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BEAM-BEAM EFFECTS

L.R. Evans and J. Gareyte
CERN, Geneva, Switzerland

ABSTRACT

The beam-beam interaction imposes severe limitations on
the performance of c¢olliding beam storage rings. In
linear colliders the self-pinching effect of the beam-
beam force can enhance their perfomance.

1. INTRODUCTION

Particles circulating in a colliding beam storage device experience
localised periodic kicks when crossing the opposing beam. As the intensity
increases, this beam-beam interaction has a profound effect on the beam
dynamics, wultimately 1limiting the performance of all existing 1lepton
storage rings as well as the SPS hadron collider. It is therefore not
surprising that a great deal of experimental, theoretical and
computational effort has gone into trying to understand the underlying
physics.

For 1lepton machines, computer simulations have been particularly
productive in understanding and predicting machine performance limitations
due to this effect. In contrast, in hadron colliders computer simulation
is hampered paradoxically by the conservative nature of the beam dynamics
and one has to rely more heavily on approximate analytical models based on
the theory of nonlinear resonance effectsl" 5].

In the near future the first linear collider will be
commissioned6]. Although the beams only pass once through one another, a
very strong beam-beam interaction, commonly known as beam disruption, will
occur. In contrast with storage rings this disruption has a potentially
beneficial effect, strongly focussing both beams and increasing the
luminosity by a substantial factor.

2. THE BEAM-BEAM FORCE

We consider first the simplest case of head-on collisions between two
round Gaussian bunches of length L with n particles per unit length and
with a transverse density distribution
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The Lorentz force on a test particle at a radius r is

F=e(E+2vxB)=ce(E, ¢ BcB¢) er (2.2)
where the negative sign corresponds to a particle in the same bunch and
the positive sign to a particle in the other beam, r is the unit vector.

The radial electric field Er and the poloidal magnetic induction

B¢ can be obtained from Gauss' theorem and Ampére's law respectively.

r
errF.r = % J 2wr' p(r') dr!
o o
so
2 2
ne -r° /20
e = Znre, O ) (2.3)
errB¢ =W, ofr 2wr'Bc p(r') dr!
and
neu Bc 2 2
_ o -r*/20¢°)
B4> = Sur (1 - e (2.4)
Then
2 2 2
ne 2 -r°/2c
Fr = anco (1 +8%) (1 - e ) (2.5)
The angular kick Ax' due to the beam-beam interaction is then given
by
2 2
ax! Ne o Lo X297, (2.6)

= 2w €, Bc Bp X

where N is the number of particles per bunch and we consider only the
plane y = 0.
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Fig. 1 Beam-beam kick for a round Gaussian beam
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For the general case (ox # ay) the beam-beam kick can be obtained by
solving Poisson's equation for the generalised electromagnetic potential
of an elliptical bunch7]

2 2
- ( 2x + 2y )
200 + t 200 + t
ne 1 - e X Y
V(x,y) = dt . (2.7)
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The kicks Ax' and Ay' due to the beam-beam interaction are then

Ax' = -

1

and Ay' = -

@l
Q2

2.1 The Linear Tune Shift

For small amplitude particles, the beam-beam kick is identical to
that given by a linear lens of focal length f given by

]

1/¢F Ax'/x

Ne
4nc°Bch6’

Nr

o

= (2.8)

2

YO

where r  is the classical particle radius r_ = e’/(aneomoc’).

To investigate the perturbation of the lattice functions by this lens
we compute the perturbed one-turn transfer matrix

cos(u + An) B*sin(uw + Aw)

1 (2.9)
- E*sin(u + An) cos(u + Aw)
1 0 cos u B: sin u 1 0
= 1 . 1 . 1
- 2f 1 - B; sin u cos u - 2F 1

where u + Au and B* are the perturbed lattice functions.

Then

Nlm
mio %

cos(n + Au) cos u - sin u

cos u - 2wf sin u (2.10)



Nroﬁ
where £ = . (2.11)
awo’y
For small Awu,
~ du _
§ = T AQL (2.12)

where AQL is the linear tune shift due to the beam-beam perturbation.

