EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Supplemental figures: Measurement of prompt D-meson production in p–Pb collisions at $\sqrt{s_{_{\rm NN}}}~=~5.02~{\rm TeV}$

ALICE Collaboration*

Abstract

This note provides supplemental figures for the analysis on the "Measurement of prompt D-meson production in p–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV" published on PRL 113, 232301 (2014), arXiv:1405.3452.

© 2015 CERN for the benefit of the ALICE Collaboration. Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

^{*}The author list is given in PRL 113, 232301 (2014)

Fig. 1: Invariant mass distributions of D^0 candidates and charge conjugates in four selected p_T intervals considered for the analysis. The topological and kinematical selections applied to obtain these distributions are described in the paper. The fit functions showed in the figure consist of a sum of a Gaussian and an exponential to describe the signal and the background respectively. The values of the signal (S) and background counts (B) integrated in $\pm 3\sigma$ region around the centroid of the Gaussian are reported.

Fig. 2: Invariant mass distributions of D⁰ candidates and charge conjugates in the momentum interval $3 < p_T < 4 \text{ GeV}/c$. The values of the signal (S) and background counts (B) integrated in $\pm 3\sigma$ region around the centroid of the Gaussian are reported.

Fig. 3: Invariant mass distributions of D⁺ candidates and charge conjugates in four selected p_T intervals considered for the analysis. The topological and kinematical selections applied to obtain these distributions are described in the paper. The fit functions showed in the figure consist of a sum of a Gaussian and an exponential to describe the signal and the background respectively. The values of the signal (S) and background counts (B) integrated in $\pm 3\sigma$ region around the centroid of the Gaussian are reported.

Fig. 4: Invariant mass distributions of D⁺ candidates and charge conjugates in the momentum interval $3 < p_T < 4$ GeV/*c*.The values of the signal (S) and background counts (B) integrated in $\pm 3\sigma$ region around the centroid of the Gaussian are reported.

Fig. 5: Mass difference distributions of D^{*+} candidates and charge conjugates in four selected p_T intervals considered for the analysis. The topological and kinematical selections applied to obtain these distributions are described in the paper. The fit functions showed in the figure consist of a sum of Gaussian and a threshold function $(a\sqrt{\Delta M} - M_{\pi} \cdot e^{b(\Delta M - M_{\pi})})$, where M_{π} is the pion mass and *a* and *b* are free parameters) to describe the signal and the background respectively. The values of the signal (S) and background counts (B) integrated in $\pm 3\sigma$ region around the centroid of the Gaussian are reported.

Fig. 6: Invariant mass distributions of D^{*+} candidates and charge conjugates in the momentum interval $3 < p_T < 4$ GeV/*c*.The values of the signal (S) and background counts (B) integrated in $\pm 3\sigma$ region around the centroid of the Gaussian are reported.

Fig. 7: Invariant mass distributions of D_s^+ candidates and charge conjugates in the 4 p_T intervals considered for the analysis. The topological and kinematical selections applied to obtain these distributions are described in the paper. The fit functions showed in the figure consist of a sum of a Gaussian and an exponential to describe the signal and the background respectively. The values of the signal (S) and background counts (B) integrated in $\pm 3\sigma$ region around the centroid of the Gaussian are reported.

Fig. 8: Acceptance × efficiency corrections for prompt D^0 , D^+ , D^{*+} and D_s^+ mesons (red empty circles) and for feed-down D^0 , D^+ , D^{*+} and D_s^+ from B hadrons decays (blue empty squares) as a function of p_T . The efficiency without particle identification (filled green squares) is also shown for comparison.

Fig. 9: $p_{\rm T}$ -differential production cross section of prompt D⁰ mesons in p–Pb minimum-bias collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV compared with a pp rescaled reference af the same center-of-mass $Ad\sigma/dp_{\rm T}$, where A is the atomic mass number. Statistical uncertainties (bars) and systematic uncertainties from data analysis (empty boxes) and from feed-down subtraction (full boxes) are shown. Horizontal error bars reflect the bin widths, symbols are located at the center of the bin.

Fig. 10: $p_{\rm T}$ -differential production cross section of prompt D⁺ mesons in p–Pb minimum-bias collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV compared with a pp rescaled reference af the same center-of-mass Ad σ /d $p_{\rm T}$, where A is the atomic mass number. Statistical uncertainties (bars) and systematic uncertainties from data analysis (empty boxes) and from feed-down subtraction (full boxes) are shown. Horizontal error bars reflect the bin widths, symbols are located at the center of the bin.

Fig. 11: $p_{\rm T}$ -differential production cross section of prompt D^{*+} mesons in p–Pb minimum-bias collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV compared with a pp rescaled reference af the same center-of-mass $Ad\sigma/dp_{\rm T}$, where A is the atomic mass number. Statistical uncertainties (bars) and systematic uncertainties from data analysis (empty boxes) and from feed-down subtraction (full boxes) are shown. Horizontal error bars reflect the bin widths, symbols are located at the center of the bin.

Fig. 12: $p_{\rm T}$ -differential production cross section of prompt $D_{\rm s}^+$ mesons in p–Pb minimum-bias collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV compared with a pp rescaled reference af the same center-of-mass $Ad\sigma/dp_{\rm T}$, where A is the atomic mass number. Statistical uncertainties (bars) and systematic uncertainties from data analysis (empty boxes) and from feed-down subtraction (full boxes) are shown. Horizontal error bars reflect the bin widths, symbols are located at the center of the bin.