is di-

agonal if viewed as a matrix in l, l′. It follows directly that in the IPSM the linear

dynamic contribution to the second order flow cumulants take the simple explict form

vm{2}2 =
1

N

∑
l

S2
(m)l

[Jm+1(z
(m)
l )]2

+

(
1− 1

N

)(∑
l

S(m)l w̄
(m)
l

)2

. (4.21)
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6. Higher n-mode correlators of Bessel-Fourier coefficients can be given explicitly.

While expressions for higher n-mode correlators are more lengthy, the same tech-

niques shown here for two-mode correlators allow one to find explicit expressions for

correlators of more than two modes. To illustrate this point, we give here the 3-mode

correlator after azimuthal averaging over angles has been performed,

〈w(m1)
l1

w
(m2)
l2

w
(m3)
l3
〉◦ = δm1+m2+m3,0

[
1

4N2
b
(m1,m2,m3)
l1,l2,l3

− 1

2N2
δm3,0 b

(m1,m2)
l1,l2

b
(0)
l3

[3 perm.]

+2
1

N2
δm1,0 δm2,0 δm3,0 b

(0)
l1
b
(0)
l2
b
(0)
l3

+
1− 1

N

4N2

∞∑
l̂=1

w̄
(m1)

l̂
w̄

(m1)
l1

[Jm1+1(z
(m1)

l̂
)]2b

(m1,m2,m3)

l̂,l2,l3
[3 perm.]

−
2(1− 1

N )

N
δm1,0 b

(0)
l1
w̄

(m2)
l2

w̄
(m3)
l3

[3 perm.]

+

(
1− 3

N
+

2

N2

)
w̄

(m1)
l1

w̄
(m2)
l2

w̄
(m3)
l3

]
. (4.22)

Here, the terms in the first three lines account for the contributions from fluctua-

tions in the positions of point sources. Note that the first term is of very simple

structure. In order for the second and third term to contribute, at least one of the

mi needs to be 0. The remaining terms on the right hand side of eq. (4.22) are

quadratic or cubic in w̄
(m)
l . They contribute therefore only for collisions at non-zero

impact parameter. The origin of these terms is an interplay of fluctuations and ge-

ometry. We note as an aside that for any linear dynamical contribution of the form

S(m)l1 S(−m)l2 〈w
(m)
l1

w
(−m)
l2
〉◦ in a flow measurement, one can write down a non-linear

dynamical correction by inserting a mode with azimuthal wave number m′ = 0,

leading to S(m)l1 S(−m,0)l2l′ 〈w
(m)
l1

w
(−m)
l2

w
(0)
l′ 〉◦. The dynamical propagation of initial

fluctuations with m′ = 0 leads to fluctuations in the azimuthally averaged single

particle spectrum, a.k.a. radial flow. In principle, these terms can lead thus to cor-

relations between event-by-event fluctuations in radial flow and in the harmonic flow

coefficients. Eq. (4.22) demonstrates that the relevant correlators 〈w(m)
l1

w
(−m)
l2

w
(0)
l′ 〉◦

are non-vanishing for both central and non-central collisions.

4.3 The IPSM shares commonalities with more realistic models of initial con-

ditions

The IPSM model has been explored so far [51] in calculations of higher cumulants of

eccentricities, εm{2n}2n. For event distributions at vanishing impact parameter, it was

demonstrated that ratios of εm{2n}2n for n = 1, 2, 3, . . . are universal in the sense that

they agree with the corresponding ratios of ‘more realistic’ models, such as models based

on MC Glauber or MC KLN initial conditions, or initial conditions obtained from the
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Figure 3. Two-mode correlation 〈w(m)
l w

(m)∗
k 〉 for m = 2 (first line) and m = 3 (second line) as

well as l = 1 (first column), l = 2 (second column) and l = 3 (third column). The points give

the numerical results from a Glauber Monte-Carlo model where each participant contributes as a

Gaussian source with width σ = 0.4 fm. The squares give the results from the independent point

source model with N = 200 independent sources.

event generator DIPSY.6 In the preceding subsection 4.2, we have derived explicit expres-

sions for 2-mode correlators that are more differential than the information contained in

eccentricities in that they resolve the radial dependence. We can now wonder whether the

IPSM shares generic features with more realistic models also on this more differential level.

