CUT-OFF VERSUS DIMENSIONAL REGULARIZATION IN THE LIGHT-CONE GAUGE George Leibbrandt*) CERN - Geneva #### **ABSTRACT** The conventional cut-off method is applied to massless light-cone gauge Feynman integrals. Despite the presence of non-local terms in the unintegrated expression for the Yang-Mills self-energy, the cut-off procedure yields the same ultra-violet behaviour as the lengthier technique of dimensional regularization. ^{*)}Permanent address: Department of Mathematics and Statistics, University of Guelph, Ontario, N1G 2W1. #### 1.00 INTRODUCTION Working the wastern and the contract of The purpose of this note is to show that the cut-off method 1),2) may also be applied to two-point functions in the light-cone gauge. The cut-off procedure is a simple technique which extracts the ultra-violet behaviour from a given integral and is, strictly speaking, only applicable at the one-loop level. To date, the method has been employed in both covariant gauges and non-covariant gauges, where it was found to yield the same results as the lengthier, albeit more general, technique of dimensional regularization. In view of the ever-increasing number of light-cone gauge computations in such popular areas as supersymmetric Yang-Mills theory, supergravity and superstring theories, it is clearly desirable to have at one's disposal another, preferably shorter, means of attacking the standard integrals. As a test case we have applied the cut-off procedure to the Yang-Mills self-energy, obtained previously with the aid of dimensional regularization. The problem is not entirely trivial, since application of the correct light-cone prescription 3,4) is known to yield non-local factors already at the one-loop level 4. These potentially dangerous factors are absent in the axial and planar gauges, since the latter do not manifestly break Lorentz invariance. # 2. - YANG-MILLS SELF-ENERGY TO ONE LOOP Consider the Lagrangian density Consider the Lagrangian density $$L_{YM} = -\frac{1}{4} \left(\frac{\pi}{4} \alpha \right)^{2} - \frac{1}{2\alpha} \left(\pi \cdot H^{2} \right)^{2}, \quad \alpha \text{ gauge parameter}, \quad (1)$$ where A_{μ}^a is a massless gauge field, μ = 0,1,2,3, and n_{μ} an arbitrary constant four-vector. The light-cone gauge is specified by $$n^{\mu} H_{\mu}^{\alpha} = 0$$, $n^{2} = 0$. The unphysical singularities of $(q \cdot n)^{-1}$ in the gauge field propagator $(\alpha \rightarrow 0)$ $$G_{\mu\nu}^{ab}(q) = \frac{-i S^{ab}}{(2\pi)^4 (q^2 + i E)} \left[S_{\mu\nu} - \frac{(q_{\mu} n_{\nu} + q_{\nu} n_{\mu})}{q \cdot n} \right], E70, (3)$$ are treated with the prescription $^{4)}$ [for an equivalent procedure, see Mandelstam $^{3)}$] $$\frac{1}{q \cdot n} \Longrightarrow \lim_{\varepsilon \to 0} \left(\frac{q \cdot n^*}{q \cdot n \ q \cdot n^* + i \varepsilon} \right), \ n_{\mu} = (n_o, \vec{n}), n_{\mu}^* = (n_o, \vec{n})_{(4)}$$ Using standard Feynman rules, we obtain the following expression for the one-loop Yang-Mills self-energy: $$\prod_{\mu\nu}^{ab}(p) = C^{ab} \left[\frac{11}{3} \left(p^{2} S_{\mu\nu} - p_{\mu} p_{\nu} \right) R + S_{\mu\nu} D + E_{\mu\nu} + F_{\mu\nu} + G_{\mu\nu} + H_{\mu\nu} \right],$$ $$D = 2 p \cdot n \int_{q}^{d} \left(\frac{p^{2}}{q^{2} (q + p)^{2} q \cdot n} - \frac{p^{2}}{q^{2} (q - p)^{2} q \cdot n} \right),$$ $$E_{\mu\nu} = p \cdot