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Beam-Beam Effects

L.R. Evans and J. Gareyte
CERN, Geneva, Switzerland

ABSTRACT

The bheam-beam interaction imposes severe limitations on
the performance of c¢olliding beam storage rings. In
linear c¢olllders the self-pinching effect of the beam
beam force can enhance their perfomance.

1. Introduction

Particles circulating in a c¢olliding beam storage device experience
localised periodic kicks when crossing the opposing beam. As the intensity
increases, this beam-beam interaction has a profound effect on the beam
dynamics, wultimately 1limiting the performance of all existing lepton
storage rings as well as the SPS hadron collider. It 1ls therefore not
surprising that a great deal . of experimental, theoretical and
computational effort has gone into trying to understand the underlying
physics.

For lepton machines, computer simulations have been particularly
productive in understanding and predicting machine performance limitations
due to this effect. In contrast, 1n hadron colliders computer simulation
is hampered paradoxically by the conservative nature of the beam dynamics
and one has to rely more heavily on approximate analytical models based on
the theory of nonlinear rescnance effectsll'sl.

In the near future the First linear collider will be
commissionedsl. Although the beams only pass once through one another, a
very sirong beam-beam interaction, commenliy known as beam disruption, will
occur. In contrast with storage rings this disruption has a potentially
beneficial effect, strongly focussing both beams and increasing the

luminosity by a substantial factor.

2. Ihe Beam-Beam Force

We consider first the simplest case of head-on collisions betwean two
round Gaussilan bunches of length L with n particles per unit length and
with a transverse density distribution
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The Lorentz force on a test particle at a radius r is

Fae

(E+ 2 xB) = e(Er t BcB¢} s r

(z.23

where the negative sign corresponds to a particle in the same bunch and
the positive sign to a particle in the other beam. r is the unit vector.

The radial electric field Er and the poloidal magnetic inductien

B¢ can be obtained from Gauss' theorem and Ampére's law respectively.
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due to the beam-beam interaction 1s then given
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per bunch and we consider only the
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Beam-beam kick for a round Gaussian beam



For the gansral case (ax o ay) the beam-beam kick can be obtained by
solving Polisson's edquation for the generalissd electromagnetic potential
of an elliptical bunch’]
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The kicks Ax' and Ay' due to the beam-beam interaction are then

Ax' = - and Ay' = -

o
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2.1 The Linear Tune 3Shift

Por small amplitude particles, the beam-beam kick 1s identical to
that given by a linear lens of focal length £ given by

1/ = Ax"/x
- Ne
Aﬂsoﬂdde’
Nro
= (2.8)
ya?

where r, is the classical particle radius r, = e’/(Aucomoc’).

To investigate the perturbation of the lattice functions by this lens
we compute the perturbed one-turn transfer matrix

cos(u + Au) B*sin(u + &w)

1 (2.9)
- E,sin(u + Au) cos{u + aw)
i 0 cos u B: sin u 1 0
= l- . l - l
- 3¢ 1 - B; sin cos % - 3¢ 1

where u + Aw and B* are the perturbed lattice functionms.

Then ’ -
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Nrnﬂ
where £ = " (2.113)
dva "y
For small An,
. Au
£ = r ° AQL (2.12)
where AQL ls the linear tune shift due to the beam-beam perturbation.
The corresponding perturbation of the beta Ffunction is given by
*
a -2 cot w £2.13)
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2.2 Stability eof lLinear Incoherent Motion

In the linear approximation, the motion of a test particle in the
presence of the other beam is stable if the absolute value of the trace of
the one-turn transfer matrix is less than 2

cos u - 2wf sin uw <1

£ < 3= cot (w2). (2.14)
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Fig. 2 Stability region for a2 weak beam executing
small oscilllations. 3w 1is the betatron
phase advance between colliiston points.



The experimentally measured limiting beam-beam parameter in lepton
machines is of the order of 0.03 to 0.05 and in the SPS hadron collider it
iz an order of magnitude lower. The linear model clearly predicts a
threshold which is much too high.

