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Abstract
Precise knowledge of the beam optics at the LHC is crucial to fulfill the physics
goals of the TOTEM experiment, where the kinematics of the scattered protons
is reconstructed with near-beam telescopes—so-called Roman pots (RP). Before
being detected, the protons’ trajectories are influenced by the magnetic fields of
the accelerator lattice. Thus precise understanding of the proton transport is of
key importance for the experiment. A novel method of optics evaluation is
proposed which exploits kinematical distributions of elastically scattered protons
observed in the RPs. Theoretical predictions, as well as Monte Carlo studies,
show that the residual uncertainty of the optics estimation method is smaller
than 2.5‰.

Keywords: elastic scattering, LHC proton transport, Roman pot, optics
reconstruction, TOTEM experiment

1. Introduction

The TOTEM experiment [1] at the LHC is equipped with near beam movable insertions—
called Roman pots (RP)—which host silicon detectors to detect protons scattered at the LHC
interaction point 5 (IP5) [2]. This paper reports the results based on data acquired with a total of
12 RPs installed symmetrically with respect to IP5. Two units of three RPs are inserted
downstream of each outgoing LHC beam: the ‘near’ and the ‘far’ unit located at = ±s 214.63m
and = ±s 220.00 m, respectively, where s denotes the distance from IP5. The arrangement of
the RP devices along the two beams is schematically illustrated in figure 1.

Each unit consists of two vertical, so-called ‘top’ and ‘bottom’, and one horizontal RP. The
two diagonals top left of IP–bottom right of IP and bottom left of IP–top right of IP, tagging
elastic candidates, are used as almost independent experiments. The details of the set-up are
discussed in [3].

Each RP is equipped with a telescope of ten silicon microstrip sensors of μ66 m pitch
which provides a spatial track reconstruction resolution σ x y( , ) of μ11 m [4]. Given the
longitudinal distance between the units of Δ =s 5.372m the proton angles are measured by the
RPs with an uncertainty of μ2.9 rad.

During the measurement the detectors in the vertical and horizontal RPs overlap, which
enables a precise relative alignment of all the three RPs by correlating their positions via
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common particle tracks. An alignment uncertainty of better than μ10 m is attained, and the
details are discussed in [4, 5].

The proton trajectories, thus their positions observed by RPs, are affected by the magnetic
fields of the accelerator lattice. The accelerator settings define the machine optics which can be
characterized with the value of β* at IP5. It determines the physics reach of the experiment [3]:
runs at high β =* 90–2500 m are characterized by low beam divergence allowing for precise
scattering angle measurements while runs of low β =* 0.5–11m, due to small interaction vertex
size, provide higher luminosity and thus are more suitable to study rare processes. In the
following sections we will analyze two representatives, the β =* 3.5m and 90 m
optics [2, 6, 7].

In order to precisely reconstruct the scattering kinematics, an accurate model of proton
transport is indispensable. TOTEM has developed a novel method to evaluate the optics of the
machine by using angle-position distributions of elastically scattered protons observed in the RP
detectors. The method, discussed in detail in the following sections, has been successfully
applied to data samples recorded in 2010 and 2012 [8–12].

Section 2 introduces the so-called transport matrix, which describes the proton transport
through the LHC lattice, while machine imperfections are discussed in section 3. The proposed
novel method for optics evaluation is based on the correlations between the transport matrix
elements. These correlations allow the estimation of those optical functions which are strongly
correlated to measurable combinations, estimators, of transport matrix elements. Therefore, it is
fundamental to study these correlations in detail, which is the subject of section 4. The applied
eigenvector decomposition gives an insight into the obtainable errors of optics estimation, and
provides the theoretical baseline of the method.

Section 5 brings the theory to practice, by specifying the estimators obtained from elastic
track distributions measured in RPs. Finally, the applied optics estimation algorithm is
discussed in section 6. The uncertainty of this novel method of LHC optics determination was
estimated with Monte Carlo simulations, described in detail in section 7.

