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Abstract

The pT-differential production cross sections of the charmed mesons D0, D+, D∗+ and D+
s in the

rapidity interval −0.96 < ycms < 0.04 were measured in p–Pb collisions at a centre-of-mass energy√
sNN = 5.02 TeV with the ALICE detector at the LHC. The nuclear modification factor RpPb,

quantifying the D-meson yield in p–Pb collisions relative to the yield in pp collisions scaled by
the number of binary nucleon-nucleon collisions, is compatible within the 15-20% uncertainties with
unity in the transverse momentum interval 1 < pT < 24 GeV/c. No significant difference among
the RpPb of the four D-meson species is observed. The results are described within uncertainties
by theoretical calculations that include initial-state effects. The measurement adds experimental
evidence that the modification of the momentum spectrum of D mesons observed in Pb–Pb collisions
with respect to pp collisions is due to strong final-state effects induced by hot partonic matter.
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In hadronic collisions heavy quarks are produced in scattering processes with large momentum transfer.
Theoretical predictions based on perturbative Quantum Chromo-Dynamics (QCD) describe the pT-
differential charm production cross sections in pp collisions at different energies [1–3].

The interpretation of heavy-ion collisions experimental results is consistent with the formation of a
a high-density colour-deconfined medium, the Quark-Gluon Plasma (QGP) [4, 5]. Heavy quarks are
sensitive to the transport properties of the medium since they are produced on a short time-scale and
traverse the medium interacting with its constituents. In Pb–Pb collisions at

√
sNN = 2.76 TeV, the D-

meson nuclear modification factor RAA, defined as ratio of the yield in nucleus-nucleus collisions to that
observed in pp collisions scaled by the number of binary nucleon-nucleon collisions, indicates a strong
suppression of the D-meson yield for pT & 2 GeV/c [6]. The suppression is interpreted as due to in-
medium energy loss [7–10]. A complete understanding of the Pb–Pb results requires an understanding
of cold nuclear matter effects in the initial and final state, which can be accessed by studying p–Pb
collisions assuming that the QGP is not formed in these collisions. In the initial state, the nuclear
environment affects the quark and gluon distributions, which are modified in bound nucleons depending
on the parton fractional momentum x and the atomic mass number A [11, 12]. At LHC energies, the
most relevant effect is gluon saturation at low x, which can modify the D-meson production significantly
at low pT. This effect can be described either by means of calculations based on phenomenological
modification of the Parton Distribution Functions (PDF) [13–15] or with the Color Glass Condensate
(GCG) effective theory [16–19]. Partons can also lose energy in the initial stages of the collision via
initial state radiation, thus modifying the centre-of-mass energy of the partonic system [20], or experience
transverse momentum broadening due to multiple soft collisions before the cc̄ pair is produced [21–23].
Recent calculations of parton energy loss in the nuclear medium suggest that the formed cc̄ pair is
also affected by these processes in p–Pb collisions [24]. The presence of final-state effects in small
collision systems is suggested by recent studies on long-range correlations of charged hadrons [25–28]
in p–Pb collisions, by results on the species-dependent nuclear modification factors of pions, kaons
and protons [29] and on the larger suppression of the ψ ′ meson with respect to the J/ψ [30] in d–Au
collisions.

Previous studies to address cold nuclear matter effects in heavy-flavour production were carried out
at RHIC by measuring the inclusive production of leptons from heavy-flavour hadrons decays in d–
Au collisions at

√
sNN = 200 GeV [31–33]. PHENIX measured an enhancement of about 40% of the

heavy-flavour decay electrons in the 20% most central d–Au collisions with respect to pp collisions [31].
A description of this result in terms of hydrodynamic flow in small collision systems was recently
proposed [34]. PHENIX also measured an enhancement (suppression) of heavy-flavour decay muons
at backward (forward) rapidities in d–Au collisions [32].

In this Letter, we present the measurement of the cross sections and of the nuclear modification factors,
RpPb, of prompt D0, D+, D∗+ and D+

s mesons in p–Pb collisions at
√

sNN = 5.02 TeV performed
with the ALICE detector [35, 36] at the LHC. D mesons were reconstructed in the rapidity interval
|ylab|< 0.5 via their hadronic decay channels D0→ K−π+ (with branching ratio, BR, of 3.88±0.05%),
D+→ K−π+π+ (BR of 9.13±0.19%), D∗+→ D0π+ (BR of 67.7±0.5%) and D+

s → φπ+→ K−K+π+

(BR of 2.28± 0.12%) [37] and their charge conjugates. Due to the different energies per nucleon of
the proton and the lead beams, the nucleon–nucleon centre-of-mass frame was moving with a rapidity
|∆yNN|= 0.465 in the proton beam direction (positive rapidities), leading to the rapidity coverage−0.96<
ycms < 0.04.