2.3 Stability of Coherent Motion

For two beams of similar intensity, if one beam is slightly displaced
with respect to the other, c¢oherent oscillations are induced which under
certain conditions can lead to 1nstability.8]’9]. With one bunch per
beam, two modes are possible, the O-mode, where both beams move up and
down together, and the w -mode where the two beams move 1in opposite
directions. With m bunches per beam, 2 m modes of oscillation are
possible. The stabllity of the system can still be computed by iinear
matrix theory. For the case of one and three bunches per beam the
stability ©boundary 1is shown in Ffig. 39]. Clearly the threshold |is
substantially reduced compared with the incoherent case, although for the
appropriate choice of working point it 1is still substantially higher than
axperimentally obsarved thresholds.
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Fig. 3 Stability region for two strong rigid beams

executing small center-of-mass oscillations
For (a) two colliding bunches and (b) six
colliding bunches. the figures are periodic
in Q, the total tune of the storage ring;
the periods are 1 in {a) and 3 in (b}). The
dashed lines show the strong-weak stability
limit and are reproduced from Fig. 2.

As can be seen from Ffig. 1 the beam beam force is intrinsically
nonlinear above about 1.5 ¢. The nonlinearity has important consequences
on the beam dynamics. The effect will be discussed in more detail in
chapter 5.



2.4 Scaling of the Linear Tune Shift

For the general case of an elliptical beam with Gaussian distribution,
the tune shift parameter £ is given by

Nree B*
.y = 355 (o, + 9,) * Ty £2.15)

where B* is the value of the beta function at the interaction peint. This
parameter scales differently with energy for hadron and lepton machines.

In a hadron machine the normalised emittance (eBy) 13 a conserved

quantity. Then putting
E 4

a2 (eBy) B
= 4\{
and assuming a round bean (crx = ay), then
Nr
£ = TTesn)

which 4is independent of both ¥ and of the value of B* at the crossing
point.

For lepton omachines the situation Is different because the
equilibrium beam size scales proportional to Y. The tune shift parameter
then has a strong Yy ' dependence. Consequently, 1in a machine Ilike
LEP where the beams will be injected at low energy 1t is vital to separate
the beams completely during injection and threughout acceleration. In
addition, the beams are normally flat at the collisiocn points s¢ the tune
shift parameter also depends on the beta functions at the interaction
point.

2.5 Monlinear Beam-beam Interaction

In the preceding chapters, only the linear part of the beam-beanm
force was considered. In fact, the ©beam-beam interaction is an
intrinsically nonlinear phenomenon and this nonlinearity gives rise to two
effects. Firstly, it introduces a dispersion of the tune with amplitude,
the beam-beam tune spread. Secondly, the nonlinear kick together with the
localised nature of the interaction drives noniinear resonances wherever
the machine tunes satisfy a relatlonship of the form

mQx + nQy = Integer

where m and n are even integers for head-on collisions between bunches.
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These nonlinear resonances can profoundly influence the topology of
the phase space. There is a great deal of evidence, both experimental and
from computer simulations, that shows that these resonances play an
important réle in determining the nature of the beam-beam interaction.

In the next two chapters, some experimental data from lepten and
hadron machines is discussed. The physical manifestation of the phenomenon
turns out to be quite different in the two types of machine.

Lepton machines are in some ways both simpler and more complex to
understand than hadron machines. The tune spread is normally at least an
order. of magnitude lar than in hadron machines, so the beams straddle
many nonlinear resonancﬁ and their synchrotron satesllites. Howsver, there
is a strong damping mechanism through synchrotron radiation emission to
counteract the beam-beam interaction, giving rise to an equilibrium
situation. This equilibrivm is generally achieved after a few damping
times and renders the problem particularly suitable to computer
simulation. In the next c¢hapter some results of computer simulations are
discussed and compared with real machine data.

