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Abstract

The ALICE Collaboration has studied the inclusive produttdf the charmonium statg(2S) in
proton-lead (p-Pb) collisions at the nucleon-nucleon reenf mass energy/syn = 5.02 TeV at

the CERN LHC. The measurement was performed at forwafB(2 ycms < 3.53) and backward
(—4.46 < yems < —2.96) centre of mass rapidities, studying the decays into npads. In this paper,

we present the inclusive production cross sectiopgs), both integrated and as a function of the
transverse momentum, for the twoy.ns domains. The results are compared to those obtained for
the 1S vector state (), by showing the ratios between the production cross sestias well as the
double ratioday,2s) / T3/¢]pPu/ [Oy(2s)/ Ty wlpp EtWeen p-Pb and proton-proton collisions. Finally,
the nuclear modification factor for inclusiyg2S) is evaluated and compared to the measurement of
the same quantity for ¢/ and to theoretical models including parton shadowing am@nt energy
loss mechanisms. The results show a significantly largegsresgion of thep(2S) compared to that
measured for Jf and to models. These observations represent a clear imdidat sizeable final
state effects oy(2S) production.
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The physics of charmonia, bound states of the chadnafid anti-charmd) quarks, is an extremely
broad and interesting field of investigatian [1]. The dgsioin of the various states and the calculation
of their production cross sections in hadronic collisiomglve an interplay of perturbative and non-
perturbative aspects of Quantum ChromoDynamics (QCD)WRIch still today represent a significant
challenge for theory [3]. Charmonium states can have smsiltes than light hadrons (down to a few
tenths of a fm) and large binding energies§00 MeV) [4]. These properties make charmonia a useful
probe of the hot nuclear matter created in ultrarelatiwisteavy-ion collisions, which can be seen as
a plasma of deconfined quarks and gluons (QGP) (see [5] focemt@verview of QGP studies). In
particular, thect binding can be screened by the high density of colour chgpgesent in the QGP,
leading to a suppression of the yields of charmonia in higérgy nuclear collisions compared to the
corresponding production rates in elementary pp collsiahthe same energyl[6]. In the so-called
“sequential suppression” scenario, the melting of a ba@rslate occurs when the temperature of the hot
medium exceeds a threshold dissociation temperétlire, WHa¢h depends on the binding energy of the
state and can be calculated in lattice QCD [9]. At LHC eneaxgiehere the number of producetipairs

is large, this suppression effect can be partly countenioalh by charmonium “regeneration” processes
due to the recombination of charm quarks that occurs as #teraycools and hadrons form [10+12].

Among the charmonium states, the strongly bound S-wayeadtl the weakly bound radially excited
Y(2S) have received most attention in the context of QGP studiesth Becay to lepton pairs with

a non-negligible branching ratio (5.93% and 0.77%, respaygt for the u*u~ channel [13]). The
results obtained by the NA5O collaboration at the CERN SRfvet a significant suppression of the
JIy production in Pb-Pb collisions gtsyn = 17 GeV [14] and a comparatively larger suppression of the
Y(29) [15], in qualitative agreement with sequential suppressidels. However, the same experiment
also detected a significant suppression of both stateso(@lthnot as strong as in Pb-Pb) in proton-
nucleus (p-A) collisions [16], where no QGP formation wapented. The same observation was made
by other fixed-target experiments studying p-A collisioh$armilab (E866/[1/7]) and HERA (HERA-

B [18]). It was indeed realized that the charmonium vyields @liso sensitive to the presence of cold
nuclear matter (CNM) in the target nucleus, and various @eisims (nuclear parton shadowing|[19],
cC break-up via interaction with nucleons [20+-22], initiaiél state energy loss [23]) were taken into
account in order to describe experimental observationspalticular, these experiments observed a
stronger suppression fgr(2S) relative to Ji at central rapidity, while at forward rapidity no differenc
was found within uncertainties. This feature of the reswis interpreted in terms of pair break-up: at
central rapidity the time spent by tlog state in the nuclear medium (crossing time) is typicallgdair
than the formation time of the resonances( 1 fm/c [24,[25]), so that the loosely bounfl(2S) can be
more easily dissociated than the/J/Conversely, in forward production the crossing time islénshan

the formation time and the influence of the nucleus on thehpdronic state is the same, independent of
the particular resonance being produced [26].