In general, this question could be addressed for the entire hierarchy of connected n-mode

correlators of w
(m)
l ’s since they are all calculable analytically. Also, it could be addressed

by comparing to several more realistic models. Such a comprehensive model study lies out-

side the scope of the present work. Here, we limit the discussion to an exploratory study

of results for the 2-mode correlator 〈w(m)
l w

(m)∗
k 〉 evaluated in the IPSM and compared to

results of the MC Glauber model.

The specific version of the MC Glauber model that we compare to has been introduced

and described in ref. [46]. It is a MC Glauber model where each participant nucleon is given

a Gaussian distribution in the transverse plane with width σ = 0.4 fm.7 Figure 3 shows

the two-mode correlators 〈w(m)
l w

(m)∗
k 〉 for m = 2, 3 and for different combinations of l1, l2.

The IPSM is compared to results from the MC Glauber model for the case of collisions at

6We caution that the word ‘more realistic’ used here alludes to a wanted property that is difficult to

define sharply. What can be stated safely is that these models are more complex than IPSM, that they

include features from some picture of microscopic interactions that give rise to initial conditions, and that

one may hope to refine or scrutinize these pictures by calculations based on QCD.
7Ref. [46] gave already numerical results for the two-mode correlators 〈w̃(m)

l w̃
(m)∗
k 〉. Here the tilde

refers to the fact that the Bessel decomposition of the enthalpy density was done in ref. [46] with a choice

ρ(r) = r/R in equation (3.3), while we use in the present paper the technically optimized choice for ρ(r)

described in appendix A. One can derive an expression for the transfer matrix that relates the Bessel-Fourier

weights of both representations, w
(m)
l = T

(m)

l l′ w̃
(m)
l , see appendix A. Based on this relation, we have checked

that the data provided here for the two-mode correlator 〈w(m)
l w

(m)∗
k 〉 in the MC Glauber model at vanishing

impact parameter are consistent with the data on 〈w̃(m)
l w̃

(m)∗
k 〉 shown in figure 12 of ref. [46].
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Figure 4. Two-mode correlation for the radial l = 1 mode, 〈w(m)
1 w

(m)∗
1 〉 (left) and the l = 2

mode 〈w(m)
2 w

(m)∗
2 〉 (right) for different vales of the azimuthal wavenumber m. The points give

the numerical results from a Glauber Monte-Carlo model where each participant contributes as a

Gaussian source with width σ = 0.4 fm. The squares give the results from the independent point

source model with N = 200 independent sources.

vanishing impact parameter. To compare numerical results for both models, one has to

fix the large parameter N that appears in the IPSM. Here, we have chosen N = 200 on

the grounds that it leads to a comparable signal strength of both models in figure 3. As

discussed at the end of section 4.2, the correlator 〈w(m)
l w

(m)∗
k 〉 is diagonal if viewed as a

matrix labeled by l and k. Figure 3 shows that off-diagonal entries for the corresponding

matrix 〈w(m)
l w

(m)∗
k 〉 are non-vanishing but small in the MC Glauber model. In this sense,

the comparison of IPSM and MC Glauber model indicates a very good albeit not perfect

agreement between both models for small values of l. The deviations for larger l are more

pronounced. This may be explained by the fact that larger l probe finer details in position

space and can therefore resolve the differences between a point-like and a Gaussian source

shape.

A qualitatively similar conclusion is supported from figure 4 that shows the diagonal

terms 〈w(m)
l w

(m)∗
l 〉 for radial wave number l = 1 and l = 2 as a function of the azimuthal

wave number m. We compare again the Monte-Carlo Glauber model with the independent

point-sources model with N = 200. For the lowest radial mode l = 1 corresponding to the

largest wave length, both models compare very well. But as one increases resolution in the

azimuthal (i.e. increasing m) or radial (i.e. increasing l) direction, characteristic differences

between the predictions of the IPSM and the MC Glauber model show up.

In summary, the qualitative agreements between both models for the results in figures 3

and 4 give further support to the idea that the IPSM shares important commonalities with

a class of more realistic models. On the qualitative level, the same results (in particular the

r.h.s. of figure 4) give a sense of how model-specific dependencies become quantitatively

more important for higher radial and azimuthal wave numbers that resolve finer scales.

