

Bundesministerium

für Bildung

und Forschung

QCD measurements in the forward region with the LHCb experiment

Marco Meissner, Physikalisches Institut, Heidelberg University

The LHCb detector

List of Soft-QCD/Charm publications

Global event properties:

■ EPJC73(2012)1947 Measurement of charged particle multiplicities at $\sqrt{s}=7~TeV$

■ EPJC73(2013)2124 Measurement of the forward energy flow at $\sqrt{s}=7~TeV$

■ arXiV:1402.4430 Measurement of charged particle multiplicities and densities in pp collisions at $\sqrt{s} = 7 \, TeV$ in the forward region

Light quarks & strangeness:

■ PLB693(2010) 69 Prompt K_S^0 production in pp collisions at $\sqrt{s} = 0.9 \, TeV$

■ PLB703(2011) 267 Measurement of in the inclusive ϕ -cross-section $\sqrt{s}=7~TeV$

■ JHEP08(2011) 034 Measurement of V^0 production ratios at $\sqrt{s} = 0.9$ and 7 TeV

■ EPJC72(2012) 2168 Prompt hadron production ratios at $\sqrt{s} = 0.9$ and 7 TeV

Open charm and charmonium:

• EPJC71(2011) 1645 J/Ψ production in pp collisions at $\sqrt{s}=7~TeV$

• EPJC72(2012) 2100 Ψ (2S) meson production in pp collisions at $\sqrt{s} = 7 \ TeV$

■ NPB871(2013) 1 Prompt charm production at $\sqrt{s} = 7 \, TeV$

■ JHEP02(2013) 041 J/Ψ production in pp collisions at $\sqrt{s} = 2.76 \, TeV$

■ JHEP06(2013) 064 Production of J/Ψ and Υ mesons in pp collisions at $\sqrt{s}=8~TeV$

■ JPG40(2013)045001 Exclusive J/Ψ and Ψ (2S) production at $\sqrt{s}=7~TeV$

Proton-Ion collisions:

• JHEP 02 (2014) 072 Study of J/Ψ production and cold nuclear matter effects in pPb collisions at $\sqrt{s_{NN}} = 5 \ TeV$

Charged particle multiplicities & densities

arXiv:1402.4430

- Second multiplicity measurement from LHCb (<u>link to previous paper</u>)
- This new analysis uses entire LHCb tracking system
 - ✓ Different kinematic range: $2.0 < \eta < 4.8$ and p > 2GeV and $p_T > 200$ MeV
 - ✓ Gives access to momentum information -> differential measurement in p_T and η
 - ✓ measure particle multiplicities P(n) and particle densities dn/dX

- ightharpoonup Used a minimum bias **data sample** of pp-collisions at $\sqrt{s}=7$ TeV
 - ✓ 3M events (equal proportion of both magnetic field configurations)
 - ✓ low pile-up contribution of less than 4%
- Prompt charged particles are defined as: particles originating directly from the PV or from a decay chain with $\sum \tau_{PDG} < 10 ps$.

Charged particle multiplicities & densities

➤ Motivation:

- Soft-QCD processes (e.g. light particle production) cannot be calculated perturbatively
- Fragmentation, hadronisation and modelling of final states are treated differently in MC generators
- Phenomenological models can be tested and optimized with multiplicity measurements.
- In order to compare the result directly to MC generator predictions the following definition is applied:

An **event is defined as visible,** if it contains at least one prompt charged particle within the kinematic range of the analysis: • $2.0 < \eta < 4.8$

- p > 2GeV
- $p_T > 200 \text{ MeV}$

Results – particle multiplicities

- All PYTHIA 6 tunes, PHOJET and PYTHIA 8.145 underestimate charged particle production significantly!
- LHCb tune of PYTHIA 6 is closest to data but still ~15% too small
- Generators tuned to LHC data in central rapidity:
 - PYTHIA 8.180 (Tune 4C) shows reasonable agreement
 - HERWIG++ tunes have good agreement, UE-EE-4 better than more recent UE-EE-5

Results – particle densities

Result compared to generators predictions, tuned to LHC data from the central rapidity region:

- PYTHIA 8.180 (Tune 4C) describes data significantly better than previous PYTHIA versions
- Also HERWIG++ gives a good description of the measurement, UE-EE-4 better than UE-EE-5
- lacktriangle The HERWIG++ tunes overestimate the density at small p_T and underestimate towards large p_T
- → MC predictions are not yet optimal, still room for improvement

Energy flow

Energy Flow (EF):
$$\frac{1}{N_{int}} \frac{dE_{total}}{d\eta} = \frac{1}{\Delta \eta} \left(\frac{1}{N_{int}} \sum_{i=1}^{N_{part,\eta}} E_{i,\eta} \right)$$

energy per particle

number of inelastic interactions

- Energy Flow at large pseudorapidity probes multi-parton-interactions (MPI) & parton radiation
- MPI is a predominant source of the underlying event
- Valuable input for generator tunings
 Comparison to PYTHIA and cosmic-ray event generators
- Analysis uses $0.1 \, \mathrm{nb^{-1}}$ of low pile-up pp-collision at $\sqrt{s} = 7 \, \mathrm{TeV}$

Energy Flow measured in 4 different event classes:

 \triangleright Inclusive minimum-bias: at least 1 track in 1.9 < η < 4.9 and p > 2 GeV