More generally, the study of charmonia in p-A collisions denused as a tool for a quantitative in-
vestigation of the aforementioned processes, relevatteicontext of studies of the strong interaction.
Therefore, measurements at high energies are importagsttotr understanding of the various mecha-
nisms. In particular, the pair break-up cross sectionaudsed above are expected to be strongly reduced
due to the increasingly shorter time spent by ¢ogoair in CNM. On the other hand, the other effects
listed above (shadowing, energy loss) are not expectedpendeon the final quantum numbers of the
charmonium states. In such a situation, a similar suppmedsr the two charmonium states should be
observed in high-energy p-A collisions.

In the context of comparative studies between the resosantice PHENIX experiment at RHIC has
recently published results on tgg2S) suppression at central rapidity for d-Au collisions & = 200
GeV [27], by studying the nuclear modification fackif\>% = dN2% /dy/ (Neon x dNiZ /dy), which
corresponds to the ratio of the production yields in d-Au ppdat the same energy, hormalized by the
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number of nucleon-nucleon collisions in d-Au. The ratiolw huclear modification factoﬁfj",ﬁS)/ /A‘ﬁ

is found to be smaller than 1, and strongly decreasing froriplperal to central d-Au events. The
observation of ay(2S) suppression stronger than that of thgy 3¢ in contrast to the expectation of a
similar suppression as described above. Data from the Lhhbeauseful to shed further light on this
observation, as nuclear crossing times [25] may be as lowas fin/c for charmonium production at
forward rapidity, implying a negligible influence of pairdak-up processes and, in more general terms,
to test our understanding of charmonium propagation in CNM.

In this Letter, we present the first measurement of inclugiy2S) production in,/Syn = 5.02 TeV p-Pb
collisions at the LHC, carried out by the ALICE Collaboratjand we compare the results with those
for Y. The resonances were measured in the dimuon decay charngltis Muon Spectrometer
(MS) [28], which covers the pseudorapidity rangd < nap < —2.5. The other detectors involved in
this analysis are: (i) the two innermost layers of the Innexcking System (Silicon Pixel Detectors,
SPD), used for the determination of the primary vertex ofitieraction and coveringiap| < 2.0 (first
layer) and|nian| < 1.4 (second layer) [29]; (ii) the two VZERO scintillator hoaoges, used mainly
for triggering purposes and coverirg3.7 < Nap < —1.7 and 28 < niap < 5.1 [30]; (iii) the Zero De-
gree Calorimeters (ZDC), at 112.5 m from the interactiompf81], used to remove collisions outside
the nominal timing of the LHC bunches. Details of the ALICEperimental setup are provided else-
where [32].

Due to the LHC design, the colliding beams have differentrgiee per nucleonH, = 4 TeV, Epp =
1.58- App TeV, whereAp, = 208 is the mass number of the Pb nucleus). As a consequeraritre of
mass of the nucleon-nucleon collision is shifteddyy= 0.465 with respect to the laboratory frame in the
direction of the proton beam. Data were taken in two configuma, by inverting the sense of the orbits
of the two beams. In this way, both forward@3 < ycms < 3.53) and backward-{4.46 < yems < —2.96)
centre of mass rapidities were covered, with the positipédiy defined by the direction of the proton
beam. We refer to the two data samples as p-Pb and Pb-p rigsfyecThe integrated luminosities for
the two data samples ak€"°=5.01+0.19 nbL andL’™ = 5.81+0.20 nb* [33].