The corresponding perturbation of the beta function is given by

*
= -2wf cot w . (2.13)

wll>
o *|®

2.2 Stability of Linear Incoherent Motion

In the linear approximation, the motion of a test particle in the
presence of the other beam is stable if the absolute value of the trace of
the one-turn transfer matrix is less than 2

cos u - 2w€ sin w <1

£ < 37 cot (w/2). (2.18)
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Fig. 2 Stability region for a weak beam executing

small oscillations. wu is the ©betatron
phase advance between collision points
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The experimentally measured limiting beam-beam parameter 1in lepton
machines is of the order of 0.03 to 0.05 and in the SPS hadron collider it
is an order of magnitude lower. The linear model clearly predicts a
threshold which is much too high.

2.3 Stability of Coherent Motion

For two beams of similar intensity, if one beam is slightly displaced
with respect to the other, coherent oscillations are induced which under
certain conditions can lead to instability 8 ’9]. With one bunch per
beam, two modes are possible, the O-mode where both beams move up and
down together, and the w -mode where the two beams move 1in opposite
directions. With m bunches per beam, 2 m modes of oscillation are
possible. The stability of the system can still be computed by linear
matrix theory. For the case of one and three bunches per beam the
stability boundary is shown in Fig. 39]. Clearly the threshold is
substantially reduced compared with the incoherent case, although for the
appropriate choice of working point it is still substantially higher than
experimentally observed thresholds.
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0.10 -
Ol
() Stoble %% (o
Stable Stable Stable
0 1 1 1 1 o
0 Q 1 0 Q2 3
Fig. 3 Stability region for two strong rigid beams

executing small center-of-mass oscillations
for (a) two colliding bunches and (b) six
colliding bunches. The figures are periodic
in Q, the total tune of the storage ring;
the periods are 1 in (a) and 3 in (b). The
dashed lines show the strong-weak stability
limit and are reproduced from Fig. 2.

As can be seen from Fig. 1 the beam beam force 1is intrinsically
nonlinear above about 1.5 o. The nonlinearity has important consequences
on the beam dynamics. The effect will be discussed in more detail 1in
Section 5.
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2.4 Scaling of the Linear Tune Shift

For the general case of an elliptical beam with Gaussian distribution,
the tune shift parameter £ is given by

Nr e B*
14 = o .
X,y 2wy (ax + ay) Gx,y (2.15)

where B* is the value of the beta function at the interaction point. This
parameter scales differently with energy for hadron and lepton machines.

In a hadron machine the normalised emittance (eBy) 1is a conserved

quantity. Then putting
*

02 - (eBy) B
= ay

and assuming a round beam (cx = o0_), then
Nr
_ — P 2.16
¢ = Ty (2.16)
which is independent of both Yy and of the value of 8#* at the crossing
point.

For lepton machines the situation is different because the
equilibrium beam size scales proportional to y. The tune shift parameter
then has a strong Y” dependence. Consequently, in a machine 1like
LEP where the beams will be injected at low energy it is vital to separate
the beams completely during injection and throughout acceleration. In
addition, the beams are normally flat at the collision points so the tune
shift parameter also depends on the beta functions at the interaction
point.

2.5 Nonlinear Beam-Beam Interaction

In the preceding sections, only the linear part of the beam-beam
force was considered. In fact, the beam-beam interaction is an
intrinsically nonlinear phenomenon and this nonlinearity gives rise to two
effects. Firstly, it introduces a dispersion of the tune with amplitude,
the beam-beam tune spread. Secondly, the nonlinear kick together with the
localised nature of the interaction drives nonlinear resonances wherever
the machine tunes satisfy a relationship of the form

mQx + nQy = Integer

where m and n are even integers for head-on collisions between bunches.
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These nonlinear resonances can profoundly influence the topology of
the phase space. There is a great deal of evidence, both experimental and
from computer simulations, that shows that these resonances play an
important réle in determining the nature of the beam-beam interaction.

In the next two sections, some experimental data from lepton and
hadron machines is discussed. The physical manifestation of the phenomenon
turns out to be quite different in the two types of machine.

Lepton machines are in some ways both simpler and more complex to
understand than hadron machines. The tune spread is normally at least an
order of magnitude larger than in hadron machines, so the beams straddle
many nonlinear resonances and their synchrotron satellites. However, there
is a strong damping mechanism through synchrotron radiation emission to
counteract the beam-beam interaction, giving rise to an equilibrium
situation. This equilibrium is generally achieved after a few damping
times and renders the problem particularly suitable to computer
simulation. In the next section some results of computer simulations are
discussed and compared with real machine data.