 \triangleright Hard- scattering: + $p_T > 3$ GeV

 \triangleright Diffractive enriched: + no tracks in -3.5 < η < -1.5

 \triangleright Non-diffractive enriched: + ≥ 1 track in -3.5 < η < -1.5

Large rapidity gap for diffractive processes

Purity of the samples (PYTHIA6 based):

non-diffractive sample: \sim 90% diffractive sample: \sim 70%

Energy flow

Eur. Phys. J. C 73 (2013) 2421

Charged Energy Flow

- Uncertainties decrease towards larger η
- EF increases with momentum transfer: $EF_{hard} > EF_{non-diff} > EF_{incl} > EF_{diff}$
- PYTHIA 6 tunes: in all samples EF is
 - -> overestimated at small η
 - -> underestimated at large η

PYTHIA 8 tunes:

EF in all samples is well described at large η , except for hard scattering

Energy flow

Eur. Phys. J. C 73 (2013) 2421

Compared to **cosmic-ray** generators (not tuned to LHC data!)

- Best description by SIBYLL
- All models underestimate EF in diffractive sample SIBYLL is good at large pseudorapidities

- EPOS & SIBYLL good description of minimum-bias and non-diffractive events
- QGSJET models overestimated EF in minimum-bias and non-diffractive events, but good description of hard scattering

Prompt charm production

> Cross-section measurement tests QCD fragmentation and hadronisation models

Nucl. Phys. B 871 (2013)

- \sqrt{s} = 7TeV data set, \mathcal{L} =15 nb^{-1}
- Fiducial region: $2.0 < y < 4.5; \ 0 < p_T < 8 \text{ GeV}$
- Use fully reconstructed decays of prompt charm hadrons: D^0 , D^+ , D^{*+} , D^+_s and Λ^+_c
- PID efficiencies from data using K_s^0 , ϕ and Λ decays
- Prompt signal yield gained from multidimensional extended maximum likelihood fit (mass + IP distribution)

 $2.3 2.35 m(pK^{-}\pi^{+}) [GeV/c^{2}]$

2.25

Prompt charm production

Nucl. Phys. B 871 (2013)

Differential cross-sections are compared to theoretical expectations, which reproduce Tevatron and ALICE measurements in the central rapidity region

- Fixed order with next to leading-log resummation (FONLL) using CTEQ 6.6 (e.g. M.Cacciari et al. JHEP 1210 (2012) 137)
- NLO calculation in the *Generalized Mass Variable Flavour Number Scheme* (**GMVFNS**) using CTEQ 6.5 and CTEQ 6.5c2 (**intrinsic charm**), (e.g. B.Kniehl EPJ C72 (2012) 2082)
 - Predictions in good agreement with our measurement
 - Effect of intrinsic charm is predicted to be small in this phase space region

Prompt charm production

- Good agreement in these modes as well
- \triangleright Total charm cross-section* (p_T <8GeV, 2.0<y<4.5):

$$\sigma(c\bar{c})$$
 = 1419±12(stat) ± 116(syst) ± 65 (frag) μb

^{*} Combination of bins where rel. precision < 50%, otherwise using extrapolation based on Pythia tunes (Perugia0, PerugiaNOCR, Perugia2010 & LHCb tune)

Summary

- > LHCb performs QCD studies in unique kinematic range at the LHC
- > Charged particle multiplicities & densities
 - -> ...underestimated by older MC generators
 - -> recent generators (optimized to LHC data in central rapidity region) show reasonable agreement
 - -> input for further optimization (RIVET plugin will be available)
- Energy Flow measured separately for inclusive, (non-)diffractive and hard scattering event classes
 - -> PYTHIA 8 superior than PYTHIA 6
 - -> Also cosmic-ray generators do a good job describing LHCb data
- > Prompt Charm production, good probes for hadronisation and fragmentation models
- > Results will be supplemented with further measurements
 - -> pp data sets available at \sqrt{s} = 0.9, 2.76, 7 and 8 TeV
 - -> Also huge data sets of p-Pb & Pb-p collisions at $\sqrt{s_{NN}}$ = 5 TeV

BACKUP

The LHCb detector

Charged particle multiplicities & densities

Analysis strategy:

<u>arXiv:1402.4430</u>

- Prompt charged particles are selected by
 - requiring tracks to originate from a "luminous region"
 - cut on distance to beam line
- >Applied corrections to measured particle multiplicities & densities:
 - 1) Event-by-event correction for **reconstruction artefacts** (fake + duplicate tracks) & **non-prompt particles**
 - -> weighting factor for each track according to purity of track
 - 2) Event sample is corrected for **undetected "visible" events**
 - 3) Subtraction of **pile-up** contamination
 - 4) Detector acceptance and Tracking Efficiencies
 - -> particle densities: additional weighting factor $w=1/\epsilon$
 - -> particle multiplicities: unfold physical distribution by using a response matrix:

Results – particle densities (I)

arXiv:1402.4430

dn/dη

Kinematic range:

- $-2.0 < \eta < 4.8$
- $p_T > 200 MeV$
- p > 2GeV

LHCb data are shown with black points, stat. error bars and combined uncertainty band (stat.+syst.)

Particle densities compared to MC generators prediction (non-LHC tuned):

All PHYTHIA 6 tunes and PHOJET predict too small particle densities

Results –particle multiplicities (η)

Results –particle multiplicities (p_T)