n \left[p_{\mu} \int_{q}^{d} \left(\frac{q_{\nu}}{q^{2} (q + p)^{2} q \cdot n} + \frac{q_{\nu}}{q^{2} (q - p)^{2} q \cdot n} \right) + \mu \leftrightarrow \nu \right],$$ $$F_{\mu\nu} = \frac{1}{2} \left[p_{\mu} n_{\nu} \int_{q}^{d} \left(\frac{1}{q^{2} (q - p) \cdot n} - \frac{1}{(q - p)^{2} q \cdot n} \right) + \mu \leftrightarrow \nu \right],$$ $$G_{\mu\nu} = -p^{2} \left[n_{\mu} \int_{q}^{d} \frac{d^{4} q q_{\nu}}{q^{2} (q - p)^{2}} \left(\frac{1}{(q - p) \cdot n} + \frac{1}{q \cdot n} \right) + \mu \leftrightarrow \nu \right],$$ $$H_{\mu\nu} = n_{\mu} n_{\nu} \frac{p^{2}}{p \cdot n} \int_{q}^{d} \frac{d^{4} q q_{\nu}}{(q - p)^{2} q \cdot n} - \frac{1}{q^{2} (q - p) \cdot n} \right),$$ where p_{μ} is the external momentum, and only potentially ultra-violet divergent integrals are shown explicitly. Moreover, $C^{ab} \equiv C_{YM} \delta^{ab} g^2$, $\delta^{ab} C_{YM} = f^{acd} f^{bcd}$, and R denotes the basic integral in the cut-off method, $$\mathcal{R} = \int_{0}^{\Lambda} d^{4}q / q^{4} = \pi^{2} \ln \left(\Lambda^{2} / \mu^{2} \right), \qquad (6)$$ where Λ is the cut-off (in Euclidean space) and μ an arbitrary mass scale. Finally, notice that the last term $H_{\mu\nu}$ is non-local in p_{μ} . #### 3. - AN EXAMPLE Before we extract the ultra-violet behaviour by the cut-off method from each of the four-dimensional integrals in Eq. (5), we shall illustrate the technique by evaluating the light-cone gauge integral $$I_{\mu}(p) = \int \frac{d^4q \ q_{\mu}}{(q-p)^2 \ q \cdot n} \ , \tag{7}$$ which is clearly ultra-violet divergent. The standard procedure in the cut-off approach is to act on (7) with the operator $\mathcal{M}^{2),5)}$ $$\mathcal{M} \equiv \frac{1}{2} P_{\alpha} P_{\beta} \left(\frac{\partial^{2}}{\partial P_{\alpha} \partial P_{\beta}} \Big|_{P=0} \right), \tag{8}$$ giving $$\mathcal{M} I_{\mu} = P_{\mu} P_{\beta} \left[-S_{\alpha\beta} \int \frac{d^{4}q \, q_{\mu}}{q^{4}q \cdot n} + 4 \int \frac{d^{4}q \, q_{\alpha} \, q_{\beta} \, q_{\mu}}{q^{6} \, q \cdot n} \right], (9)$$ and then to compute the two light-cone gauge integrals separately. The first integral in (9) is calculated by making the ansatz 6) $$\int \frac{d^{4}q \, q_{\mu}}{q^{4} \, q \cdot n} = H \, n_{\mu} + B \, n_{\mu}^{*} \, , \qquad (10)$$ and then determining the coefficients A, B. Multiplication of (10) by n_{μ} gives $(n^2=0)$ $$\int d^4 q / q^4 = R = B n \cdot n^*,$$ so that The second of the second of $$\mathcal{B}$$, $=$ $\mathcal{R} / n \cdot n^*$, $_{11}$ The coefficient A follows, for example, from dimensional analysis by observing that $\int d^4q \ q_{\mu} (q \cdot n q^4)^{-1} \sim O(1/n)$, so that the dimension of A, written [A], is $[A] = 1/n^2$. But $1/n^2$ is not an admissible invariant in the light-cone gauge, so A must vanish, A = 0, and $$\int d^{4}q \, q_{\mu} \left(q^{4}q \cdot n \right)^{-1} = n_{\mu}^{*} \, R / n \cdot n^{*} \, . \tag{12}$$ To evaluate the second term in Eq. (9), we observe that the integral $$I_{apm} = \int d^{4}q \, q_{a} \, q_{b} \, q_{\mu} \, (q^{6}q \cdot n)^{-1} \tag{13}$$ is of order O(1/n), suggesting on dimensional grounds the ansatz $$I_{\mu\beta\mu} = H_0 \left(n_{\alpha}^* S_{\beta\mu} + n_{\beta}^* S_{\alpha\mu} + n_{\mu}^* S_{\alpha\beta} \right) + B_0 \left(n_{\alpha}^* n_{\beta}^* n_{\mu} + n_{\alpha}^* n_{\mu}^* n_{\beta} + n_{\beta}^* n_{\mu}^* n_{\alpha} \right).