In hadron machines the tune spread is sufficiently small that the
beams can be kept clear of 1low-order resonances. However, as the
experimental data will show, resonances of order 10 or even under some
conditions of order 16, have been shown to have a catastrophic effect on
beam lifetime at quite modest values of the beam-beam tune shift. There is
no, or negligible, radiation damping so an equilibrium situation cannot
exist as it does in lepton machines. This makes quantitative predictions
using computer simulation difficult, although considerable insight can
still be obtained from such simulations. However, for a more complete
understanding they must be supplemented by a more detailed analysis of the
nature of nonlinear beam-beam resonances.

3. EXPERIMENTAL AND NUMERICAL DATA FROM e®e~ MACHINES

The most comprehensive compilation known to the authors of data from
the world's lepton colliders can be found in Ref. 10. One of the most
striking features of this data 1is shown in | Fig. 3 of this reference,
reproduced below for convenience.

Figure 4 shows the luminosity versus current observed in seven lepton
colliders. The luminosity L is given by

Iz
L= ——— (3.1)
4uMe“f o_o
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where f is the revolution frequency, M the number of bunches per beam, I
the current per beam (assumed equal in the two beams) and ¢ are the

Luminosity [x 103%m™2 sec"]

X,y
standard deviations of the beam sizes at the crossing point.
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Fig. 4 Luminosity and vertical tune shift
parameter versus current for seven

electron-positron collidersl0], Note that
the tune shift saturates at some current
value above which the 1luminosity grows
linearly.

The behaviour of all seven machines is remarkably similar. At 1low
current, the luminosity increases approximately as the current squared, in
agreement with equation (3.1) whereas at high current the luminosity is
more proportional to I rather than I?. Even more striking, the upper
plots show the calculated vertical linear beam-beam tune shift parameter
Ey as a function of current. For a flat beam (oy << ax) Ey
is given by

Ir B*
o

£, = IrleFve s
Yy ZﬂMefyoxay

(3.2)

It can be seen that at high current, instead of the linear dependence
on current predicted from equation 3.2, the linear tune shift saturates at
some value between 0.02 and 0.05. This 1limiting tune shift is commonly
called the 'beam-beam limit'.

In order for oy to be constant, the product cxay must
increase linearly with current, In practice, the horizontal beam size is
observed to change very little and therefore, at the beam-beam 1limit the
vertical beam size must grow linearly with current. This is an important
difference between lepton and hadron machines. 1In ete” machines, at a
given current an equilibrium distribution exists which 1is a balance
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between the heating of the beam due to quantum fluctuations and the
beam-beam interaction and the «cooling due to synchrotron radiation
damping. The beam size has been observed to blow up by as much as a factor
of five before the lifetime is affected 11].

The fact that an equilibrium distribution is established in a few
damping times (10°-10° turns) makes the beam-beam problem 1in

e*e” machines particularly amenable to computer simulation.

3.1 Computer Models of the Beam-Beam Interaction

Computer simulations of the beam-beam interaction have been made in
practically all laboratories in which e*e” machines exist. The types
of simulation can be divided 1into two main classes, strong-weak and
strong-strong.

In strong-weak simulations test particles in the 'weak' beam are
tracked through a linear lattice followed by nonlinear beam-beam kicks due
to the ‘'strong' beam which itself is not perturbed by its interaction with
the weak ©beam. Therefore the ©beam-beam kicks can generally be
precalculated and stored in a look-up table with appropriate
interpolation. This method 1is economic in computer time but lacks
quantitative predictive power. However, this kind of simulation is useful
for studying the beam-beam interaction in, for example, the SPS collider.

More sophisticated simulations treat the strong-strong case, where
the changes in beam size and distribution are periodically wused to
recompute the beam-beam kicks as the calculation proceeds. This kind of
simulation can be used to compute the final equilibrium beam size and can
quantitatively predict the machine performances (luminosity, beam-beam
limit etc.) when the relevant physics is introduced into the problem.