5 Concluding remarks

In general, a theory of experimentally measurable flow correlation measurements

〈Vm1 Vm2 . . . Vmn〉◦ needs to provide an understanding for the statistics of initial density
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perturbations in heavy ion collisions and their fluid dynamical evolution. As explained

in section 2, this amounts to the requirement of knowing the initial n-mode correlators

〈w(m1)
l1

. . . w
(mn)
ln
〉 and the dynamical response functions S(m1,...,mn)l1,...,ln .

Concerning the dynamical response functions S(m1,...,mn)l1,...,ln , we know that they

depend only on the event-averaged azimuthally randomized enthalpy density wBG of the

event class, but they do not depend on finer geometric details such as the orientation of the

reaction plane, and they do not depend on event-by-event fluctuations. An explicit method

of how to determine them without model assumptions was give in refs. [30, 53]. Since

these dynamical response functions are (at least in principle) known, the only remaining

model uncertainties in the calculation of flow correlation measurements are in determining

〈w(m1)
l1

. . . w
(mn)
ln
〉. To the extent to which the IPSM represents universal properties shared

by all realistic models of initial conditions, this remaining model dependence is removed

and model-independent predictions of fluid dynamics become possible.8 This has motivated

our detailed study of the IPSM in section 4.

In section 4, we have shown how the IPSM can be solved analytically for the full set of

n-mode correlators 〈w(m1)
l1

. . . w
(mn)
ln
〉. This allows to compare the IPSM quantitatively to

other models on a level that is more differential than an analysis of cumulants of eccentric-

ities. A short comparison to a model with MC Glauber initial conditions in section 4.3 has

shown that the IPSM shares indeed universal features with other models also on this more

differential level, but that the analysis of 〈w(m1)
l1

. . . w
(mn)
ln
〉 can also serve to delineate the

azimuthal and radial length scales at which the statistics of initial perturbations in different

models shows deviations from a model-independent universal behavior. We further note

that essentially all other models of initial perturbations are defined in terms of computer

codes that implement a physics picture. This has numerous advantages but it limits the

possibilities of finding beyond a purely numerical analysis ordering principles that explain

the relative importance of different contributions. Comparing models to the IPSM is hence

also useful since the analytical results accessible in the IPSM allow one to find interesting

ordering principles.

In particular, we have further explored in section 4 the property of 1/Nn−1 scaling, that

is the observation that connected n-mode correlators 〈w(m1)
l1

. . . w
(mn)
ln
〉c in central collisions

scale like 1/Nn−1 in the large parameter N . This is at the basis of the observation [51]

that vm{2n} ∝ 1/N (2n−1)/2n which explains parametrically why measurements of higher

order flow cumulants vm{2n} typically do not change within experimental errors when one

increases n beyond 2. We note that for central collisions, the results of section 4 allow us to

extend this ordering principle to a more general class of flow measurements. For instance,

8This is analogous to the situation in cosmology where calculations of the cosmic microwave background

and large scale structure can be expected to be model independent only to the extent to which the initial

conditions are constrained by general considerations (such as symmetry arguments, based on the homo-

geneity and isotropy of the system) and/or observations. The question in the present context is to what

extent the IPSM can serve a similar role in constraining initial conditions for the phenomenology of flow

measurements in heavy ion collisions.
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one can show that9

〈V2 V3 V
∗

5 〉 ∼ O
(

1

N2

)
for b = 0 ,

〈V2 V3 V
∗

5 V2 V3 V
∗

5 〉c = 〈(V2 V3 V
∗

5 )2〉 − 4〈V2 V3 V
∗

5 〉2 ∼ O
(

1

N5

)
for b = 0 ,

〈V2 V2 V
∗

4 V2 V2 V
∗

4 〉c = 〈(V2 V2 V
∗

4 )2〉 − 6〈V2 V2 V
∗

4 〉2 ∼ O
(

1

N5

)
for b = 0 .