$$ (14) Multiplication of (14) by n_{μ} yields the relation $B_0 = -A_0/n \cdot n^*$, while contraction of the indices α , β gives $\int d^4q \ q_{\mu} (q \cdot nq^4)^{-1} = 4 A_0 n_{\mu}^*$; hence from (12), $A_0 = R/(4n \cdot n^*)$, so that $$\int \frac{d^{4}q}{q^{6}q^{2}n} = (4n \cdot n^{*})^{-1} \left[n_{\alpha}^{*} \delta_{\beta\mu} + n_{\beta}^{*} \delta_{\alpha\mu} + n_{\mu}^{*} \delta_{\alpha\beta} + n_{\mu}^{*} \delta_{\alpha\beta} \right] \\ - (n \cdot n^{*})^{-1} \left(n_{\alpha}^{*} n_{\beta}^{*} n_{\mu} + n_{\mu}^{*} n_{\alpha}^{*} n_{\beta} + n_{\beta}^{*} n_{\alpha}^{*} n_{\beta} \right) \right] R .$$ (15) Substitution of (12) and (15) into (9) gives the answer andere et de la filosofia de la companya de la comp O companya de la comp $$I_{\mu}(p) = \frac{1}{n \cdot n^{*}} \left[2p \cdot n^{*} p_{\mu} - \frac{(p \cdot n^{*})^{2}}{n \cdot n^{*}} n_{\mu} - \frac{2p \cdot n p \cdot n^{*} n_{\mu}}{n \cdot n^{*}} \right] R_{j}^{(16)}$$ this result agrees with Eq. (3.6) of Ref. 7), because the mass term m^2 is zero here and the factor R corresponds to \bar{I} . The integral \bar{I} corresponds, in Euclidean space, to The divergent part of $$\int \frac{d^2 \omega}{q^2 (q-p)^2} = \pi^2 / (2-\omega)$$ $$= \pi^2 / (2-\omega).$$ ## 4. - THE OPERATOR M Applying the operator (8) first to the <u>local</u> integrals in the self-energy $\Pi^{ab}_{\mu\nu}$, we find that $$\mathcal{M}\left[2p\cdot n\int \frac{d^{4}q}{q^{2}(q+p)^{2}q\cdot n}\right]=0,$$ (17a) **"我们就是我们的一个女人,我们还是我们的一个女人** $$\mathcal{U}\left[P^{\cdot n}P_{\mu}\int \frac{d^{4}q}{q^{2}}\left(\frac{q_{\nu}}{(q+p)^{2}q\cdot n} + \frac{q_{\nu}}{(q-p)^{2}q\cdot n}\right)\right]$$ $$= 2P_{\mu}n_{\nu}^{*}P^{\cdot n}R/n\cdot n^{*},$$ (17b) $$\mathcal{M}\left[\frac{1}{2}P_{\mu}n_{\nu}\int d^{4}q\left(\frac{1}{q^{2}(q-p)\cdot n}-\frac{1}{(q-p)^{2}q\cdot n}\right)\right]^{(17c)}$$ $$=-2P_{\mu}n_{\nu}P_{\nu}n^{*}R/n\cdot n^{*},$$ $$\mathcal{M}\left[-p^{2}n_{\mu}\int \frac{d^{4}q}{q^{2}(q-p)^{2}}\left(\frac{1}{(q-p)\cdot n}+\frac{1}{q\cdot n}\right)\right]^{(17d)}$$ $$=-2n_{\mu}n_{\nu}^{*}P^{2}R/n\cdot n^{*},$$ in which case $$\mathcal{M} \mathfrak{D} = \mathcal{O}, \tag{18a}$$ $$ME_{\mu\nu} = 2(p \cdot n/n \cdot n^*)(p_{\mu} n_{\nu}^* + p_{\nu} n_{\mu}^*) R$$, (18b) $$\mathcal{M} \, F_{\mu\nu} = -2(p \cdot n^*/n \cdot n^*)(p_{\mu} n_{\nu} + p_{\nu} n_{\mu}) \, R \,, \qquad _{(18c)}$$ $$\mathcal{U} G_{\mu\nu} = -2(p^2/n \cdot n^*)(n_{\mu} n_{\nu}^* + n_{\nu} n_{\mu}^*) R.$$ (18d) The non-local expression H in (5) is peculiar to the light-cone gauge and requires special care. As it stands, H is non-local in the external momentum p_{μ} , but can be massaged into local form by using light-cone variables defined by $$P^{\pm} = 2^{-1/2} (p^{\circ} \pm p^{3}), \quad P^{\prime\prime} = (p^{\circ}, p^{\prime}, p^{2}, p^{3}),$$ $$P_{T} = \lambda^{-1/2} (p^{1} + \lambda p^{2}), \ \overline{P}_{T} = \lambda^{-1/2} (p^{1} - \lambda p^{2}), \ _{(19)}$$ $$P \cdot P = \lambda (p^{+} p^{-} - P_{T} \overline{P}_{T}),$$ $$P \cdot n = p^{+} n_{-} + p^{-} n_{+} - P_{T} \overline{n}_{T} - \overline{P}_{T} n_{T},$$ and working in the special frame where $p^{\mu}=(p^0,0,0,p^3)$, and $n_{\mu}=(1,0,0,1)$. Then $n_T=p_T=n_-=0$, $n_+=\sqrt{2}$, $p \cdot n=\sqrt{2}$ p^- and $p^2/n \cdot p=\sqrt{2}$ p^+ . Hence $H_{\mu\nu}$ reduces to $$H_{\mu\nu} = n_{\mu} n_{\nu} \sqrt{2} p^{+} \int d^{4}q \left(\frac{1}{(q-p)^{2}q \cdot n} - \frac{1}{q^{2}(q-p) \cdot n} \right)^{(20)}$$ Now let f define the integral $$\oint \equiv \frac{P^2}{P \cdot n} \int d^4 q \left[(q - P)^2 q \cdot n \right]^{-1}$$ and consider Mf: $$\mathcal{U} f = \frac{1}{2} \left\{ (p^{+})^{2} \left[(\partial^{+})^{2} f \right]_{p=0} + 2p^{+} p^{-} \left[\partial^{+} \partial^{-} f \right]_{p=0} + (p^{-})^{2} \left[(\partial^{-})^{2} f \right]_{p=0} \right\}$$ (21) $$= 2 \int \frac{d^{4}q}{q^{-}} \left[(p^{+})^{2} \frac{q^{-}}{q^{+}} + p^{+} p^{-} \frac{q^{+}}{q^{+}} \right]$$ $$= 2 p^{\mu} \frac{p^{2}}{p \cdot n} \int \frac{d^{4}q}{q^{+} q \cdot n}$$ (22) $$= 2p^{2}p \cdot n^{*}(p \cdot n \cdot n^{*})^{-1}R;$$ (23) consequently, $$\mathcal{M} H_{\mu\nu} = n_{\mu} n_{\nu} \frac{4p^{2} p \cdot n^{*}}{p \cdot n \cdot n \cdot n^{*}} R. \tag{24}$$ Thus we have successfully extracted the ultra-violet pole parts from the terms D, $E_{\mu\nu}$, ..., $H_{\mu\nu}$. Substituting the right-hand sides of Eqs. (18) and (24) into Eq. (5), we obtain $$\Pi_{\mu\nu}^{ab}(P) = C^{ab} \left[\frac{11}{3} \left(P^{2} S_{\mu\nu} - P_{\mu} P_{\nu} \right) + \frac{2P \cdot n}{n \cdot n^{*}} \left(P_{\mu} n_{\nu}^{*} + P_{\nu} n_{\mu}^{*} \right) - \frac{2P^{2}}{n \cdot n^{*}} \left(P_{\mu} n_{\nu} + P_{\nu} n_{\mu} \right) - \frac{2P^{2}}{n \cdot n^{*}} \left(n_{\mu} n_{\nu}^{*} + n_{\nu} n_{\mu}^{*} \right) + \frac{4P^{2} P \cdot n^{*}}{P \cdot n \cdot n^{*}} n_{\mu} n_{\nu} \right] R,$$ (25) which agrees identically with Eq. (17) of Ref. 4) provided we identify R with $\pi^2(2-\omega)$, 2ω being the dimensionality of complex space-time. #### 5. - SUMMARY We have demonstrated that the simple cut-off method may also be used in the light-cone gauge to extract the ultra-violet behaviour of one-loop Feynman integrals. In particular, the method was shown capable of handling the unavoidable non-local terms in the Yang-Mills self-energy. Although the cut-off method and the technique of dimensional regularization yield different expressions for individual integrals, the two procedures give identical results (as far as the ultra-violet behaviour is concerned) for a specific Feynman diagram. #### ACKNOWLEDGEMENTS 2周2四月月8日日月 Research Council of Canada under Grant No. A8063. CERN Theoretical Physics Group for its kind hospitality during my stay in - - 3) N. Mandelotsmy Moct. Phys. 3212 (1983) 189. - () ... Leabhraidt, 20ys. Sev. 124 (1984) 1699. - S) at Market Br. Bramer and M. Schwade, Mart. Bayer, Bry (1974) case. - The Environment of the control syde of committee of the - Tim (\$881) 800 200 1000 Bend Description of the Co. #### REFERENCES - 1) C. Itzykson and J: F. Zuber; Quantum Field Theory. (McGraw-Hill, New York, at 1989); sail nate bloods to T.P. Beven and R. Delbourgo, Lett. Nuovo Cimento 23 (1978) 433; 27 (1980) at 1565. You spirate sails rights but all and apost solvest languages with - 2) A. Andrasi and J.C. Taylor, Nucl. Phys. B192 (1981) 283; B227 (1983) 494. - 3) S. Mandelstam, Nucl. Phys. B213 (1983) 149. - 4) G. Leibbrandt, Phys. Rev. D29 (1984) 1699. - 5) W. Kainz, W. Kummer and M. Schweda, Nucl. Phys. B79 (1974) 484. - 6) G. Leibbrandt, Phys. Rev. D30 (1984) 2167. - 7) G. Leibbrandt and S.-L. Nyeo, Phys. Lett. 140B (1984) 417.