2. Proton transport model

Scattered protons are detected by the Roman pots after having traversed a segment of the LHC
lattice containing 29 main and corrector magnets per beam, shown in figure 1.

The trajectory of protons produced with transverse positions19 x y( *, *) and angles
Θ Θ( , )x y

* * at IP5 is described approximately by a linear formula

Figure 1. Schematic layout of the LHC magnet lattice at IP5 up to the ‘near’ and ‘far’
Roman pot units, where the near and far pots are indicated by full (red) dots on beams 1
and 2, at the positions indicated by arrows.

19 The ‘*’ superscript indicates that the value is taken at the LHC interaction point 5.
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⃗ = ⃗d s T s d( ) ( ) · *, (1)

where Θ Θ Δ⃗ =d x y p p( , , , , )x y
T , p and Δp denote the nominal beam momentum and the

proton longitudinal momentum loss, respectively. The single pass transport matrix
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is defined by the optical functions [13]. The horizontal and vertical magnifications

β β Δμ=v * cos (3)x y x y x y, , ,

and the effective lengths

β β Δμ=L * sin (4)x y x y x y, , ,

are functions of the betatron amplitudes βx y, and the relative phase advance

∫Δμ
β

= sd
, (5)x y

x y
,

IP

RP

,

and are of particular importance for proton kinematics reconstruction. The Dx and Dy elements
are the horizontal and vertical dispersion, respectively.

Elastically scattered protons are relatively easy to distinguish due to their scattering angle
correlations. In addition, these correlations are sensitive to the machine optics. Therefore, elastic
proton-proton scattering is an ideal process to study the LHC optics.

In case of the LHC nominal optics the coupling coefficients are, by design, equal to zero

=m m,..., 0. (6)13 42

Also for elastically scattered protons the interaction related contribution to longitudinal
momentum loss Δp is 0. However, the beam protons are characterized by a momentum spread
resulting from the beam longitudinal emittance and the RF configuration. For the LHC this
spread is δ = −p p 100

4 [14], which is not significant with respect to the beam momentum offset
uncertainty of 10−3, reported in table 1. Therefore, the terms Δ×D p p( )x y, and

Δ×D s p pd d ( )x y, of the transport equation (1) can be neglected in case of elastically scattered
protons.

Furthermore, the horizontal phase advance Δμx is equal to π at 219.59 m (figure 2), and
consequently the horizontal effective length Lx vanishes close to the far RP unit, as it is shown
in figure 3. Therefore, in the proton kinematics reconstruction L sd dx is used.

In summary, the kinematics of elastically scattered protons at IP5 can be reconstructed on
the basis of RP proton tracks using (1)
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The vertical effective length Ly and the horizontal magnification vx are applied in (7) due to their
sizeable values, shown in figures 4 and 5. As the values of the reconstructed angles are

Figure 2. The horizontal βx and vertical betatron amplitude βy for the LHC β =* 3.5 m
optics. The horizontal μx and vertical phase advance μy are also shown, these functions
are normalized to π2 . The plot shows that the horizontal phase advance Δμ π=x close to
the far RP unit.

Table 1. Sensitivity of the vertical effective length Ly b, 1 and L sd dx b, 1 to 1‰ deviations

of magnet strengths or beam momentum for low- and high-β*optics of the LHC beam 1.
The total sensitivity to the perturbations of the quadrupole magnets’ transverse position
(Δ Δ =x y, 1 mm) and rotation (Δϕ = 1 mrad) is also included. The subscript b1 indi-
cates beam 1.