int

Data were collected with a dimuon trigger, defined as thecidémce of the minimum-bias (MB) condi-
tion with the detection of two opposite-sign muon candigatethe trigger system of the MS. The MB
condition is a coincidence between signals in the two VZER@dscopes and has 99% efficiency for
non-single diffractive events [34]. For the muon candidatetransverse momentupg ;, = 0.5 GeVkt
trigger threshold is applied. The effect of this threshalahot sharp, and the single muon trigger effi-
ciency reaches its plateau value 96%) for pr , ~ 1.5 GeVk. The offline event selection, the muon
reconstruction and identification criteria and the kinemauits applied at the single and dimuon levels
are identical to those described In [35]. In addition, a autlee transverse distance from the primary
vertex of each of the reconstructed muon tracks, weightél itgi momentum gDCA), was performed.
Tracks withpDCA > 6 x gppca Were rejected. The quantityypca is the pDCA resolution, which is
obtained from data, taking into account the resolution aokmomentum and slope [36]. Such a track
cut reduces the background continuum by a few percent withiéecting the resonances.

The extraction of the resonance signals is carried out bynmeéa fit to the dimuon invariant mass
spectrum, as illustrated in Figl 1 for the two rapidity ramgeder study. The / and ¢(29) line
shapes are described either by Crystal Ball (CB) functi@¥, [with asymmetric tails on both sides
of the peak, or by pseudo-Gaussian functions [38]. The petens of the resonance shapes are obtained
by means of a Monte-Carlo (MC) simulation. Purey Hnd /(2S) signal samples are generated, and
then tracked and reconstructed in the experimental settiptihé same procedure applied to real data.
The choice of the MC kinematic distributions of charmonialiscussed below when introducing the
acceptance calculation. Due to the large signal to backgroatio (S/B) in the J) mass region and in
order to account for small deviations of the mas®(1%) and width £10%) between MC and data,
the corresponding parameters are left free in the fit. Forytf@S), due to the less favourable S/B,
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the mass and widths are constrained by those for tiieuding the following relations which involve
the corresponding MC quantitiesyos) = My + ( M(C 25 ~ J/w) anday2s) = 0y - ( 28 /UJ“;'E)
Alternative values of thg/(2S) mass resolution have also been tested, allowing the(l r@ﬂé / GME) to
vary within 10% [36]. Finally, the parameters of the asymmioesils, which can hardly be constralned by
the data, are kept fixed to their MC values. Additional setiit$, obtained from the MC, but sampling
they.msandpr phase space, have also been tested. The dependence ofdlsteebdd andy (29S) yields

on the variation of the tails and on thjg2S) mass resolution is included in the systematic uncertainty
on the signal extraction. The background continuum underdbonances is parameterized by empirical
shapes, using a polynomial times an exponential functicm G@aussian having a width increasing with
mass. In order to assess the systematic uncertainty onl sigfinaction, fits with various combinations
of the signal and background shapes are performed, andatttkest! point of the fit range is also varied.
The raw(29) yields and their statistical uncertainty is finally obtalres the average of the results of
the various fits performed, while the systematic uncerngasitalculated as the root-mean-square (RMS)
of their distribution. This results |h|"”<2$) = 1069+ 130+ 102 andN"U (29 _ 697+ 111+ 65, where the
first uncertainty is statistical and the second is systeamdthe w(ZS) mass resolution extracted from
the fits is~70 MeV/c?. As a cross-check, an alternative approach for signal eidra based on event
counting, was also tested. More precisely, after fittingitlvariant mass distribution and subtracting the
background contribution, the number ¢f2S) was obtained by integrating the background subtracted
spectrum in the region.3 < my,, < 3.8 GeVL?. Corrections, based on the signal fitting functions, were
applied to the measured number of counts to account for #eéidn of (2S) outside of the integration
region (~15%) and for the number of/falling inside they(2S) mass range~8%). The results were
found to be stable within 1% with respect to 0.1 GeAW/ariations of the integration region. The number
of JY and Y (2S) extracted in this Way are also in excellent agreement guell, within the systematic
uncertainties) with respect to tlmgup(s and N,‘f (29 values quoted above.
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Fig. 1. Opposite-sign dimuon invariant mass spectra for the p-&f) @nd Pb-p (right) data samples, together
with the result of a fit. For the fits shown here, Crystal Batidtions (shown as dashed lines) and a variable-width
Gaussian have been used for the resonances and the baakgespectively. The?/ndf refers to the goodness
of the signal and background combined fit in the displayedsmasge.