In hadron machines the tune spread 1s sufficiently small that the
beams can be kept clear of low order resonances. However, as the
experimental data will show, resconances of order 10 or even under some
conditlens of order 16, have been shown to have a catastrophic effect on
beam lifetime at quite modest values of the beam-bdeam tune shift. There is
ng, or negligible, radiation damping so an equilibrium situation cannot
exist as it does 1in lepton machlines. This makes quantitative predictions
using computer simulation difficult, although considerable insight can
still be obtained from such simulations. However, for a more complete
understanding they must be supplemented by a more detailed analysis of the
nature of nonlinear beam-beam resonances.

3. Experimental and numerical data from e*e” Machines

The most comprehensive compilation known to the authors of data from
the world's lepton colliders can b%e found in reference 1¢. One of the most
striking features of this data is shown in figure 3 of this referesnce,
reproduced below for convenience.

Figure 4 shows the luminosity versus current observed in 7 !lepton
colliders. The luminosity L is given by

2
Loao—— o (3.1}

2
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where f 1s the revolution frequency, M the number of bunches per beam, I

the current per beam (assumed equal in the two beams) and oy y are the
’
standard deviations of the beam sizes at the crossing point.
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Fig. 4 Luminosity and vertical tune shift
parameter versus current for saven
electron~positron collidersi®]. Note that
the tune shift saturates at some current
value above which the 1luminosity grows
linearly.
The behaviour of all seven machines 1s remarkably similar. At low

current, the luminosity increases approximately as the current squared, in
agreement with equation (3.1) whereas at high current the luminosity is
more proportional to I rather than I[%. Even more striking, the upper
Plots show the calculated vertical linear beam-beam tune shift parameter

Ey as a function of <current. For a flat beanm (uy << cx) Ey
is given by
Iroﬂ*
E o mm———— (3.2)
Y anefTaxoy

It can be seen that at high current, instead of the linear dependence
on current predicted from equation 3.2, the linear tune shift saturates at

some value between 0.02 and 0.05. This limiting tune shift is commonly
called the 'beam-beam limit',
In order for a to be constant, the product cxay must

lncrease linearly with Zerent. In practice, the horizontal beam size is
observed to change very little and therefore, at the beam-beam limit the
vertical beam size must grow linearly with current. This is an important
difference lepton and hadron machines. In efe” machines, at a
equilibrium distribution exists which 1is a balance

between

given current an
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between the heating of the beam due to quantum £luctuations and the
beam-beam Iinteraction and the cooling due to synchrotron radiation
damping. The beam size has been observed to blow up by as much as a factor
of £ive before the lifetime is affected u

The fact that an equilibrium distributlon is established in a few
damping times (107°-10* turns) nmakes the beam-beam probiem 1in
e*e” machines particularly amenable to computer simulation.

3.1 Computer Models of the Beam-Beam Interaction

Computer simulations of the beam-beam. interaction have been made in
practically all laboratories in which e*e™ machines extst. The types
of simulation can be divided 4into two main classes, strong-weak and
strong-strong.

In strong-weak simulations test particles in the ‘'weak' beam are
tracked through a linear lattice followed by nonlinear bdeam-beam kicks due
to the 'strong' beam which itself is not perturbed by its interaction with
the weak beam. Therefore the theam-beam kicks can generally Dbe
precalculated and stored in a look-up table with appropriate
interpolation. This method {s economic in computer time Dbut lacks
quantitative predictive power. However, this kind of simulation is useful
for studying the beam-beam interaction in, for example, the 3P3 collider.

More sophisticated simulations treat the strong-strong case, where
the changes in beam size and distribution are periodically used teo
recompute the beam-beam Kkicks as the calculation proceeds. This kind of
simulation can be used to compute the finali equilibrium beam size and can
quantitatively predict the machine performances (lumineosity, beam-beam
1imit etc.} when the relevant physics 1s introduced into the problem.