Charged particles were reconstructed and identified with the central barrel detectors located within a
0.5 T solenoid magnet. Tracks were reconstructed with the Inner Tracking System (ITS)and the Time
Projection Chamber (TPC). Particle IDentification (PID) was based on the specific energy loss dE/dx in
the TPC gas and on the time of flight from the interaction point to the Time Of Flight (TOF) detector.
The analysis was performed using p–Pb data collected in 2013 with a minimum-bias trigger that required
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the arrival of bunches from both directions and coincident signals in both scintillator arrays of the V0
detector, covering the regions 2.8 < η < 5.1 and −3.7 < η < −1.7. Events were selected offline using
the timing information from the V0 and the Zero Degree Calorimeters to remove background due to
beam-gas interactions. Only events with a primary vertex reconstructed within ±10 cm from the centre
of the detector along the beam line were considered. About 1×108 events, corresponding to an integrated
luminosity of (48.6±1.6) µb−1, passed the selection criteria.

D-meson reconstruction was based on the reconstruction of decay vertices displaced from the interaction
vertex, exploiting the separation of a few hundred µm typical of the D-meson weak decays, as described
in [6, 38–40]. D0, D+ and D+

s candidates were defined using pairs or triplets of tracks with the proper
charge sign combination. Tracks were required to have |η |< 0.8, pT > 0.4 GeV/c, at least 70 out of 159
associated space points in the TPC and at least 2 out of 6 hits in the ITS, out of which at least one in the
two innermost layers. D∗+ candidates were formed combining D0 candidates with tracks with |η |< 0.8,
pT > 0.1 GeV/c and at least three associated hits in the ITS. The selection strategy was based on the
displacement of the tracks from the interaction vertex and the pointing of the reconstructed D meson
momentum to the primary vertex. At low-pT, further background rejection was obtained by identifying
charged kaons with the TPC and TOF by applying cuts in units of resolution (±3σ ) around the expected
mean values of dE/dx and time of flight. For D+

s candidate selection, the invariant mass of at least one
of the two opposite-charge track pairs was required to be compatible with the mass of the φ meson.

The total cross section for hard processes σhard
pA in proton–nucleus collisions scales as σhard

pA = A σhard
NN

where A is the atomic mass number of the nucleus and σhard
NN is the equivalent cross section in pp

collisions. Therefore, the RpPb for prompt D mesons is given by

RpPb =

(
dσ

dpT

)
pPb

A×
(

dσ

dpT

)
pp

. (1)

The production cross sections of prompt D mesons (not coming from beauty meson decays) were
obtained as (e.g. for D+)

dσD+

dpT

∣∣∣∣∣
|ylab |<0.5

=
fprompt ·ND±

raw ||ylab|<yfid

2∆y∆pT(Acc× ε)prompt ·BR ·Lint

. (2)

ND±
raw is the raw yield extracted in a given pT interval (of width ∆pT) by means of a fit to the invariant mass

distribution of the D-meson candidates. fprompt is the prompt fraction of the raw yield. (Acc×ε)prompt is
the geometrical acceptance multiplied by the reconstruction and selection efficiency of prompt D mesons.
∆y = 2yfid is the width of the rapidity interval, where yfid is the pT dependent fiducial acceptance cut (yfid
increases from 0.5 at pT = 0 to 0.8 at pT = 5 GeV/c and becomes constant at 0.8 for pT > 5 GeV/c).
The cross sections are given for particles, thus, a factor 1/2 was added to take into account that both
particles and anti-particles are counted in the raw yield. The integrated luminosity, Lint, was computed
as NpPb,MB/σpPb,MB where NpPb,MB is the number of p–Pb collisions passing the minimum-bias trigger
condition and σpPb,MB is the cross section of the V0 trigger, which was measured to be 2.09 b±3% (syst)
with the p–Pb van der Meer scan [41]. The minimum-bias trigger is 100% efficient for D mesons with
pT > 1 GeV/c and |ylab|< 0.5.