The acceptance times efficiency valuesx&) for the /(2S) were evaluated using MC simulations in

a similar way as detailed in [35] for theLy]/ The inputpy distributions Were obtained from those used

J J )
for the J [33], scaled such thd‘pﬂppns 02Tev = <pT>p/Putl35‘02TeVX ((pr >pp v/ (P >p/pl:l;TeV)’ and using

the \/s=7 TeV pp values from LHCH [39, 40] obtained in the slightlygar range < ycms< 4.5. The

inputy distributions were obtained from those used for thg dssuming a scaling of the widths with
Vi /y%;';&, wherey!, ., = log(y/s/m) is the maximum rapidity for the resonaricat the,/s value under
study. An unpolarized distribution for thg(2S) was assumed, according to the results obtained in pp

collisions at\/s= 7 TeV by the CMS and LHCb experiments [41] 42]. The systemaiitertainty for
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the (2S) acceptance was calculated as the maximum spread of theswalit@ined by assuming as
alternative input distributions those used for th¢ iis5elf and amounts to 1.8% (2.5%) for p-Pb (Pb-p).

The efficiency of the tracking and trigger detectors of the WEs taken into account in the MC simu-
lations by means of a map of dead channels (tracking) and itgiroy efficiency tables for the detector
elements (trigger). The evolution of the detector perfarogathroughout the data taking was followed
in the MC, by generating a number of events which is propoatido the run-by-run number of dimuon
triggers, in order to properly weight the detector condisi@mver the entire data taking. The systematic
uncertainties on the efficiencies were obtained with aljors based on real data, with the same pro-
cedure adopted in [35], and they are identical fap dhd ¢(2S). A small uncertainty related to the
efficiency of the matching between tracking and triggerimfgrimation was also included [35].

The pr-integrated Ax € values for/(2S) production, obtained with this procedure, ar2®+ 0.014
(p-Pb) and .84+ 0.013 (Pb-p), where the lower value for Pb-p is mainly due to alkemndetector
efficiency in the corresponding data taking period, related worse detector performance. The quoted
uncertainties are systematic and are obtained as the dgigasinan of the uncertainties on MC input,
tracking, triggering and matching efficiencies. The stiatib uncertainties are negligible.

The cross section times the branching rati@ By (2S) — ppu) for inclusive ¢(2S) production in p-Pb
collisions (and similarly for Pb-p) is:

s _ Nutes

W2s) _ YRy —up

BRy@suu o = prp (1)
int

where fo;%rzswuu is the number ofy(2S) corrected for Ax &, and Lﬁ]fb is the integrated luminosity,

calculated aﬂ.\IMB/ag"P%. Nwms is the number of MB events, obtained as the number of dimuggers
divided by the probability of having a triggered dimuon in @Mvent. TheNys numerical values
and uncertainties are the same as those quoted in [35]. Diss sections for the occurrence of the
MB condition, O'F')\f;%, are measured in a vdM scen [33] to be 2:09.07 b for the p-Pb configuration
and 2.12+ 0.07 b for the Pb-p one. The luminosity is also independetiéiiermined by means of a
second luminosity signal, as described in/[33]. The two mesasents differ by at most 1% throughout
the whole data-taking period and such a value is quadritiadded to the luminosity uncertainty. The
Y (29) cross section values are:

B.R. G[;’Up(ss) (2.03 < Yems < 3.53) = 0.791+ 0.096(stat) + 0.091(systuncorr) + 0.013(systcorr.) ub

B.R. ag’éss) (—4.46 < Yems < —2.96) = 0.653+ 0.104(stat) +0.080(systuncorr) + 0.010(systcorr.) pub

The systematic uncertainties for tjig2S) cross section measurement are obtained as the quadratic sum
of the various contributions listed in Talile 1. The splgtinetween uncorrelated and correlated sources
is also summarized there. The corresponding values forgheah be found in[35].