δL Ly b y b, , far , , far1 1 (%) δ( )L

s

L

s

d

d

d

d

x b x b, 1 , 1 (%)

Perturbed element β =* 3.5 m β =* 90 m β =* 3.5 m β =* 90 m

MQXA.1R5 0.98 0.14 −0.46 −0.42
MQXB.A2R5 −2.24 −0.24 0.33 0.31
MQXB.B2R5 −2.42 −0.25 0.45 0.42
MQXA.3R5 1.45 0.20 −1.14 −1.08
MQY.4R5.B1 −0.10 −0.01 −0.02 0.00
MQML.5R5.B1 0.05 0.04 0.05 0.06
Δpb1/pb1 −2.19 0.01 −0.79 0.71

Δϕquadrupoles 0.01 3 × 10−3 0.01 0.01

Δ Δx y( , )quadrupoles 6 × 10−6 1 × 10−5 3 × 10−5 2 × 10−5

Total sensitivity 4.33 0.43 1.57 1.46
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inversely proportional to the optical functions, the errors of the optical functions dominate the
systematic errors of the final physics results.

The proton transport matrix T s( ; ), calculated with MAD-X [15], is defined by the
machine settings , which are obtained on the basis of several data sources. The version V6.5

Figure 3. The horizontal effective length Lx and its derivative L sd dx with respect to s
as a function of the distance s in case of the LHC β =* 3.5m optics. The evolution of
the optical functions is shown starting from IP5 up to the Roman pot stations. The plot
indicates that =L 0x close to the far RP unit, thus in the proton kinematics
reconstruction L sd dx is used instead of Lx.

Figure 4. The evolution of the vertical effective length Ly and its derivative L sd dy for
the LHC β =* 3.5 m optics between IP5 and the location of the Roman pot stations.
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of the LHC sequence is used to describe the magnet lattice, while the nominal magnet strength
file for a given beam optics is always updated using measured data: the currents of the magnetʼs
power converters are first retrieved using TIMBER [16], which is an application to extract data
from heterogeneous databases containing information about the whole LHC infrastructure.

Then the currents are converted to magnet strengths with the LHC software architecture
[17] which employs for this purpose the conversion curves described by the field description for
the LHC (FIDEL) [18].

The WISE database [20] contains the imperfections (field harmonics, magnets
displacement, rotations) included in , as well as statistical models describing the non-
measured parameters’ tolerances. Alignment uncertainties of the magnets are included by WISE
based on measurements of the mechanical and magnetic axes. Other uncertainties for example
relative and absolute measurement errors of hysteresis and power converters accuracy are also
included for all magnets.

3. Machine imperfections

The real LHC machine [2] is subject to additional imperfections Δ, not measured well
enough so far, which alter the transport matrix by ΔT :

Δ Δ→ + = +   T s T s T s T( ; ) ( ; ) ( ; ) . (8)

The most important are:

— magnet current-strength conversion error: σ ≈ −k k( ) 10 3

— beam momentum offset: σ ≈ −p p( ) 10 3.

Their impact on the most relevant optical functions Ly and L sd dx can be calculated with
MAD-X, the results are presented in table 1. It is clearly visible that the imperfections of the

Figure 5. The evolution of the horizontal νx and vertical magnification νy in case of the
LHC β =* 3.5 m optics.
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inner triplet (the so called MQXA and MQXB magnets) are of high influence on the transport
matrix while the optics is less sensitive to the strength of the quadrupoles MQY and MQML.

Other imperfections that are of lower, but not negligible, significance:

— magnet rotations: δϕ ≈ 1mrad

— beam harmonics: δ ≈ −B B 10 4

— power converter errors: δ ≈ −I I 10 4

— magnet positions: δ δ μ≈x y, 100 m.

Generally, as indicated in table 1, the low-β* optics sensitivity to the machine
imperfections is significant and cannot be neglected. For high-β* optics the magnitude of
ΔT is smaller in the vertical plane but in the horizontal plane the β =* 3.5 m and β =* 90 m
optics result is similar. Due to the sensitivity of Lx the β =* 90 m optics is also investigated in
the following sections.

The proton reconstruction is based on (7). Thus it is necessary to know the effective
lengths Lx y, and their derivatives with an uncertainty better than 1–2% in order to measure the
total cross-section σtot with the aimed uncertainty of [21]. The currently available Δβ β beating
measurement with an error of 5–10% does not allow us to estimate ΔT with the uncertainty,
required by the TOTEM physics program [19, 22]. However, as it is shown in the following
sections, ΔT can be determined well enough from the proton tracks in the Roman pots, by
exploiting the properties of the optics and those of the elastic pp scattering.