Many different effects can be included in such simulations. In
general, as well as the transverse dynamlcs the longitudinal motion must
be taken into account. The synchrotron motion results in a medulation of
the arrival time of a particle at the interaction point producing a
modulation of the strength of the beam-beam force. This results in the
generation of beam-beam synchro-betatron rescnances (chapter 5) and can
sonetimes strongly affect the performancelz].

Quantum fluctuations and synchrotron radlation damping are also taken
into account. In additlion, small errors such as the variation 1in phase
advance between intersection polnts, small offsets between the beams and
spurious dispersion can all have non-negligible eaffects.
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Flgure 5 shows one result from a strong-strong simulation at
CESR,IS] where contours of constant relative luminosity are plotted 1in
the tune space. Areas marked with crosses indicate regions of bad
lifetime. These regions are closely correlated to the

locatien of
nonlinear resonance lines.

Fig. § Beam-beam simulation results for CESR13).
The contours are at equally spaced rslative
levels of luminosity. Crosses indicate bad
lifetime. The straight 1lines define the
positions of strong nonlinear resonances.

Similar results have been obtained in simulations of LEP 12].

Flgure 6 shows the computed luminosity as a Function of the vertical tune
ever a wide range. The regions of low luminosity are agaln strongly
correlated to large azimuthal Fourier harmeonics of nonlinear resonances.
Note that these simulations have real quantitative predictive value.
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Fig.6 Luminosity (cm-2.s5-1) as a function
of the vertical tume over a wide range
computed for LEP}Z]. The regions of low
luminosity coincide with strong noanlinear
resonances.

Figure 7 shows a similar simulation for PetralA], where the

equilibrium vertical beam height 1s plotted as a functlon of both radial
and vertical tunes. The curves on the left correspond to a perfect
machine. Again, at tune values corresponding to nonlinear resonances the
beam height increases. The situation is much worse when small machine
imperfections are added, in this case small variations in vertical tune
between interaction polnts and spurious vertical dispersion. The result of
these imperfections is to excite azimuthal Fourier components of the
nonlinear beam-beam force driving resonances which would not normally be
present due to the symmetry of the system. The curves on the right show
how the number and strength of the resonances increases when imperfections
are added.
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Pig. 7 Simulated vertical beam height in PETRAI4]

as a function of vertical and herizontal tunes 3) without
machine imperfections and b) with small imperfections.

The predictive value of beam-beam simulations for lepton machines is
illustrated 1in figure 8%. These curves were generated using the LEP
simulatioen codelz] modified for PEPls]. The top curve corresponds to
the normal PEP working point QH = 20,175, Qv = 25.27%5. The
experimentally measured luminosity shows good agreement with the
simuiation. The program was then used to probe the tune space in search of
a better working point, which was found to be QH = 21.27%, Q@ =
18.175. ¥hen the machine was tuned to this new working point (fig. 8b) the
luminosity increased as predicted by the simulation, by about 40%.
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working point b) was predicted by the
simulation.



- 14 -

4. Experimental Data from Hadron Machines

At the time of writing, only two hadron colliders have operated, the
ISR and the 3PS proton-antiproton colliders at CERN, soon to be followed
by the Tevatron proton-antiproton collider at Fermilab.

In the ISR the beams were debunched and crossed horizontally at an
angle so that in the horizontal plane there was almost no tune shift as a
particle was kicked first one way and then the other as it crossed the
opposing bdeam. The only substantial tune shift was in the vertical plane,
and this was much smaller {~4x10”*) than that obtained in the SPS
{~4x10”?). The ISR stacked beams on a working line which straddled
7th , 8th and %th order resonances (filg. 9) with very little effect due to
the beam-beam interaction.

9.0

8.9 9

N NS

88 |
asB 89 Q. a0
Fig. ¢ A typical ISR working line crossing 7th,

8th and 9%th order resonances.