The study of the cross section ratio betweg2S) and Jiy, and the comparison of this ratio between
different systems, offers a powerful tool to investigatelaar effects on charmonium production. In
addition, several systematic uncertainties cancel, osi@gmificantly reduced, when studying such ra-
tios. In particular, in the present analysis, the trackingger and matching efficiencies, as well as the
normalization-related quantities, cancel out. For the Mgut, the fraction of the uncertainty related to
the choice of the J kinematical distribution[[35] cancels in the cross sectiatios, and the remaining
1% (2%) uncertainty for p-Pb (Pb-p) is assigned to this samuf€inally, the uncertainty on signal ex-
traction is considered as uncorrelated betwegnaiid ¢/(2S), and its value for the cross section ratios
amounts to 10% for both p-Pb and Pb-p. The resulting valuss ar
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P29 w29
B.R.‘O-ppb B.R.'Upbp

Tracking efficiency 4 6
Trigger efficiency | 2.8 (2— 3.5) 3.2(2—3.5)
Signal extraction | 9.5(8—11.9) | 9.3 (8.6— 12.7)

MC input 1.8(1.5-15)| 25(1.5-1.7)
Matching efficiency 1 1
Lint(uncorr.) 3.4 3.1
Lint(corr.) 1.6 1.6

Table 1: Systematic uncertainties (in percent) affecting the mesmant of inclusivaep(2S) cross sections. The
Lint uncertainties are splitted in two components, respegtivetorrelated and correlated between p-Pb and Pb-p,
as detailed in[33]. All the other uncertainties are undatesl between forward and backward rapidity. Uncertain-
ties refer topr-integrated quantities and, where they depengpnthe corresponding maximum and minimum
values are also quoted. The efficiency-related uncerésingifer to muon pairs.

B-R-w(ZS)%/J*/,F O—l,U(ZS)

B.R.J/w%“Jr“f gl
(29

(2.03 < Yems < 3.53) = 0.01544 0.0019stat) -+ 0.0015syst)

B‘R‘I,U(ZS)—HJ*IJ’ o¥
B'R'J/W—HJJFI—F ol/v

(—4.46 < yems < —2.96) = 0.0116- 0.001 stat) - 0.0011(syst)

In Fig.[2 we compare these ratios with the corresponding ALt€sults for pp collisions [36], obtained
in slightly different centre of mass energy and rapidityioeg, /s =7 TeV, 25 < |y| < 4, as no LHC
pp results are available in the same kinematic conditionmatbn-nucleus collisions. The pp ratios are
significantly higher than those for p-Pb and Pb-p, which aramatible within uncertainties.
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Fig. 2: The cross section ratios.B.y s+ y- 0%®9 /B.R.3y_y+ - 0¥ for p-Pb and Pb-p collisions, com-
pared with the corresponding pp results,/@= 7 TeV [36]. The horizontal bars correspond to the width of the

rapidity regions under study. The vertical error bars repné statistical uncertainties, the boxes correspond to
systematic uncertainties.