4. Correlations in the transport matrix

The transport matrix T defining the proton transport from IP5 to the RPs is a product of matrices
describing the magnetic field of the lattice elements along the proton trajectory. The
imperfections of the individual magnets alter the cumulative transport function. It turns out that
independently of the origin of the imperfection (strength of any of the magnets, beam
momentum offset) the transport matrix is altered in a similar way, as can be described
quantitatively with eigenvector decomposition, discussed in section 4.1.

4.1. Correlation matrix of imperfections

Assuming that the imperfections discussed in section 2 are independent, the covariance matrix
describing the relations among the errors of the optical functions can be calculated

Δ Δ Δ= = ( )( )V T E T TCov , (9)r r r
T

where Tr is the most relevant eight-dimensional subset of the transport matrix

⎛
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which is presented as a vector for simplicity.
The optical functions contained in Tr differ by orders of magnitude and, are expressed in

different physical units. Therefore, a normalization of V is necessary and the use of the
correlation matrix C, defined as
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=
×

C
V

V V
, (11)i j

i j

i i j j
,

,

, ,

is preferred. An identical behaviour of uncertainties for both beams was observed and therefore
it is enough to study the beam 1. In case of the β =* 3.5m optics the following error correlation
matrix is obtained using the MAD-X results of section 3:

⎛
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⎟
⎟
⎟
⎟
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− −
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C

1.00 0.74 0.42 0.80 0.51 0.46 0.61 0.44
0.74 1.00 0.63 1.00 0.25 0.30 0.32 0.29
0.42 0.63 1.00 0.62 0.03 0.07 0.01 0.08
0.80 1.00 0.62 1.00 0.29 0.33 0.37 0.32
0.51 0.25 0.03 0.29 1.00 0.99 0.98 0.98
0.46 0.30 0.07 0.33 0.99 1.00 0.96 1.00
0.61 0.32 0.01 0.37 0.98 0.96 1.00 0.95
0.44 0.29 0.08 0.32 0.98 1.00 0.95 1.00

. (12)

The non-diagonal elements of C, which are close to ±1, indicate strong correlations between the
elements of ΔTr. Consequently, the machine imperfections alter correlated groups of optical
functions.

This observation can be further quantified by the eigenvector decomposition of C, which
yields the following vector of eigenvalues λ C( ) for the β =* 3.5m optics

λ =C( ) (4.9, 2.3, 0.53, 0.27, 0.01, 0.01, 0.00, 0.00). (13)

Since the two largest eigenvalues λ = 4.91 and λ = 2.32 dominate the others, the correlation
system is practically two dimensional with the following two eigenvectors

= − − − − − −v (0.35, 0.30, 0.16, 0.31, 0.40, 0.41, 0.41, 0.40), (14)1

= − − − − − −v ( 0.26, 0.46, 0.47, 0.45, 0.29, 0.27, 0.25, 0.28). (15)2

Therefore, contributions of the individual lattice imperfections cannot be evaluated. On the
other hand, as the imperfections alter approximately only a two-dimensional subspace, a
measurement of a small set of weakly correlated optical functions would theoretically yield an
approximate knowledge of ΔTr.

4.2. Error estimation of the method

Let us assume for the moment that we can precisely reconstruct the contributions to ΔTr of the
two most significant eigenvectors while neglecting the others. The error of such reconstructed
transport matrix can be estimated by evaluating the contribution of the remaining eigenvectors:

δΔ = ×T E V , (16)r i i i i i, , ,
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where
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8

T

and ν ν=N ( ,..., )1 8 is the basis change matrix composed of eigenvectors νi corresponding to the
eigenvalues λi.