The acceptance-times-efficiency (Acc×ε) corrections were determined using a Monte Carlo simulation.
Proton–lead collisions were produced using the HIJING v1.36 [42] event generator. A cc̄ or bb̄ pair was
added in each event using the PYTHIA v6.4.21 [43] generator with Perugia-0 tuning [44]. The generated
particles were transported through the ALICE detector using GEANT3 [45]. The efficiency for D-meson
reconstruction and selection varies from 0.5-1% for pT < 2 GeV/c to 20-30% for pT > 12 GeV/c be-
cause of the larger displacement of the decay vertex of high-pT candidates due to the Lorentz boost.
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Hence, in each pT interval, the generated D-meson spectrum used to calculate the efficiencies was tuned
to reproduce the shape given by Fixed-Order Next-To-Leading-Log resummation (FONLL) [2] calcula-
tions at

√
s = 5.02 TeV. The efficiency depends also on the multiplicity of charged particles produced

in the collision since the primary vertex resolution, and consequently the resolution of the topological
selection variables, improves with increasing multiplicity. This dependence is different for each meson
species and pT interval, being more pronounced for low multiplicities, where the efficiency increases
with increasing multiplicity until it becomes constant at about 20 reconstructed primary particles. There-
fore, the efficiency was calculated by weighting the simulated events according to their charged particle
multiplicity in order to reproduce the multiplicity distribution observed in data.
The fraction of prompt D mesons, fprompt, was estimated as in [6] using the beauty production cross sec-
tion from FONLL calculations [2], the B→ D+X decay kinematics from the EvtGen package [46] and
the reconstruction and selection efficiency for D mesons from B hadron decays. The RpPb of prompt and
feed-down D mesons were assumed to be equal and were varied in the range 0.9 < Rfeed−down

pPb /Rprompt
pPb <

1.3 to evaluate the systematic uncertainties. This range was chosen considering the predictions from cal-
culations including initial state effects based on EPS09 nuclear PDF parametrizations [13] and CGC [16].

The reference pp cross sections at
√

s = 5.02 TeV were obtained by a pQCD-based energy scaling of
the pT-differential cross sections measured at

√
s = 7 TeV [39]. The scaling factor for each D-meson

species was determined as the ratio of the cross sections from the FONLL calculations at 5.02 and 7 TeV.
The uncertainty on the scaling factor was evaluated by varying the calculation parameters as described
in [47] and it ranges from +17.5%

−4% at pT = 1 GeV/c to about ±3% for pT > 8 GeV/c. In addition, the
pp reference is affected by the uncertainty coming from the 7 TeV measurement (∼17%) [39]. Since
the D0 cross section in pp collisions in the 1 < pT < 2 GeV/c interval was measured at both 7 and
2.76 TeV, both results were scaled to 5.02 TeV, and averaged considering their relative statistical and
systematic uncertainties as weights. Since the current measurement of the ALICE D0 pp cross section
at
√

s = 7 TeV is limited to pT = 16 GeV/c, the cross section was extrapolated to higher pT using the
spectrum predicted by FONLL [2] scaled to match pp data in 5 < pT < 16 GeV/c. Then the D0 cross
section at 7 TeV in 16 < pT < 24 GeV/c was scaled to 5.02 TeV.

The systematic uncertainties on the D-meson cross sections include contributions from yield extraction
(from 2% to 17% depending on pT and D-meson species), imperfect description of the cut variables
in the simulation (from 5% to 8% for D0, D+ and D∗+, ∼20% for D+

s ), tracking efficiency (3% for
each track), simulated pT shapes (from 2% to 3% depending on pT and D-meson species) and the
subtraction of feed-down D mesons from B decays. For the D0 meson the yield extraction systematic
uncertainty also includes the contribution to the raw yield of signal candidates reconstructed with wrong
mass assignment to the final state hadrons. This contribution, which is strongly reduced by the PID
selection, was estimated to be 3%(4%) at low(high) pT based on the invariant mass distribution of these
candidates in the simulation. Details of the procedure for the systematic uncertainty estimation are
reported in [6, 38–40]. The measured cross sections have a global systematic uncertainty due to the
branching ratio [37] and to the determination of the integrated luminosity, 3.2% [41]. For the RpPb,
the pp and p–Pb uncertainties were added in quadrature except for the feed-down contribution, which
partially cancels out in the ratio.