Many different effects can be included in such simulations. In
general, as well as the transverse dynamics the longitudinal motion must
be taken into account. The synchrotron motion results in a modulation of
the arrival time of a particle at the interaction point producing a
modulation of the strength of the beam-beam force. This results in the
generation of beam-beam synchro-betatron resonances (Section § ) and can
sometimes strongly affect the performancelz].

Quantum fluctuations and synchrotron radiation damping are also taken
into account. In addition, small errors such as the variation in phase
advance between intersection points, small offsets between the beams and
spurious dispersion can all have non-negligible effects.
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Figure 5 shows one result from a strong-strong simulation at
CESR 13], where contours of constant relative luminosity are plotted in
the tune space. Areas marked with <crosses 1indicate regions of bad
lifetime. These regions are closely correlated to the location of

nonlinear resonance lines.
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Instability
Tines
g Fair
2
9
o
E | «— Good
3
, = ”0.3u Excellent
O WP o, Yo
NI
9.0 9.1 9.2 9.3 9.4 9.5
Horizontal tune
Fig. 5§ Beam-beam simulation results for CESR13].

The contours are at equally spaced relative
levels of luminosity. Crosses indicate bad
lifetime. The straight 1lines define the
positions of strong nonlinear resonances.

Similar results have been obtained in simulations of LEP 12].

Figure 6 shows the computed luminosity as a function of the vertical tune
over a wide range. The regions of low luminosity are again strongly
correlated to large azimuthal Fourier harmonics of nonlinear resonances.
Note that these simulations have real quantitative predictive value.
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Fig.6 Luminosity (cm—2.,s-1) as a function
of the vertical tune over a wide range
computed for LEP12]. The regions of low
luminosity coincide with strong nonlinear
resonances.

Figure 7 shows a similar simulation for Petrald], where the

equilibrium vertical beam height is plotted as a function of both radial
and vertical tunes. The curves on the 1left correspond to a perfect
machine. Again, at tune values corresponding to nonlinear resonances the
beam height increases. The situation is much worse when small machine
imperfections are added, in this case small variations in vertical tune
between interaction points and spurious vertical dispersion. The result of
these 1imperfections 1is to excite azimuthal Fourier components of the
nonlinear beam-beam force driving resonances which would not normally be
present due to the symmetry of the system. The curves on the right show
how the number and strength of the resonances increases when imperfections
are added.

The predictive value of beam-beam simulations for lepton machines is
illustrated 1in Fig. 8. These curves were generated using the LEP
simulation codelz] modified for PEPlS]. The top curve corresponds to
the normal PEP working point QH = 20.175, QV = 25.275. The
experimentally measured luminosity shows good agreement with the
simulation. The program was then used to probe the tune space in search of
a better working point, which was found to be QH = 21.275, QV =

18.175. When the machine was tuned to this new working point (fig. 8b) the
luminosity increased as predicted by the simulation, by about 40%.
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The better working point b) was predicted by the simulation.
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4. EXPERIMENTAL DATA FROM HADRON MACHINES

At the time of writing, only two hadron colliders have operated, the
ISR and the SPS proton-antiproton colliders at CERN, soon to be followed
by the Tevatron proton-antiproton collider at Fermilab.

In the ISR the beams were debunched and crossed horizontally at an
angle so that in the horizontal plane there was almost no tune shift as a
particle was kicked first one way and then the other as it crossed the
opposing beam. The only substantial tune shift was in the vertical plane,
and this was much smaller (~4x10") than that obtained in the SPS
(~4x10'°). The ISR stacked beams on a working 1line which straddled
7th , 8th and 9th-order resonances (Fig. 9) with very little effect due to
the beam-beam interaction.

9.0
Q,
8.9

\

L \6 )
838 \i N \
88 8.9 Q. 9.0
Fig. 9 A typical ISR working line crossing 7th,

8th and 9th-order resonances.

However, the presence of nonlinear resonances could be detected by
exciting the beam and measuring the response (beam transfer

16]. Figurel0 shows such a measurement on a stack, first with no

function)
beam in the other ring and then with successively increasing current.
Depletion of the density distribution can be observed at resonant tune
values. The amplitude dependence of the tune spread has a stabilizing
influence. As the amplitude of a particle increases due to the resonances

the tune changes to push the particle off resonance.
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Fig. 10 Vertical beam transfer function measurement
of the amplitude distribution of beam 1 as
a function of the current in beam 2,
showing the beam-beam resonances of order 7
to 9.