(5.1)

Such measurements are interesting since they depend on n-mode correlators that are not

tested in the measurement of flow cumulants. We note that in these expressions, the scaling

in orders of 1/N applies not only to the linear response term, but also to the contribution

of the non-linear dynamical response.10

At finite impact parameter, we have pointed out that flow correlation measurements

with respect to azimuthally randomized event samples cannot be ordered in powers of 1/N .

Since even the most central event class contains events with finite albeit small impact pa-

rameter, this raises the question to what extent the 1/Nn−1 scaling in central events can

be of practical use. Here, we have shown that deviations from 1/Nn−1 scaling in the IPSM

show a characteristic and analytically accessible powerlaw dependence on impact parame-

ter. This allows one to estimate the range of impact parameter for which terms that violate

1/Nn−1 scaling are sufficiently small to make 1/Nn−1 scaling an applicable principle. Given

that the impact parameter dependence of different linear and non-linear contributions to

flow correlation measurements is different in general, one may also hope that the analytical

knowledge of this b-dependence can help to disentangle different dynamical contributions.

However, in the present paper, we have not yet explored this possibility further.

We close by relating some of our results to the question of why p+Pb collisions at

the LHC show flow cumulants vm{2}, vm{4}, (m = 2, 3) that are comparable in size and

pT -dependence to corresponding measurements in Pb+Pb collisions [56, 57]. This fact

has been found in fluid dynamic simulations prior to the measurements [61, 62], and it

is currently the focus of an important topical debate, see e.g. [63–65]. One question in

this context is whether a hydrodynamic explanation can be regarded as being generic, or

whether it reproduces data only with specific model-dependent choices. Here, we observe

that in the IPSM, the parameter N can be viewed as increasing monotonously with the

number of participants in the nuclear overlap. The parametric estimates for flow cumulants

9We note that for a probability distribution characterized by its moments M
(m1,...mn)
l1,...ln

=

〈w(m1)
l1

w
(m2)
l2

. . . w
(mn)
ln
〉, the connected n-mode correlators can be written as a sum of products of moments,

C
(m1,m2,...mn)
l1,l2...ln

=
∑
{Pn}

(
|Pn | − 1

)
! (−1)|Pn |−1

∑
B∈Pn

〈∏
i∈B

w
(mi)
li

〉
.

Here, {Pn} denotes the list of all partitions of a set of size n, B ∈ Pn is a block in a partition Pn, and

|Pn| counts the number of blocks in that partition. It follows from this structure that the specific O(1/N5)

cumulants defined in (5.1) have a different number of non-vanishing subtraction terms on the right hand side.
10This can be checked for the first orders of the perturbative series in equation (2.1) by direct calculation.

In general, it follows from a theorem given in reference [60].
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in pPb and PbPb read then

vm{2}2|pPb ∼
(
SpPb

(m)

)2 1

NpPb
, vm{2}2|PbPb ∼

(
SPbPb

(m)

)2 1

NPbPb
,

vm{4}4|pPb ∼
(
SpPb

(m)

)4 1

N3
pPb

, vm{4}4|PbPb ∼
(
SPbPb

(m)

)4 1

N3
PbPb

. (5.2)

Here, we have considered only the linear dynamic response terms that we write schemati-

cally without indicating their dependence on l. Based on these parametric estimates, one

can relate the strength of the dynamic response to density fluctuations in different systems.

For instance,

(
SPbPb

(m)

)
'
(
SpPb

(m)

)(NPbPb

NpPb

)3/4

, if vm{4}|pPb ∼ vm{4}|PbPb . (5.3)

There is phenomenological support for an almost linear relation between event multiplicity

and the number of participants in a pPb or PbPb collision. Relating the number of par-

ticipants approximately linearly to the parameter N in the IPSM, one can then consider

different limiting cases:

1. The case NpPb ' NPbPb that may be realized e.g. by comparing pPb and PbPb colli-

sions of similar multiplicity.

In this case, comparable flow measurements in pPb and PbPb imply comparable fluid

dynamic response SPbPb
(m) ' SpPb

(m) , see eq. (5.3).

2. The case NpPb � NPbPb that may be realized e.g. by comparing central pPb to central

PbPb collisions.