However, the presence of nonlinear resonances could be detected by
exciting the beam and measuring the response {(bean transfer
Eunction)lﬁ}. Fig. 10 shows such a measurement on a stack, first with no
beam in the other ring and then with successively increasing current.
Depletion of the density distribution can be observed at resonant tune
values. The amplitude dependence of the tune spread has a stabiilzing
influence. As the amplitude of a particle increases due to the resonances
the tune changes to push the particle off resonance.
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Fig. 10 Vertical beam transfer function measurement

of the amplitude distribution of beam 1 as
a Ffunction of the current in beam 2,
showlng the beam-beam resonances of order 7
te 9.

The 3PS proton-antiproton collider 1s more similar to an electron-
positron storage ring. The beams are bunched and collisions are head-on,
giving approximately the same beam-beam tune shifts in the two planes.

Very strong beam-beam effects are observed. Figure 11 shows a scan of
the tune diagram with three proton bunches and a single weak antiproton
bunch {6 crossings per revolution) and with a beam-beam tune shift on the
antiprotons of 3 «x 107? per crossingsl. Fig. 1la} shows a chart
recorder output of the lintensity of one of the proton bunches together
with the antiproton bunch on a very sensitive scale. Figure 11b) shows the
tune dlagram bdbetween 3rd and 4th order resonances, where 7th, 10th and
11th order rescnances are indicated.

The intensity decay rate was measured at different positions in the
working diagram, indicated by the lines marked 1,2 etc. The meaning of
these lines is the following. The proton bunch (with which the tune 1s
measured) has negligible spread and can be considered to occupy a point in
the working diagram indicated by the lower point on each line. The smail-
amplitude antiprotons which experience the linear part of the beam-beam
force, are shifted upwards in tune by the total beam-beam spread and
occupy a point at the other end of each line. Large amplitude antiprotons
dccupy much of the space between.
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The decay rate of the antiprotons is extremely sensitive to the tune,
increasing rapidly as the antiprotons touch the 10th order resonances. In
contrast, the proton decay rate under these conditions where proton and
antiproton emittances were comparable, was quite insensitive to the tune.
In order to have reasonable operating conditions Ffor physics data taking,
the tune must be restricted to a very small region of the working diagram
corresponding to that of point 1 in the Ffigure. Therefore the beam-beam
interaction imposes severe constraints on machine performance.

One way to reduce the tune spread in the beams is to separate the
protons and antiprotons at the unwanted collision points (the SPS contains
only two experimental areas at adjacent long straight sections. Such a
separation 1is possible in the SPS by making global orbit deformations in
the opposlite sense for protons and antiprotons using a set of 4
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&& B? 58 .6% ? 7 S BT ]
ax
)
Flg. 11 Scan of the SPS tune space between 3rd and 4th order

resonances with a single weak antiproton bunch and three
strong proton bunches.
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electrostatic deflectorsl71. When the separation is switched on the beam

lifetime improves considerably (fig. 12).

Fig. 12a Schematic dlagram of SPS separation scheme.
The ©proton and antiproten orbits are
deformed in opposite directions.
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Fig. 12b Intensity decay of an antiproton bunch as
the separation is brought up.

Another important effect observed at the SPS is the self-scraping of
large emittance particles when the two beams have unequal emittances.
Fig. 13 shows the decay rates of three antiproton bunches which were
injected with successively bigger emittance. The effect on the decay rates
can be easily seen. Antiprotons whose amplitude exceeds the average
dimensions of the proton beam are rapldly peeled off and the decay rate is
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initially high. As a resuylt the antiproton emittance shrinks during the
early phase of storage. The ‘dynamic acceptance’ of the machine in the
presence of the beam-deam interaction is therefore not much more than the
strong beam emittance.

Decay rate uw‘t -

Time (hours)
Fig. 13 Decay rates of three antiproton bdunches with different
emittances. The normalized emittances E a eBy/m

were Bx - 17, Ey = 15, Ez = 12. The proton
emittance Ep = 16 and £ = .004,

5. Nonlinear Beam-beam resonances

The theory of nonlinear resonances in circular accelerators has been
treated elsewhere in these proceedingsdl'sl. Before applying the theory
to the beam-beam interaction, some of its general features will be briefly
reviewed. Detailed deviations ars not given here. For these, the rsader is
referred to the literature 1}-3], 18]-20].