The double ratigoyzs)/ 9y ylppt/ [Oy(2s)/ Ty wlpp is @ useful quantity to directly compare the relative
suppression of the two states between various experimeatghis analysis, since the collision energy
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and they-coverage of the p-Pb (Pb-p) and pp measurements are differe have estimated the possible
dependence of the¥(?d /g¥/¥ vs \/sandy in pp collisions. We start from the empirical observation
that this ratio is very similar at collider energies over thea broad range of and./s. In particular,
from the LHCb data{/s=7 TeV, 2< y < 4.5) [39,40] one gets 2.11% for the inclusive ratio integrated
over pr, while the corresponding value from CDF datp @t /s = 1.96 TeV,|y| < 0.6) [43] is 2.05%,
i.e., only 3% smaller (the latter quantity was obtained biyagpolating the CDR)(2S) measurement to
pr = 0 with the phenomenological functidi{pr) = (pr)/[1+ (pr/a)?|P) [44]. The LHCb result can be
extrapolated to central rapidity gfs = 7 TeV, assuming a Gaussigrdistribution for both resonances,
with the width of the 3 distribution tuned directly on dat& [39] and that fgn2S) obtained from

the former assuming a scaling of the widths V\M%&S)/y%}fx. The effect of this rescaling is small,
leading to a 3% increase of the ratio. The central-rapiditjoray, s /0y at/s=5.02 TeV is then
obtained by means of an interpolation between the CDF andh-HGcaled values, assuming a linear
dependence of the ratio ygs. Finally, one can extrapolate the ratio to the p-Pb and Pipjglity ranges
by using for the 3y the Gaussian shape obtained with the interpolation proeediescribed in [45] and
for the @(2S) the corresponding shape scaled V\yﬂfxs) /y%g“x. The difference between the measured
value of oy g /0y for /s=7 TeV, 2< yems < 4.5 and the results of the interpolation procedure
to \/s=5.02 TeV, 203 < yems < 3.53 (—4.46 < Yems < —2.96) is -1.6% (-3.7%). When calculating
the double ratiqay s /0/ylprPb/ [y (25 / T3/ylpp: WE choose to use for pp the measured valug/sit
=7 TeV, 25 < yems < 4 [36] (rather than the interpolated one\@ = 5.02 TeV) and to include a 8%
systematic uncertainty on this quantity, i.e., about twieemaximum difference between the measured
values of the ratio in pp and the results of the interpolaporcedure. A similar uncertainty would be
obtained using as an input for the calculation, instead ®1L#HCb data, the more recent pp result from
ALICE on O-W(ZS)/O-J/W [36]

The values of the double ratio are shown in Eig. 3, where theykso compared with the corresponding
results obtained by the PHENIX experiment,@yn = 200 GeV, forly| < 0.35 [27]. When forming
the double ratio, the systematic uncertainties on the pp, iatluding the 8% contribution described in
the previous paragraph, are considered as correlated déretiwavard and backward rapidity, while the
other systematic uncertainties are treated as uncomel@tee dominating contributions to the systematic
uncertainty come from the signal extraction and from therplation procedure used for the pp cross
section. The ALICE results show that, compared to pp,Jii2S) is more suppressed than thg/db a
2.30 (4.10) level in p-Pb (Pb-p). The PHENIX result shows a similar eef at a 1.8 level.

The suppression of charmonium states with respect to thesgwnding pp yield can be quantified using

the nuclear modification factor. Fa@r(2S), Rg’éﬁs) is obtained by combinin /PL{; [35] with the double
ratio evaluated above:

ves
RS R, T o @)
Jw w(2S
Gpl/:’b Upp( )

In Fig.[4, RIL)"F(,ES) is shown and compared wiﬂa;/P‘ﬁ. For the double ratios, the difference in ths and