The relative optics uncertainty before and after the estimation of the most significant
eigenvectors is summarized in table 2. According to the table, even if we limit ourselves only to
the first two most significant eigenvalues, the uncertainty of optical functions due to machine
imperfections drops significantly. In particular, in case of L sd dx and Ly a significant error
reduction down to a per mil level is observed. Unfortunately, due to Δμ π=x (figure 2), the
uncertainty of Lx, although importantly improved, remains very large and the use of L sd dx for
proton kinematics reconstruction should be preferred.

In the following sections a practical numerical method of inferring the optics from the RP
proton tracks is presented and its validation with Monte Carlo calculations is reported.

5. Optics estimators from proton tracks measured by Roman pots (β� = 3.5m optics)

The TOTEM experiment can select the elastically scattered protons with high purity and
efficiency [8, 9]. The RP detector system, due to its high resolution (σ μ≈x y( , ) 11 m,
σ Θ μ≈( ) 2.9 radx y, ), can measure very precisely the proton angles, positions and the angle-
position relations on an event-by-event basis. These quantities can be used to define a set of

Table 2.Nominal values of the optical functions Tr i, and their relative uncertainty before

( V T/| |i i r i, , ) and after (δΔT T/| |r i r i, , ) the determination of the two most significant

eigenvectors (β =* 3.5m, beam 1).
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estimators characterizing the correlations between the elements of the transport matrix T or
between the transport matrices of the two LHC beams. Such a set of estimators R Rˆ ,..., ˆ1 10

(defined in the next sections) is exploited to reconstruct, for both LHC beams, the transport
matrix Δ+T T( ) defined in (8).

5.1. Correlations between the beams

Since the momentum of the two LHC beams is identical, the elastically scattered protons will be
deflected symmetrically from their nominal trajectories of beams 1 and 2

Θ Θ Θ Θ= − = −, , (18)x b x b y b y b,
*

,
*

,
*

,
*

1 2 1 2

which allows us to compute ratios R1,2 relating the effective lengths at the RP locations of the
two beams. From (1) and (18) we obtain

Θ
Θ
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≡ ≈

×

×
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2

, far

, far

, , far

, , far

1

2

1

2

where the subscripts b1 and b2 indicate beams 1 and 2, respectively. Approximations present in
(19) and (20) represent the impact of statistical effects such as detector resolution, beam
divergence, primary vertex position distribution and longitudinal momentum spread of the
particles. The estimators R̂1 and R̂2 are finally obtained from the Θ Θ( , )x b x b, ,1 2 and
y y( , )b b, far , far1 2

distributions and are defined with the help of the distributions’ principal
eigenvector, as illustrated in figures 6 and 7. The width of the distributions is determined by the

Figure 6. Beams 1 and 2 elastic scattering angle correlation in the horizontal plane
Θ Θ( , )x b x b, ,1 2 of protons detected by the Roman pots. The plot also illustrates the linear
fit of the distribution whose slope parameter is the estimator R̂1.
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beam divergence and the vertex contribution, which leads to 0.5% uncertainty on the
eigenvectorʼs slope parameter.

5.2. Single beam correlations

The distributions of proton angles and positions measured by the Roman pots define the ratios
of certain elements of the transport matrix T, defined by (1) and (2). First of all, L sd dy and Ly
are related by

Figure 7. Correlation between positions (vertical projections) of elastically scattered
protons detected in beams 1 and 2. The sharp edges are due to the vertical acceptance
limits of the detectors. The plot also illustrates the linear fit of the distribution whose
slope parameter is the estimator R̂2.

Figure 8. Correlation between vertical position and angle of elastically scattered protons
at the RP of beam 1. This correlation plot illustrates the distribution which determines
the estimator R̂3 and the corresponding plot of beam 2 is used for R̂4.
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The corresponding estimators R̂3 and R̂4 can be calculated with an uncertainty of 0.5% from the
distributions as presented in figure 8.