The SPS proton-antiproton collider is more similar to an electron-
positron storage ring. The beams are bunched and collisions are head-on,
giving approximately the same beam-beam tune shifts in the two planes.

Very strong beam-beam effects are observed. Figure 11 shows a scan of
the tune diagram with three proton bunches and a single weak antiproton
bunch (6 crossings per revolution) and with a beam-beam tune shift on the
antiprotons of 3 x 10™° per crossing>]
recorder output of the intensity of one of the proton bunches together
with the antiproton bunch on a very sensitive scale. Figure 11b) shows the
tune diagram between 3rd and 4th-order resonances, where 7th, 10th and
l1l1th-order resonances are indicated.

. Figure 1la) shows a chart

The intensity decay rate was measured at different positions in the
working diagram, indicated by the 1lines marked 1,2 etc. The meaning of
these lines is the following. The proton bunch (with which the tune is
measured) has negligible spread and can be considered to occupy a point in
the working diagram indicated by the lower point on each line. The small-
amplitude antiprotons which experience the linear part of the beam-beam
force, are shifted upwards in tune by the total beam-beam spread and
occupy a point at the other end of each line. Large amplitude antiprotons
occupy much of the space between.
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The decay rate of the antiprotons is extremely sensitive to the tune,
increasing rapidly as the antiprotons touch the 10th-order resonances. In
contrast, the proton decay rate under these conditions where proton and
antiproton emittances were comparable, was quite insensitive to the tune.
In order to have reasonable operating conditions for physics data taking,
the tune must be restricted to a very small region of the working diagram
corresponding to that of point 1 in the figure. Therefore the beam-beam
interaction imposes severe constraints on machine performance.

One way to reduce the tune spread in the beams is to separate the
protons and antiprotons at the unwanted collision points (the SPS contains
only two experimental areas at adjacent long straight sections Such a
separation is possible in the SPS by making global orbit deformations in
the opposite sense for protons and antiprotons using a set of four
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Fig. 11 Scan of the SPS tune space between 3rd and 4th order

resonances with a single weak antiproton bunch and three

strong proton bunches.
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electrostatic deflectorsl7]. When the separation is switched on the beam

lifetime improves considerably (Fig. 12).

Fig. 12a Schematic diagram of SPS separation scheme.
The proton and antiproton orbits are
deformed in opposite directions.
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Fig. 12b Intensity decay of an antiproton bunch as
the separation is brought up.

Another important effect observed at the SPS is the self-scraping of
large emittance particles when the two beams have unequal emittances.
Figure 13 shows the decay rates of three antiproton bunches which were
injected with successively bigger emittance. The effect on the decay rates
can be easily seen. Antiprotons whose amplitude exceeds the average
dimensions of the proton beam are rapidly peeled off and the decay rate is
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ijnitially high. As a result the antiproton emittance shrinks during the
early phase of storage. The ‘'dynamic acceptance' of the machine in the
presence of the beam-beam interaction is therefore not much more than the
strong beam emittance.

’-l.l:
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Fig. 13 Decay rates of three antiproton bunches with different
emittances. The normalized emittances E = eBy/w
where Ex = 17, Ey = 15, EZ = 12. The proton
emittance E_ = 16 and & = .004.

P

5. NONLINEAR BEAM-BEAM RESONANCES

The theory of nonlinear resonances in circular accelerators has been
treated elsewhere in these proceedings4’ 5]. Before applying the theory
to the beam-beam interaction, some of its general features will be briefly
reviewed. Detailed derivations are not given here. For these, the reader is
referred to Refs. 1-3 and 18-20.

The motion of a test particle in the presence of a nonlinear
perturbation is governed by the perturbed Hamiltonian

H=H +H

o 1

1, 2 2
2(px+p

y * Ke()x® + Ky(s)y®) + V(x,¥)8(s-s ) (5.1)

where the perturbing potential V(x,y) due to some nonlinear element at
azimuthal 1location s = s, is considered to be small. The '"time"
dependence of the nonlinear kick 1is 1introduced through the periodic
§-function having period 2w. Note that instead of the time coordinate
the azimuthal position s is used.
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2 ,18] is first to make

two successive canonical transformations, a Courant and Snyder

The general method of solving such a problem

transformation to remove the time dependence of the unperturbed
Hamiltonian Ho followed by an action-angle transformation. The
periodic & function is also replaced by a Fourier series expansion.