The pT-differential production cross sections of prompt D0, D+, D∗+ and D+
s mesons are shown in

Fig. 1. The relative abundances of D mesons in p–Pb collisions are compatible within uncertainties
with those measured in pp collisions [40]. This confirms the independence of the D-meson relative
abundances on the collision system and colliding energy. The RpPb of the four D-meson species, shown
in Fig. 2, are consistent, and they are compatible with unity within the uncertainties in the measured pT-
range. D-meson production in p–Pb collisions is consistent within statistical and systematic uncertainties
with the binary collision scaling of the production in pp collisions. Moreover, within the uncertainties,
the D+

s nuclear modification factor is compatible with that of non-strange D mesons. The average of
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Figure 1: pT-differential inclusive production cross section of prompt D0, D+, D∗+ and D+
s mesons in p–Pb

collisions at
√

sNN = 5.02 TeV. Statistical uncertainties (bars) and systematic uncertainties (boxes) are shown.
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Figure 2: RpPb as a function of pT for prompt D0, D+, D∗+ and D+
s mesons in p–Pb collisions at

√
sNN = 5.02 TeV.

Statistical uncertainties (bars), systematic (empty boxes) and normalization (full box) uncertainties are shown.

the RpPb of D0, D+ and D∗+ in the pT range 1 < pT < 24 GeV/c was calculated using the relative
statistical uncertainties as weights. The systematic error on the average was calculated by propagating
the uncertainties through the weighted average, where the contributions from tracking efficiency, B feed-
down correction and scaling of the pp reference were taken as fully correlated among the three species.
Figure 3 shows the average RpPb compared to theoretical calculations. Predictions based on NLO pQCD
calculations (MNR [48]) of D-meson production, including the EPS09 [13] nuclear modification of
the CTEQ6M PDF [49] and calculations based on the Color Glass Condensate [16] can describe the
measurement considering only initial state effects. Data are also well described by calculations which
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sNN = 2.76 TeV from [6]. Statistical (bars), systematic
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include cold nuclear matter energy loss, nuclear shadowing and kT-broadening [9]. The possible effects
due to the formation of a hydrodynamically expanding medium as calculated in [34] are expected to be
small in minimum-bias collisions at LHC energies. The present uncertainties of the measurement do not
allow any sensitivity on this effect. In Fig. 4 the average RAA of prompt D mesons in central (0-20%)
and in semi-peripheral (40-80%) Pb–Pb collisions at

√
sNN = 2.76 TeV [6] is reported along with the

average RpPb of prompt D mesons in p–Pb collisions at
√

sNN = 5.02 TeV, showing that cold nuclear
matter effects are smaller than the uncertainties for pT & 3 GeV/c. In addition, as reported in [6], the
same EPS09 nuclear PDF parametrization that describes the D-meson RpPb results predicts small initial
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state effects (less than 10% for pT > 5 GeV/c) for Pb–Pb collisions. As a consequence, the suppression
observed in central Pb–Pb collisions for pT & 2 GeV/c is predominantly induced by final-state effects,
e.g. the charm energy loss in the medium [7–10].

In summary, we reported the measurement of the D-meson cross section and nuclear modification factor
in p–Pb collisions at

√
sNN = 5.02 TeV. The latter is consistent within uncertainties of about 15-20% with

unity and is compatible with theoretical calculations including gluon saturation. Thus, the suppression
of high pT D mesons observed in Pb–Pb collisions cannot be explained in terms of initial state effects
but is due to strong final-state effects induced by hot partonic matter.



D-meson production in p–Pb collisions at
√

sNN = 5.02 TeV 7

Acknowledgements

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable
contributions to the construction of the experiment and the CERN accelerator teams for the outstanding
performance of the LHC complex.
The ALICE Collaboration would like to thank M. Cacciari for providing the pQCD predictions used
for the feed-down correction and the energy scaling, and I. Vitev, H. Fujii and K. Watanabe for making
available their predictions for the nuclear modification factor.
The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid
centres and the Worldwide LHC Computing Grid (WLCG) collaboration.
The ALICE Collaboration acknowledges the following funding agencies for their support in building and
running the ALICE detector:
State Committee of Science, World Federation of Scientists (WFS) and Swiss Fonds Kidagan, Armenia,
Conselho Nacional de Desenvolvimento Cientı́fico e Tecnológico (CNPq), Financiadora de Estudos e
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