Similarly, we exploit the horizontal dependencies to quantify the relations between L sd dx

and Lx. As Lx is close to 0, see figure 3, instead of defining the ratio we rather estimate the
position s0 along the beam line (with the uncertainty of about 1 m), for which Lx = 0. This is
accomplished by resolving

= + − =
L s

L s s

L s

L s s
s s

( )

d ( ) d

( )

d ( ) d
( ) 0, (22)x

x

x

x

0

1

1

1
0 1

for s0, where s1 denotes the coordinate of the Roman pot station along the beam with respect to
IP5. Obviously, L s sd ( ) dx is constant along the RP station as no magnetic fields are present at
the RP location. The ratios L s( )x

L s

s1
d ( )

d
x 1 for beams 1 and 2, similarly to the vertical constraints

R3 and R4, are defined by the proton tracks

Θ
≈

L x
, (23)x

L

s
x

d

d
x

which is illustrated in figure 9. In this way two further constraints and the corresponding
estimators (for beams 1 and 2) are obtained

Figure 9. Correlation between the horizontal angle and position of elastically scattered
protons at the RP of beam 1. The plot also illustrates the linear fit of the distribution
whose slope parameter is the estimator R̂5 and the corresponding plot of beam 2 is used
to determine R̂6.
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≡ ≡R s R sand . (24)b b5 61 2

5.3. Coupling / rotation

In reality the coupling coefficients m m,...,13 42 cannot be always neglected, as it is assumed by
(6). RP proton tracks can help to determine the coupling components of the transport matrix T
as well, where it is especially important that Lx is close to zero at the RP locations. Always
based on (1) and (2), four additional constraints (for each of the two LHC beams and for each
unit of the RP station) can be defined

≡ ≈R
x

y

m

L
. (25)

y
7, ..., 10

near(far)

near(far)

14, near (far)

, near (far)

The subscripts ‘near’ and ‘far’ indicate the position of the RP along the beam with respect to the
IP. Geometrically R7, ..., 10 describe the rotation of the RP scoring plane about the beam axis.
Analogously to the previous sections, the estimators R̂7, ..., 10 are obtained from track
distributions as presented in figure 10 and an uncertainty of 3% is achieved.

6. Optical functions estimation

The machine imperfections Δ, leading to the transport matrix change ΔT , are in practice
determined with the χ2 minimization procedure:

Δ χ= ( )arg min , (26)2

defined on the basis of the estimators R Rˆ ,..., ˆ1 10, where the argmin function gives the phase
space position where the χ2 is minimized. As it was discussed in section 4.1, although the
overall alteration of the transport matrix ΔT can be determined precisely based on a few optical

Figure 10. Vertical versus horizontal track position at the near RP of the LHC beam 1.
This correlation plot illustrates the distribution which determines the estimator R̂7. The
plot at the far RP is used to calculate R̂8 and the corresponding two plots of beam 2 is
used for R̂9 and R̂10.
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functions’ measurements, the contributions of individual imperfections cannot be established.
In terms of optimization, such a problem has no unique solution and additional constraints,
defined by the machine tolerance, have to be added.

Therefore, the χ2 function is composed of the part defined by the Roman pot tracks’
distributions and the one reflecting the LHC tolerances

χ χ χ= + . (27)2
Design
2

Measured
2

The design part

⎛
⎝⎜

⎞
⎠⎟

⎛
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∑ ∑

∑

χ
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ϕ ϕ

σ ϕ

σ

=
−

+
−
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=

−
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−

=

−

( )( )
k k

k

p p

p( )
, (28)

i

i i

i i

i i

i

i

i i

i

Design
2

1

12
, MAD X

2

1

12
, MAD X

2

1

2
, MAD X

2

where ki and ϕi are the nominal strength and rotation of the ith magnet, respectively. Thus (28)
defines the nominal machine ϕk p( , , )i i i as an attractor in the phase space. Both LHC beams
are treated simultaneously. Only the relevant subset of machine imperfections Δ was
selected. The obtained 26-dimensional optimization phase space includes the magnet strengths
(12 variables), rotations (12 variables) and beam momentum offsets (two variables). Magnet
rotations are included into the phase space, otherwise only the coupling coefficients
m m, ...,13 42 could induce rotations in the (x, y) plane (25), which could bias the result.