y domains between p-Pb and pp is taken into account by thesindwf the 8% systematic uncertainty
described above. The other quoted uncertainties combirse ﬂ}nomR;/P‘ﬁ [35] with those for the double
ratio, avoiding a double counting of theydtelated uncertainties. Figufé 4 indicates that ¢h@S)
suppression is much stronger than for thg dhd reaches a facter2 with respect to pp. The results are
compared with theoretical calculations including eitheclear shadowing only [46] or coherent energy
loss, with or without a shadowing contributidn [47]. For fleemer mechanism, the values correspond
to calculations performed for theyd/ However, due to the relatively similar kinematic disttibns of
gluons that produce thet pair which will then hadronize to ay/or a (2S), the shadowing effects
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Fig. 3: Double ratio§ay>s)/ 0y ylppb/ [Oy(2s)/ O3/ylpp fOr p-Pb and Pb-p collisions, compared to the correspond-
ing PHENIX result at,/Syv = 200 GeV [27]. The horizontal bars correspond to the widtthefrapidity regions
under study. For ALICE, the vertical error bars correspandtatistical uncertainties, the boxes to uncorrelated
systematic uncertainties, and the shaded areas to cedalatcertainties. For PHENIX, the various sources of
systematic uncertainties were combined in quadrature.
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Fig. 4: The nuclear modification factor fap(2S), compared to the corresponding quantity fap JB5]. The
horizontal bars correspond to the width of the rapidity oegiunder study. The vertical error bars correspond
to statistical uncertainties, the boxes to uncorrelatesiesyatic uncertainties, and the shaded areas to partially
correlated uncertainties. The filled box on the right, cesdeonR,pp = 1, shows uncertainties that are fully
correlated betweeny/and /(2S). Model calculations tuned ong{ and including nuclear shadowirig [46] and
coherent energy loss [47] are also shown. The correspomradicglations fon(2S) produce identical values for
the coherent energy loss mechanisms and a 2-3% larger fasoliclear shadowing and therefore are not shown.
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are expected to be the same, within 2-3% [48], for the tworabaium states. No sensitivity to the
final quantum numbers of the charmonium state is expectecotugrent energy loss, implying that the
calculations shown in Fid.] 4 are valid for both resonances.a&onsequence, all three models would
predict an almost identical suppression for th&2S) and the 3y over the full rapidity range, with
negligible theoretical uncertainties. This predictionnstrong disagreement with our data and clearly
indicates that other mechanisms must be invoked in ordeesoribe thap(2S) suppression in proton-
nucleus collisions.

The break-up cross section of the final state resonance dimetactions with CNM is expected to
depend on the binding energy of the charmonium and such aamisch would be a natural explanation
for the larger suppression @i(2S). However, this process becomes relevant only if the chaiumon
formation timets is smaller than the time. spent by thet pair inside the nucleus. One can evaluate
the average proper timg spent in CNM astc = (L)/(B;y) [25], where(L) is the average length of
nuclear matter crossed by the pair, which can be calculatdteiframework of the Glauber model [49],
B, = tanhy’est is the velocity of thecc along the beam direction in the nucleus rest frame, pnd
Ex/mg. Forct pairs in the charmonium mass range emittegrat= O in the forward acceptance, one
getste ~ 10~ fm/c, while the corresponding value at backward rapidity.is- 7- 102 fm/c. Estimates
for the formation timets range between 0.05 and 0.15 &¢j24,(25]. In this situation, no break-up
effects depending on the final charmonium state should beoctg at forward rapidity, and even for
backward production one has at mast~ 1. which would hardly accomodate the strong difference
observed betweey(2S) and J{ suppression. As a consequence, other final state effectddshe
considered, including the interaction of tbe pair with the final state hadronic system created in the
proton-nucleus collision.

The sizeablap(2S) statistics collected in proton-nucleus collisions alldasa differential study of the
various observables as a functiongf, in the range G< pr < 8 GeVk. We have chosen a transverse
momentum binning which leads to similar relative statatiencertainties in each bin over tipg range
covered. The analysis is carried out with the same proceatimpted for the integrated data samples. In
particular, the systematic uncertainties are evaluatiéereitially in pr, and their range is also reported
in Table[1. In Fig[h the invariant mass spectra for the varipu bins are shown, together with the
result of the fits. In Fid.l6 the differential cross sectiohfoavard and backward rapidity are presented.
The systematic uncertainties on signal extraction, MCfimmal efficiencies are considered as bin-to-bin
uncorrelated. Théj,; uncertainties are correlated between the varipubins and partially correlated
between p-Pb and Pb-p.