In this case, for all initial conditions for which connected n-mode correlators of ini-

tial fluctuations scale with 1/Nn−1, the dynamic flow response S(m) must be para-

metrically larger for larger systems to yield harmonic flow coefficients vm that are

independent of system size. Comparable values for vm{4}|pPb and vm{4}|PbPb are

then consistent with the intuitive expectation that the strength of flow phenomena

increases with system size.11

In both cases, we have obtained statements about the relative parametric strength of the

dynamic response coefficients S(m) in different collision systems. Note that these statements

can be tested in a fluid dynamic calculations involving only minimal model assumptions.

The dynamical response coefficients S(m) depend on the size of the system only via their

dependence on the average background enthalpy wBG(r) but they do not carry any in-

formation about finer details of the initial transverse density distribution. In the IPSM

formulated in section 4, wBG(r) and the parameter N can be chosen independently, but a

more complete model of the initial state and the early dynamics will relate the number of

11The particular parametric powerlaw dependence ∝ (NPbPb/NpPb)3/4 given in (5.3) was obtained by

requiring parametric equality of the fourth-order flow cumulants in p+Pb and Pb+Pb. If we requires

parametric equality for 6-th (8-th) order flow cumulants instead, one finds a power law ∝ (NPbPb/NpPb)α

with α = 5/6 (α = 7/8).
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sources N to the size and to the radial dependence of the average enthalpy density wBG(r).

Since we know how to calculate without model-dependent assumptions the dependence of

S(m) on wBG(r) [30, 53], and since the relation between wBG(r) and N has only a relatively

mild model dependence, one can therefore test whether hydrodynamic evolution is con-

sistent with the parametric scaling of S(m) required by equation (5.3). In our view, such

a test could contribute to the important question of whether fluid dynamics can account

naturally for the flow coefficients measured in systems of significantly different size, or

whether some elements of fine-tuning of initial fluctuations needs to be invoked. We plan

to explore this point in the near future. Here, we restrict us to formulating the question

with the help of the results and insights gained in section 4. This is one illustration how

the knowledge about the statistics of initial density perturbations may contribute to the

further understanding of flow phenomena in nucleus-nucleus and proton-nucleus collisions.

A Background density coordinates

In this appendix we discuss a special coordinate system which can be defined for a given

background enthalpy density. This coordinate system is particularly well suited for the

characterization of initial fluctuations and for the numerical solution of the fluid dynamic

evolution equations in the background-field formalism. We start from a transverse density

distribution that is azimuthal rotation and Bjorken boost invariant,

1

τ0

dWBG

dx1dx2dη
=

1

τ0

dWBG

rdrdφdη
= wBG(r) . (A.1)

Usually wBG(r) decays rather quickly with increasing r outside of some radius which is of

the order of a few fm. Also, the integrated enthalpy density per unit rapidity is finite,

1

2πτ0

dWBG

dη
=

∫ ∞
0

dr r wBG(r) . (A.2)

However, there is no sharp boundary r = R where the density wBG(r) goes to zero. On

can define a (dimensionless) transformed coordinate ρ(r) by the following relation

ρ(r) =

√√√√∫ r0 dr′ r′wBG(r′)
1

2πτ0
dWBG
dη

=

√ ∫ r
0 dr

′ r′wBG(r′)∫∞
0 dr′ r′wBG(r′)

. (A.3)

This maps the interval r ∈ (0,∞) to the compact interval ρ ∈ (0, 1). For small r the relation

is actually linear, ρ ∼ r and for all r the function ρ(r) is monotonous. An example for a

background enthalpy distribution wBG(r) and the corresponding mapping ρ(r) is shown in

figure 5.

It is also useful to note the transformation behavior

ρ dρ

r dr
=

π τ0

dWBG
dη

wBG(r) . (A.4)

This implies in particular

dWBG

ρdρdφdη
=

dWBG

rdrdφdη

rdr

ρdρ
=

1

πτ0

dWBG

dη
, (A.5)
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Figure 5. Example for a background enthalpy distribution wBG(r) as a function of radius and the

corresponding background density coordinate ρ(r) as defined by eq. (A.3).

which is independent of ρ. In other words, in the coordinate system (ρ, φ), the background

enthalpy distribution is constant on the disk φ ∈ (0, 2π), ρ ∈ (0, 1).