The measured part

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑χ

σ
=

−

=

−

( )
R R

R

ˆ

ˆ
(29)

i

i i

i
Measured
2

1

10
, MAD X

2

contains the track-based estimators R Rˆ ,..., ˆ1 10 (discussed in detail in section 5) together with
their uncertainty. The subscript ‘MAD-X’ defines the corresponding values evaluated with the
MAD-X software during the χ2 minimization.

Table 3. Selected optical functions of both LHC beams for the β =* 3.5m and 90m
optics, obtained with the estimation procedure, compared to their nominal values.

β =* 3.5m

Ly b, , far1 (m) L sd dx b, 1 Ly b, , far2 (m) L sd dx b, 2

Nominal 22.4 − × −3.21 10 1 18.4 − × −3.29 10 1

Estimated 22.6 − × −3.12 10 1 20.7 − × −3.15 10 1

β =* 90 m

Ly b, , far1 (m) L sd dx b, 1 Ly b, , far2 (m) L sd dx b, 2

Nominal 263.2 − × −5.36 10 1 263.2 − × −5.36 10 1

Estimated 264.1 − × −5.25 10 1 266.3 − × −5.17 10 1
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Table 3 presents the results of the optimization procedure for the β =* 3.5m optics used
by LHC in October 2010 at beam energy =E 3.5TeV. The obtained value of the effective
length Ly of beam 1 is close to the nominal one, while beam 2 shows a significant change. The
same pattern applies to the values of L sd dx . The error estimation of the procedure is discussed
in section 7. The β =* 90 m results at =E 4 TeV are also presented in table 3.

6.1. Interplay between the detector alignment and the optics matching procedure

Alignment procedures are practically independent from the optics imperfections. The relative
RP alignment within a single arm is obtained solely on the basis of local proton tracks, by
means of top and bottom RP overlaps with the horizontal devices. This procedure does not
involve any optics assumption and the optics has no influence on it.

The further alignment of the above system with respect to the beam is performed with RP
distributions of elastically scattered protons. The key cuts of elastic proton tagging (collinearity of
left–right arm protons) require no prior optics knowledge while for the remaining cuts an indicative
nominal optics knowledge is sufficient as they show insensitivity to expected optics errors [10].
Furthermore, the alignment techniques applied in TOTEM [5] rely only on the hit distribution
symmetries. Although the optics imperfections may change the RP hit distributions, their
symmetries are preserved making the alignment procedure immune to optics imperfections.

The estimators R̂1, R̂5 and R̂6 are insensitive to misalignment. The R̂2, R̂3 and R̂4

constraints are, in principle, very sensitive to relative top-bottom RP misalignment. However,
such misalignment is very precisely determined by means of the relative alignment procedure.

Finally, there is an interplay between the RP unit rotation misalignment and the optics x–y
coupling due to rotation misalignments of the lattice magnets. The quadrupole rotation
misalignments can induce an x–y coupling, which provokes a RP x–y scoring plane rotation,
consider (25). For low-β*optics β =* 3.5m) the uncertainty of this rotation is 35mrad when
nominal LHC uncertainties are applied. Compared to an expected 1 mrad rotation alignment
uncertainty of a RP unit, the lattice related effect is clearly larger and can be estimated.

However, large-β*optics is characterized by large insensitivity to quadrupole magnet
rotation misalignments. For β =* 90 m the RP x–y scoring plane rotation uncertainty of
1.8mrad is expected which is compatible to the alignment uncertainty. Therefore in this case
lattice rotation imperfections cannot be distinguished from RP rotation misalignment.

7. Monte Carlo validation

In order to demonstrate that the proposed R̂i optics estimators are effective the method was
validated with Monte Carlo simulations.

In each Monte Carlo simulation the nominal machine settings  were altered with
simulated machine imperfections Δ within their tolerances using Gaussian distributions. The
simulated elastic proton tracks were used afterwards to calculate the estimators R Rˆ ,..., ˆ1 10. The
study included the impact of

— magnet strengths,

— beam momenta,

— magnet displacements, rotations and harmonics,
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— settings of kickers,

— measured proton angular distribution.

