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ABSTRACT

The conventional cut-off method is applied to
massless light-cone gauge Feynman integrals.
Despite the presence of non-local terms in the
unintegrated expression for the Yang-Mills self-
energy, the cut-off procedure yields the same
ultra~violet behaviour as the lengthier technique

of dimensional regularization.
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1. .= INTRODUCTION .« ‘e v o 00 L T T P AL

The purpese of this note is to show that the cut-off methodl)’Z)rmay also be
applxed Lo tw\o—-pcmnt functlons in the 1lght-cone gavge- The™ cut-off procedure is
a s:.mple teéﬁnique wh%ch extracts the ultra—vmlet behavmur fromia g;.ven mte-
gral and is, strlctly speaking, only appllcable at the one-loop itevel. To dafe,
the method has been employed in both covariant gauges and non-covariant gauges,
wheré it was :foumd to.~yield the same results. as the lengthier,. albeit more.

general, technique of dimensional regularization.

In vx.ew of t:he ever- 1ncreas:mg number of 11ght—cone gauge computatlons in
guch pOpﬂuglaf areas as sﬁpersyimnetrlc Yang—Mllls theory, supergravlty “and super—
string theorles, it is clearly desirable to have at one's disposal another,
preferably shorter, means ofaattackmg the standard mtegrals As a test case we
have applied the cut-off procedure to ‘the Yang-M:Llls self energy, obtained previ-
ously w1th the aid of dlmenSLOnal regularization. The problem is not entirely
trivial, fsince appl1cat10n of the correct 11ght—c0ne \prescrlptlon?’)f“,?, is known
to yleld’ non ]:oical FaA¢LOES a'i‘.ready at the one- loop 1eve14);; These potentlally
dangerous factors ai'e abse;lt in the axial and planar gauges, since the latter do
not manifestly break Lorentz invariance.
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2. - YANG-MILLS SETF-ENERGY TO ONE LOOP

Consider the Lagrangiap density
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where A? ls a massless gauge field, u = 0,1,2, 3, and nu an arbitrary constant

four-vector‘ The 11ght—cone gauge is spec1f1ed by
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'l‘he unphysu:al mngularxtles of (q- )“l in the gaauge f1e1d prOpagator (a.> 0
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are treated with the prescription

Mandelstam3)]

for an equivalent procedure, see
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Using standard Feynman rules, we obtain the following expression for the one-loop

Yang-Mills self-energy:
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where pu is the extermal momentum, and only potentially ultra-violet divergent

integrals are shown explicitly. Moreover, Cab = CYnéabgz, 6abCYM = faCdbed, and

R denotes the basic integral in the cut—off method,
A
4 a a
R _—:I d% /¢ = ,@n(/l //a)) 6

where A is the cut-off (in Euclidean space) and u an arbitrary mass scale.

Finally, notice that the last term Huv is non-local in pp'

3. — AN EXAMPLE

Before we extract the ultra-violet behaviour by the cut-off method from each
of the four-dimensional integrals in Eq. (5}, we shall illustrate the technique

by evaluating the light-cone gauge integral

d'y 9,
(q-p)* 9™

which is clearly ultra-violet divergent. The standard procedure in the cut-off
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approach is to act on (7) with the operator M )55)
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and then to compute the two light-cone gauge integrals separately.

The first integral in (9) is calculated by making the ansatzﬁ)
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and then determining the coefficients A, B, Multiplication of ({10} by LW gives

(2 =0 - - o - o
[d% /9" =R = Bnn"

B = R/wn*, (1

The coefficient A follows, for example, from dimensional analysis by observing
that [d%q q (g-nq"*)~1 ~ 0(1/n), so that the dimension of A, written [a], is
fA] = 1/a2. But 1/n2 is not an admissible invariant in the light-cone gauge, so

A must vanigsh, A = 0, and o
4 -] * *
Ci}ﬁ??h (j?' 7‘4"?) =N 1? n-n . (12)
o M
To evaluate the second term in Eq. (9), we observe that the integral

gt 6 ~
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is of order 0{1/n), suggesting on dimensional grounds the ansatz
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Multiplication of (14) by n, yields the relation By = —Aﬂ/n-n , while contraction

of the indices a; B gives: fd“q q (qengq*)~1'= 4 Aon
Rf(én'n Y, so that

; hence from (12), 4, =
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Substitution oFf (32).g5g¢1153"&nto (9) gives thé answer
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this result égtees-with'Eq.4(3.6} of Ref,

7), because the massrtérm ﬁz'is zero
The integrzl I corresponds, in Euclidean

here ‘and the'faéto#‘R?éorresponds:to 1.

space, to

e LR
d ¢  _ 7(2-w)
qa(?__P)a.

I = divergent part of

s _ ,ﬂ,‘*‘/(a-w) :

4. «:THE OPERATOR G ° .. =

Applying the operator (8) first to the local 1ntegrals in the self-energy

Hab, we find that '
[TRY

c/u-[o'iP’n 4% pt ] =0,
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in which case

(/u'l) = O (18}?)
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The non-local expression Huv in (5) is peculiar to the light-cone gauge and

requires special care. As it stands, H N is non-local in the external momentum

p , but can be massaged into local form by using light-cone variables defined by

pt =A™ (pox P, pH= (%P, P00
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Py =

e — + - >
= (p%,0,0,p%), and n, (1,0,0,1).
Hence H
v

pno= ptm_ +P M, - P

and working in the special frame where p
= pp = 0. =0, ny = Y2, p*a = V2 p~ and pZ/nep = V2 p*.

Then nT

reduces to
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Now let f define the integral
N
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and consider JAf:
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consequent}y} , R
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Thus wethéGeféucdés%fully'eﬁi%adtéd the ultra-violet pole parts from the terms D,

Ep.v’ Ceeay HHV" Substituting the right-hand sides of Eqs. (18) and (24) into
Eq. (5), we obtain '

Ap-n

R

n-n*

which agrees”identiéally'with Eq.‘(17) of Ref. 4) provided we identify R with

12(2-w), 2w being the dimensionality of complex space-time.

5. - SUMMARY

We have demonstrated that the simple cut-off method may also be used in the
light-cone gauge to* extract the ultra-violet behav1our of one- loop Feynman
integrals. In particular, the method was shown capable of handling the un-
avoidable non-local terms in the YanngLlls.self-energy._ Althcugh the cut-off
method and the technique of dimensional regularization y1eld different
expressions for individual integrals, the two ﬁrocedures give identical results
(as far as the ultra-violet behagiour is concerned) for a specific Feynman

diagram.
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