So far we have considered only the background part of the enthalpy distribution. Let

us now consider an arbitrary event with fluctuations, i.e. deviations from the smooth and

symmetric background part. The symmetries of the problem suggest the following expan-

sion (we neglect a possible rapidity-dependence for simplicity)

1

τ0

dW

ρdρdφdη
(ρ, φ) =

1

πτ0

dWBG

dη

[
1 +

∞∑
m=−∞

∞∑
l=1

w
(m)
l eimφJm

(
z

(m)
l ρ

)]
. (A.6)

Here, z
(m)
l is the l’th zero crossing of the Bessel functions of the first kind Jm(z). The

coefficients w
(m)
l can be obtained from the inverse relation

w
(m)
l =

1

π[Jm+1(z
(m)
l )]2

∫ 2π

0
dφ

∫ 1

0
dρ ρ

[
π

dWBG
dη

dW

ρdρdφdη
(ρ, φ)− 1

]
e−imφJm

(
z

(m)
l ρ

)
.

(A.7)

Within Lemoine’s discrete Bessel transform approximation this reads

w
(m)
l =

1

2π

∫ 2π

0
dφ e−imφ

Nα∑
α=1

4

[z
(m)
Nα

Jm+1(z
(m)
l )Jm+1(z

(m)
α )]2

×

[
π

dWBG
dη

dW

ρdρdφdη

(
z(m)
α /z

(m)
Nα

, φ
)
− 1

]
Jm
(
z

(m)
l z(m)

α /z
(m)
Nα

)
.

(A.8)

In praxis, one would replace here also the Fourier transformation by a discrete version.

When transformed back to the coordinate system (r, φ), eq. (A.6) reads with w(r, φ) =
1
τ0

dW
rdrdφdη

w(r, φ) = wBG(r)

[
1 +

∞∑
m=−∞

∞∑
l=1

w
(m)
l eimφJm

(
z

(m)
l ρ(r)

)]
. (A.9)

Note that this is equivalent to the expansion proposed in refs. [30, 46] except that a simpler

prescription for ρ(r) has been used, namely ρ(r) = r/R with R = 8 fm a somewhat arbitrary
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radius. Similarly, the inverse relation in eq. (A.7) becomes in these coordinates

w
(m)
l =

τ0

dWBG
dη [Jm+1(z

(m)
l )]2

∫ 2π

0
dφ

∫ ∞
0
dr r[w(r, φ)−wBG(r)]e−imφJm

(
z

(m)
l ρ(r)

)
. (A.10)

Note that the integral on the right hand side has good convergence properties since the

enthalpy density w(r, φ) decays quickly with r. The discrete version according to Lemoine’s

method reads now (Nα is the number of discretization points that should be chosen larger

than the maximal value of l considered)

w
(m)
l =

1

2π

∫ 2π

0
dφ e−imφ

Nα∑
α=1

4

[z
(m)
Nα

Jm+1(z
(m)
l )Jm+1(z

(m)
α )]2

×
[
w(r

(m)
α , φ)− wBG(r

(m)
α )

wBG(r
(m)
α )

]
Jm
(
z

(m)
l z(m)

α /z
(m)
Nα

)
,

(A.11)

where the radii r
(m)
l are to be determined from the implicit relation

ρ
(
r(m)
α

)
=
z

(m)
α

z
(m)
Nα

. (A.12)

Note eq. (A.11) equals the expression used in refs. [30, 46] except that a simpler prescription

r(m)
α =

z
(m)
α

z
(m)
Nα

R (A.13)

has been used there. One can also define a transfer matrix between the old and the new

definition,

w
(m)
l = T

(m)
ll′ w̃

(m)
l′ (A.14)

with

T
(m)
ll′ =

Nα∑
α=1

4Jm

(
z

(m)
l z

(m)
α

zNα

)
Jm

(
z

(m)

l′
R r

(m)
α

)
[z

(m)
Nα

Jm+1(z
(m)
l )Jm(z

(m)
α )]2

. (A.15)

B Bessel functions and integrals

In this appendix we compile some properties of Bessel functions and integrals involving

them. We are particularly interested in finite integrals on the domain ρ ∈ (0, 1).