The next step, for the case of a single multipole is to isolate the
'slowly varying' part of the Hamiltonian when the tune 1is close to a
‘resonant' value nQ - p = 0. One finally arrives at a '‘resonant
invariant' (see E.J.N. Wilson's chapter for a detailed derivation) of the
form

K= (Q-p/n)J + A J™% o B "2 cos ¢ (5.2)
n n

where J is the action variable (Q/2 times the emittance of the orbit) and
¥ is the 'slow' phase. The first term in the above expression 1is the
distance of the tune from the resonant tune. The second term corresponds
to a variation of tune with amplitude, the nonlinear detuning, and the
third term is the 'resonance excitation' term.

The same procedure can be carried out for the case of the beam-beam
interaction. However, in this case care must be taken to isolate all the
slowly varying terms in the resonant Hamiltonian. These terms come about

because the beam-beam force can be decomposed into an infinite series of
multipoles. The resonant invariant is of the form

K = (Q-p/n) a + & u(a) + & Vn(a) cos ny (5.3)
where the action variable a has been normalised such that a = eB/202.

The tune shift due to the resonances is given by

=

y 2
36

&l

- (Q-p/n) + £ u'(a) + £V (a) cos n¥ . (5.4)

Here, Eu' (a) is the amplitude dependent tune shift, the
]
‘nonlinear detuning' and Evn(a) is the 'resonance width'. Note
that the linear tune shift ¥ appears as a scaling parameter.

The functions can be expressed as infinite serie53]:
© m-1 . m-1
u'(a) = % (“1)2m 1(2m). g (5.5)

1 2725 (m)?®
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(_l)m-l am—l

2m-2

(2m)!
m! (m + %)!(m _% )t

V;](a) = o§o . (5.6)

n/2 2

Alternatively they can be expressed in terms of modified Bessel

functionsZI]:
2 -a/2
u'(a) = . [1 - e Io(a/Z)]
o + 1
2 4 -a/2
Vpla) = (-1) s S I, (a/2)
2
x 3
.9 C
.8 \\ -
AN Ny
.8 \ 3 F
(o) o .
Q.5 N g L
S N
W L
§.4 \ IR
.3 \\ s
.2 3
-
o1
g Lida g readeataaaiadraprrenaelara ooty -4 u
8 1 2 3 4 X/SIGMA 8 1 2 3 4 X/SIGMAR
Fig. 14 The nonlinear detuning Fig. 15 The resonance width function
function u', with for resonances of order 4 to 12
o =xX2/202

In two dimensions the tune shift and resonances width depends on both
horizontal and vertical coordinates. The beam occupies a 'footprint' in
the tune space which is shown below for the case of a round beam.

Fig. 16 Nonlinear detuning as a function of x and Yy
amplitudes A = x/o for a round beam
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Given the resonant invariant 5.3, particle trajectories can be
constructed in the ‘'slow' phase space (a,¥). When this 1is done, it is
found that the phase space trajectories are stable to a very high value of
the linear tune shift. As an example, Fig. 17 shows the trajectories in
the vicinity of the 4th-order resonances for a linear tune shift £ =
0.04. A characteristic island structure can be observed at an amplitude at
which the perturbed tune is approximately equal to the resonant tune.

ac =B.738
DaL=0. 840
QS =0.808
*-DQM=8. 828

D B

Fig. 17 Phase-space trajectories in the vicinity of
a Ath-order beam-beam resonances for § = 0.04.