The error distributions of the optical functions ΔT obtained for β =* 3.5m and
=E 3.5TeV are presented in figure 11 and table 4, while the β =* 90 m results at =E 4 TeV

are shown in figure 12 and table 5.
First of all, the impact of the machine imperfections Δ on the transport matrix ΔT , as

shown by the MC study, is identical to the theoretical prediction presented in table 2. The bias

Figure 11. The MC error distribution of β =* 3.5m optical functions Ly and L sd dx for
beam 1 at E = 3.5 TeV, before and after optics estimation.

Table 4. The Monte Carlo study of the impact of the LHC imperfections Δ on
selected transport matrix elements L sd dx and Ly for β =* 3.5m at E = 3.5 TeV. The
LHC parameters were altered within their tolerances. The relative errors of L sd dx and
Ly (mean value and rms) characterize the optics uncertainty before and after optics
estimation.

Simulated Reconstructed
optics

distribution optics error

Relative optics Mean rms Mean rms
distribution (%) (%) (%) (%)
δL

L

y b

y b

, 1, far

, 1, far
0.39 4.2 × −8.3 10 2 0.16

δ L s

L s

d d

d d

x b

x b

, 1

, 1
−0.97 1.6 −0.13 0.17

δL

L

y b

y b

, 2, far

, 2, far
−0.14 4.9 0.21 0.16

δ L s

L s

d d

d d

x b

x b

, 2

, 2
0.10 1.7 − × −9.7 10 2 0.17
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of the simulated optics distributions is due to magnetic field harmonics as reported by the LHC
imperfections database [20]. The final value of mean after optics estimation procedure
contributes to the total uncertainty of the method.

The errors of the reconstructed optical functions are significantly smaller than evaluated
theoretically in section 4.2. This results from the larger number of constraints, design and
measured constraints (27), employed in the numerical estimation procedure of section 6. In
particular, the collinearity of elastically scattered protons was exploited in addition. Finally, the
achieved uncertainties of L sd dx and Ly are both lower than 2.5‰ for both beams.

Figure 12. The MC error distribution of β =* 90 m optical functions Ly and L sd dx for
beam 1 at E = 4 TeV, before and after optics estimation.

Table 5. The Monte-Carlo study of the impact of the LHC imperfections Δ on selected
transport matrix elements L sd dx and Ly for β =* 90 m at E = 4 TeV. The LHC parameters
were altered within their tolerances. The relative errors of L sd dx and Ly (mean value and
rms) characterize the optics uncertainty before and after optics estimation.

Simulated Reconstructed
optics distribution optics error

Relative optics Mean rms Mean rms
distribution (%) (%) (%) (%)

δL

L

y b

y b

, 1, far

, 1, far
× −2.2 10 2 0.46 × −5.8 10 2 0.23

δ L s

L s

d d

d d

x b

x b

, 1

, 1
× −6.7 10 3 1.5 − × −6.4 10 2 0.20

δL

L

y b

y b

, 2, far

, 2, far
− × −5 10 3 0.47 × −5.8 10 2 0.23

δ L s

L s

d d

d d

x b

x b

, 2

, 2
× −1.8 10 2 1.5 − × −7 10 2 0.21
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8. Conclusions

TOTEM has proposed a novel approach to estimate the optics at LHC. The method, based on
the correlations of the transport matrix, consists in the determination of the optical functions,
which are strongly correlated to measurable combinations of the transport matrix elements.

At low-β* LHC optics, where machine imperfections are more significant, the method allows
us to determine the real optics with a per mil level of uncertainty, also permitting us to assess the
transport matrix errors from the tolerances of various machine parameters. In the case of high-β*
LHC optics, where the machine imperfections have a smaller effect on the optical functions, the
method remains effective and reduces the uncertainties to the desired per mil level. The method has
been validated with the Monte Carlo studies both for high- and low-β* optics and was successfully
used in the TOTEM experiment to estimate the real optics for TOTEM physics runs.
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