For a given set of azimuthal wave numbers (m1,m2, . . . ,mn) with m1 + m2 + . . .

+mn = 0, we introduce the following symbol

b
(m1,...,mn)
l1,...,ln

=
2n

[Jm1+1(z
(m1)
l1

) · · · Jmn+1(z
(mn)
ln

)]2

∫ 1

0
dρ ρ

{
Jm1

(
z

(m1)
l1

ρ
)
· · · Jmn

(
z

(mn)
ln

ρ
)}
.

(B.1)

It is clear from the definition that the b
(m1,...,mn)
l1,...,ln

are symmetric with respect to the inter-

change of any pair of indices, e.g. b
(m1,m2)
l1,l2

= b
(m2,m1)
l2,l1

.
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We now discuss the simplest cases of n = 1, 2 where one can obtain analytic expressions.

For n = 1 there is only the possibility of m = 0,

b
(0)
l =

2

[J1(z
(0)
l )]2

∫ 1

0
dρ ρ J0

(
z

(0)
l ρ

)
=

2

z
(0)
l J1(z

(0)
l )

. (B.2)

For n = 2 one has m1 = −m2 = m and obtains, using J−m(z) = (−1)mJm(z) and the

orthogonality property of the Bessel functions,

b
(m,−m)
l1,l2

=
4 (−1)m

[Jm+1(z
(m)
l1

)Jm+1(z
(m)
l2

)]2

∫ 1

0
dρ ρ

{
Jm
(
z

(m)
l1

ρ
)
Jm
(
z

(m)
l2

ρ
)}

= δl1l2
2 (−1)m

[Jm+1(z
(m)
l1

)]2
.

(B.3)

For n = 3 and larger we are not aware of analytic expressions for the symbols b
(m1,...,mn)
l1,...,ln

but it is easy to determine them numerically from eq. (B.1) and to tabulate them when

needed.

C Impact parameter dependence

In this appendix we show that the Bessel-Fourier coefficients of the expectation value of

the enthalpy density at fixed reaction plane angle φR as in eq. (3.3) vanish for small impact

parameter b like

w̄
(m)
l ∼ b|m| +O(b|m|+2) . (C.1)

We consider a collision of two (equal size) nuclei with their centers separated by the impact

parameter b. We choose the coordinate origin to be in the middle of the two nucleus centers.

The expectation value for enthalpy can then only depend on the distances from the two

centers, r2
A = r2 +b2/4+br cos(φ−φR) and r2

B = r2 +b2/4−br cos(φ−φR), or, equivalently

on u = (r2
A + r2

B)/2 = r2 + b2/4 and v = (r2
A − r2

B) = br cos(φ− φR). Moreover, symmetry

reasoning requires that the expectation value of enthalpy w̄ is a symmetric function of v.

One can therefore write

w̄(~x) = w̄(u, v) =
∞∑
n=0
n even

1

n!
w̄(0,n)(u, 0)[b r cos(φ− φR)]n. (C.2)

In the last step we have expanded in the argument v as one can do at least for small impact

parameter b. One can now take the Bessel-Fourier transform of this expression. One finds

that the coefficients w̄
(m)
l have contributions only from terms on the right hand side of

eq. (C.2) with n ≥ |m|. This implies eq. (C.1).

In a similar way, one can write the correlation function in eq. (3.4) as a function of

u1 = r2
1 + b2/4, u2 = r2

2 + b2/4, v1 = r1b cos(φ1−φR) and v2 = r2b cos(φ2−φR). Symmetry

reasons require that this is a symmetric function under v1 → −v1, v2 → −v2. One can
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write

C(r1, r2, φ2, φ2)

= C(u1, u2, v1, v2)

=

∞∑
n1,n2=0

n1+n2 even

1

n1!n2!
C(0,0,n1,n2)(u1, u2, 0, 0)[br1 cos(φ1 − φR)]n1 [br2 cos(φ2 − φR)]n2 .

(C.3)

When one expands this into a Fourier series one finds that for small b one has

C
(m1,m2)
l1,l2

∼ b|m1|+|m2| +O(b|m1|+|m2|+2) . (C.4)

This implies in particular that C
(m,m)
l1,l2

∼ b2|m| +O(b2|m|+2).
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