The motion of a test particle in the presence of a nonlinear
perturbation is governed by the perturbed Hamiltonian

H=H + H
-] 1

= %-(p; « Py o+ Ky (s)x? » Ky(s)y?) « Vix,y)8(s-5.) (5.1)

where the perturbing potential V(x,y) due to some nonlinear element at
azimuthal location s = 5 is considered to be small. The '"time"
dependence of the nonlinear kick 1is introduced through the periodic
§-function having period 2m. Note that instead of the time coordinate
the azimuthal position s is used.
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The general method of solving such a problesz’lsl is Ffirst to make
two successive canonical transformations, a Courant and Sayder
transformation to remove the time dependence of the unperturbed
Hamiltonian Hu followed by an action-angle transformation. The
periodic & function is also replaced by a Fourier series expansion.

The next step, for the case of a single multipole is to isolate the
*slowly varying' part of the Hamiltonian when the tune is close to a
'resopant' wvalue nQ - p = 0. One filnally arrives at a 'resonant
invariant' (see E.J.N. Wilson's lectures for a detalled derivation) of the
form

n/2 n/2

K= (Q-p/n)d +AJ + B J cos ¥ (5.2)
where J is the action varjable (Q/2 times the emittance of the orbit} and
¥ 1s the 'slow' phase. The first term in the above expression is the
distance of the tune from the resonant tune. The second term corresponds
to a variation of tune with amplitude, the nonlinear detuning, and the

third term is the 'rescnance excitation’ term.

The same procedure can be carried out for the case of the beam-beanm
interaction. Hoewever, in this case care must be taken to 1solate all the
slowly varying terms in the resonant Hamiltonian. These terms come about
because the beam-beam force can be decomposed intec an infinite series of
multipoles. The resonant invariant is of the form

K = (Q-p/n}) @ » & ufa) + & Vn(a) cosS Ny (5.3}
where the action variable a has been normalised such that a = e8/20%.

The tune shift due to the resonances is given by

w3k
49 ~ 3a
= (Q-p/n) + £ u'(a) « £ V (a) cos n¥ (5.4)

Here, Fu'(a) is the amplitude  dependent tune shift, the
L]
'‘nonlinear detuning’ and Evn(a) is the 'resonance width'. Note
that the linear tune shift £ appears as a2 scaling parameter.

The functions can be expressed as infinite seriessl.
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b m-1 m-1
(=1) (2my! a
u'(a.) = (5-5)
o= 1 22m-—1 (m!)s
b (=B 4®1 onye
Vi{a) = I (5.6)
n m = n/2 sz'z n! (m + %)1(m _% 3!

Alternatively they can be expressed 1in terms of modifled Bessel
functionSZIE.

ar(x) = % (1 - %21 _(as2)]
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Fig. 14 The nonlinear detuning Fig. 15. The resonance width
function u', with a =x2/20% function for resonances of

order 4 to 12

In two dimensions the tune shift and resonances width depends on both
norizontal and vertical coordinates. The beam occupies a 'footprint' in
the tune space which 1s shown below for the case of a round beam.
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Rig. 16 Nonlinear detuning as a function of x and ¥y
amplitudes A = x/0 for a round beam

Given the resonant invariant 5.3, particle trajectories can be
constructed in the ‘'slow' phase space (a,¥). When this is done, 1t 1is
found that the phase space trajectories are stable to a very high value of
the linear tune shift. As an example, figure 17 shows the trajectories in
the vicinity of the 4th order resonances for a linear tune shift £ =
0.04. A characteristic island structure can be observed at an amplitude at
which the perturbed tune is approximately equal to the resonant tune.