In Fig.[7 we present ther dependence of the double rafigy, s /0y ylppb/ [Oy(2s)/ Ty wlpp: With the
p-Pb Jiy cross sections taken from [35] and the pp values fiom [36]fcAthe integrated double ratio,
the systematic uncertainties related to efficiencies andotalizations cancel out for both proton-
nucleus and pp, while the uncertainties on signal extractiod Monte-Carlo input are considered as
uncorrelated. The 8% uncertainty related to{fsandy mismatch between the two systems is correlated
as a function ofpy, while the uncertainties on the ratio in pp collisions arer@ated, for eactpr bin,
between forward and backward rapidity.

Finally, in Fig.[8 thepr dependence of thg(2S) nuclear modification factor, calculated using Eq. 2, is
presented and compared with the corresponding resultgofall]. The uncertainties are obtained with
the procedure used in Fig. 4, and the results are comparbe game models quoted there.

Within uncertainties, ngy dependence of the double ratio can be seen, and conseqgasmlfunction
of transverse momentumg’éﬁs) has qualitatively a similar shape as that exhibitedﬂyﬁ, but system-
atically characterized by smaller values. Theoretical e®dwhich in this case also yield the same
prediction for J and(2S), are in fair agreement with J)/results, but clearly overestimate t{g2S)
nuclear modification factor values.
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Fig. 5: Opposite-sign dimuon invariant mass spectra, in bins ofstrarse momentum, for the p-Pb and Pb-p data
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have been used for the resonances and the background thesigeThe x2/ndf refers to the goodness of the signal
and background combined fit in the displayed mass range.
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Fig. 6: The ¢(29) differential cross sections B.R?c /dydpr for p-Pb and Pb-p collisions. The horizontal bars
correspond to the width of the transverse momentum bins. vEntical error bars correspond to the statistical
uncertainties, the boxes to uncorrelated systematic tainges and the shaded areaptecorrelated uncertain-
ties. A global 1.6% uncertainty applies to both p-Pb and Pespits. The points corresponding to negayiwee
slightly shifted inpr to improve visibility.

It is interesting to note that different values of transeemsomentum for the resonances correspond to
different ¢, with the crossing times decreasing with increaging In particular, for backward produc-
tion, 1¢ varies by about a factor 2, betweer®.07 (atpt = 0) and~0.03 fmkt (at pr = 8 GeVk). As

a consequence, a larger fractionaofpairs may form the final resonance state inside CNM at fgw
and one might expect smaller values of the double ratio intthasverse momentum region due to the
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weaker binding energy ap(2S). Although the results shown in Figl 7 could be suggestiveuschsa
trend, no firm conclusion can be reached due to the curremtriexental uncertainties.

In summary, we have presented results on inclugiy2S) production in proton-nucleus collisions at the
LHC. Measurements were performed with the ALICE Muon Speuagter in the p-going (3 < Yems <
3.563) and Pb-going-{4.46 < ycms < —2.96) directions, and the production cross sections, the ldoub
ratios with respect to the )/in p-Pb and pp and the nuclear modification factors were astidh The
results show thap(2S) is significantly more suppressed thag i both rapidity regions, and that e
dependence of this effect is found within uncertaintiess Dinservation implies that initial state nuclear
effects alone cannot account for the modification of #h@S) yields, as also confirmed by the poor
agreement of thg(2S) Rypp With models based on shadowing and/or energy loss. Fina sftects,
such as the pair break-up by interactions with cold nuclestten might in principle lead to the observed
effect, but the extremely short crossing times for teepair, in particular at forward rapidity, make
such an explanation unlikely. Consequently, other findbstéfects should be considered, including the
interaction of thectT pair with the final state hadronic system created in the protacleus collision.
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