5.1. Resonance Overlap

The single-resonance model is clearly inadequate for explaining the
beam-beam interaction due to the fact that increasing the beam-beam tune
shift increases the destabilizing effect of the resonance excitation and
stabilizing effect of the nonlinear detuning proportionately. However, it
was first pointed out by Chirikovzz] that the working area is covered by
an infinite number of resonance lines for which the tune value is a
rational fraction. Although the high-order resonances have narrow width,
the fact that there is an infinite number of them may have a significant
effect. If they have sufficient width they overlap in the tune space and
particle motion will be unstable even if the working area is free of
low-order resonances. In Fig. 18 the particular case of the trajectory
in the vicinity of a 6th-order beam-beam resonance is shown at the very
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QC =d.625
DQL=8.02808
QS =0.000
DQM=0. 0800

Fig.18 Particle trajectories in the vicinity of a 6th~
order beam beam resonance for £ = 0.08.
At large amplitude the characteristic structure
of a 14th order resonance can be observed.

high value of the linear tune shift &m= 0.08. At large amplitude another
resonance of order 14 can be observed. If the tune shift increases even
further, the two sets of islands will approach each other, and other
high-order resonances will appear, finally leading to chaotic motion.
However, the linear tune shift required for this phenomenon to occur is
still much higher than observed experimentally.

5.2 Synchrobetatron Resonances

The fact that the beam is bunched can have a profound influence on
the topology of the transverse phase space. Particles performing energy
oscillations can experience a modulation of the transverse tunes due to a
number of mechanisms. In lepton machines with short bunches this can arise
due to the modulation of the arrival time at the interaction point,
resulting in a variation of the strength of the beam-beam kick. In hadron
machines a more important source is due to the small residual chromaticity
or a small ripple on the quadrupole power supply. Synchrobetatron
resonances are also excited by two beams crossing at an angle 23, 24].

Tune modulation at frequency Qm = fm/fr results in the splitting of a

nonlinear resonance leH+n2Qv=p into an infinite number of
sidebands

leH + anv =P + kK Qm.
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For a one-dimensional resonance of order n,the sidebands are separated
by Qm/n and reduced in strength by the factor Jk(né/Qm), where 6 is the
amplitude of the modulation. For small Qm’ these sidebands are very close
together and can give rise to resonance overlap and stochastic behaviour
20, 25] at a much lower threshold than in the static case, as we shall see
below.

5.3 Computer Simulation

Although the resonance invariant (5.3) can be modified to take into
account the synchrotron motion, a simple and powerful method of obtaining
phase space trajectories 1is through particle tracking. For a round
Gaussian beam the nonlinear beam-beam kick is given by

2 2 2
Ax' = 8nfo"x (1 - e~ T /20 )

*
B*r (5.7)
2 2 2
Ayl - .8150_1 (1 _ e—I‘ /26 )
B*r?
with r? = x? + y?2.
Transforming to new variables X = x/0, X' = B*x'/o we get the position

and angle of a particle on turn n + 1 from its coordinates on turn n

Xn + 1 ° Xn cos 2w an + iﬁ sin 2w an

i; L1 in sin 2w Q. + iﬁ cos 2m Q. - Ain o1
;n s 1" ;n cos 2w Qyn + gﬁ sin 2w Qyn

§; v 1" §n sin 2w Qyn + §6 cos 2w Qyn - A§n ‘1
Qn b1 = Qo + 6 sin (2w Qm n) .

This kind of transformation is called nonlinear mapping. The problem
of the stability of such maps is one of considerable current interest in a
wide range of disciplines outside the field of particle accelerators.

Now in order to observe the sidebands due to tune modulation the
correct timescale for the problem must be chosen. Figure 19 shows a plot
of the phase space for an unperturbed tune of 0.7 with a linear beam-beam
tune shift £=0.01, and a tune modulation frequency Qm=0.004. Here the
phase-space coordinates of a particle have ©been plotted once per



Fig. 19 Phase-space trajectories for an unperturbed
tune of 0.7 with & = 0.01, modulation
tune Qp = 0.004 and amplitude Q = 0.01.
Synchrotron sidebands of a 10th- order
resonances of order 2 (outer) to 8 are
visible at amplitudes corresponding to tune
values 0.7 + nQp/l10. The 7th sideband is
not visible because the Bessel function
goes through zero.

synchrotron period, revealing many sidebands of the 10th-order resonance.
In this plot, sidebands 2,3,4,5,6 and 8 can be identified. The 7th
sideband 1is not present because the Bessel function J7(106/Qm) goes
through zero for the parameters chosen. In this example the islands are

well separated and the phase space is stable.

5.4 Stochastic Threshold

The presence of synchrotron satellites enormously increases the
density of resonances thereby reducing the Chirikov threshold for
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resonance overlap and stochastic behaviour. This threshold can be computed
from the resonant invariant by equating the island widths to their
separation. The threshold linear tune shift for stochastic behaviour is

given bys' 26]:

Qm 1
£ = n = . (5.7)
U"(a) V(@) J (nQ/Qy)

Figure 20 shows the ratio Qm/E as a function of amplitude for the
case of a 10th-order resonance.

oaf—

03[
Qm/¢
STABLE

UNSTABLE

oi

Fig. 20 Stochastic threshold as a function of
amplitude computed for a 10th -~ order
beam-beam resonance.

It is of some 1interest to compare this analytically computed
threshold with the results of a computer simulation. Figure 21 shows the
phase space trajectory of a particle with initial amplitude of 40 in the
vicinity of a 10th order resonance and with the very modest beam-beam tune
shift parameter ¢ = 1.5 x 10"® and a tune modulation amplitude 6
of only 4 x 10"*.The theory predicts that the phase space should be
stable when the tune modulation frequency 1is higher than 5.1 x 107°.
This agrees quite well with the computer experiment.

The most dominant sources of tune modulation in the SPS collider are
due to the wunavoidable small residual chromaticity combined with the
synchrotron motion and current ripple on the main power supplies. This
second source is particularly dangerous because it is at low frequency and
a great deal of effort has gone into eliminating it up to a point where
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the residual modulation is practically unmeasurable on the sensitive
Schottky system used to monitor the machine tunes (6 ~4 x 10”*). This
frequency dependence of the stochastic threshold may also have important
consequences for the very big hadron colliders under consideration at the
present time, where the synchrotron frequency is low.

6. BEAM DISRUPTION

This is an extreme form of the beam-beam interaction which will be of
considerable importance in single pass linear colliders 1like the SLC6].
For two beams of different sign (e+e') the electromagnetic fields due
to the beam-beam interaction produce a ‘'pinch' effect, where both beams

are focused. . Figure 22 27] shows a computer simulation of this effect.

Z/o7

Fig. 22 Pinch effect due to colliding bunches of
electrons and positionsZG].

The magnitude of the effect is normally parameterized in terms of a
disruption parameter D, defined as the ratio of the r.m.s. bunch length to
the focal length.

nr
Now - (6.1)
0‘x Y
nr o
so p - —&% | (6.2)
02
Y X
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Or, in terms of the beam-beam tune shift &

g

D = 4mf 7% . (6.3)

Lepton storage rings generally operate with az/B* ~ 1 and the

£ = 0.05, giving an effective maximum disruption parameter for a storage

ring of the order of 0.6.

In linear colliders it 1is of interest to operate at a substantially
larger value of the disruption parameter because the pinching of the beams
can result in a substantially higher 1luminosity. Figure 23 shows the
luminosity gain as a function of D computed for the case of the SLC. For
D ~ 5 this simulation predicts a factor of 6 improvement in luminosity.
For values of D above about 10 the luminosity gain starts to drop off as
the beams pinch each other so strongly as to start to defocus each other
within the length of a bunch.

0 1 | | | | |

0 10 20 30

DISRUPTION PARAMETER
Fig. 23 Luminosity gain in an ete linear
collider as__a function of the disruption
parameter D . For large D the beams are
so strongly disrupted that the luminosity

falls off.

7. CONCLUSIONS

Over the last ten years or so, a great deal of effort has gone into
trying to understand the details of the beam-beam interaction. For lepton
machines, computer simulation has proved to be a powerful tool. Simulation
codes have now been developed to the point where they have real predictive

value.

For hadron machines the situation is less satisfactory. Although it
has not been possible to produce a quantitative predictive model,
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analytical calculations supported by computer simulations have shown that
synchrobetatron resonances can reduce the threshold for stochastic beam
behaviour to a level where the beam-beam interaction has been shown
experimentally to play an important role. In future hadron colliders the
effect of the low synchrotron tune and the requirement of a non-zero
crossing angle at the collision points will have to be given serious
consideration.

In linear colliders a new beam-beam effect should manifest itself.
Hopefully the SLC will manage to get into a range where the physics of
this effect can be investigated experimentally.

* * *
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