P
On~2. 842
Qs =3. 808
- 0GM=2, BER

",

Fig. 17 Phase space trajectories in the vicinity of
a 4th order beam-beam rescnances for £ = 0.04.
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5.1. Resonance Qveriap

The single rescnance model 1is clearly inadequate for explaining the
beam-beam interaction due to the Ffact that 1increasing the beam-beam tune
shift increases the destabilizing effect of the resonance excitation and
stabilizing effect of the noniinear detuning proportionately. However, it
was first pointed out by Chirikovzz] that the working area 1is covered by
an infinite number of resonance lines for which the tune value is a
rational fractlion. Although the high order resonances have narrow width,
the fact that there is an infinite number of them may have a significant
effect. If they have sufficient width they overlap in the tune space and
particle motion will be unstable even if the working area is free of
low-order resonances. In fig. 18) the particular case of the trajectory
in the vicinity of a é6th order beam-beam resonance is shown at the very
high value of the linear tune shift fm= 0.08. At large amplitude another
resonance of order 14 can be observed. If the tune shift increases even
further, the two sets of islands will approach each other, and other
high-order resonances will appear, finally leading to chaotic motion.
However, the linear tune shift required for this phenomenon %o occcur is
still much higher than observed experiméntally.

W= E25]

Fig.18 Particle trajectories in the wvicinity of a &th
order beam beam resonance for £ = 0.08.
At large amplitude the characteristic structure
of a i4th order resonance can be observed.
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5.2 Syn obetatron resonances

The Ffact that the beam 1s bunched can have a profound influence on
the topology of the transverse phase space. Particles performing energy
oscillations can experience a modulation of the transverse tunes due to a
number of mechanisms. In lepton machines with short bunches thils can arise
due to the modulation of the arrival time at the interaction point,
resulting in a variation of the strength of the beam-beam Kkick. In hadron
machines a more important source is dye to the small residual chromaticity
or a small ripple on the quadrupele power supply. Synchrobetatron
resonances are also excited by two beams crossing at an angle 23]‘24].

Tune modulation at Erequency Qm - Em/fr results in the splitting of a
nonlinear resonance “;QH*HzQV’p into an infinite number of
sidebands

Ny +nQy=p+kQ

For a one-dimensicnal resonance, of order n the sidebands are separated
by Qm/n and reduced in strength by the Ffactor J (nQ/Q-), where Q is the
amplitude of the modulation. For small Q . these sidebands are very close
together and can give rise to resonance overlap and stochastic behaviour
20},25] at a much lower threshold than in the static case, as we shall gee
below.

5.3 Eomputer Simulation

Although the resonance invariant 5.3 can be modified to take into
account the synchrotron motion, a simple and powerful method of obtaining
phase space trajectories is through particle tracking. For a round
Gayssian beam the nonlinear beam-beam kick is given by

. _ 8mEa’x a - g-F /207 )

* 2
8*r (5.7)
2 2 2
AY' « Snfo”y (1 - eF /2a )
Bwp?
with r? o x* 4+ y2,
Transforming to new variables X = x/c, X' = B*X'/0 we get the position

and angle of a particle on turn n + 1 from its coordinates on turn n



X cos 2w Q + X' sin 2r7 Q

Xxn n xn

= X sin 2% an + x& cos 27 an n o+ 1

= ¥_ cos 2w Qyn + Yﬁ sin Zmr Q

Y. sin 2w Qyn + Yﬁ cos 2w Q - AY

Q.19+ 6 sin (27 Q  n)

This kind of transformation is called nonlinear mapping. The problem
of the stability of such maps is one of considerable current interest in a
wide range of disciplines outside the field of particle acceslerators.

Noew in order to observe the sidebands due to tune .modulation the
correct timescale for the problem must be chosen. Figure 19 shows a plot
of the phase space for an unperturbed tune of 0.7 with a linear beam-beam
tune shift £20.01, and a tune modulation frequency Qm=0.004. Here the
phase-space coordinates of a particle have been plotted once per
synchrotron period, revealing many sidebands of the 10th order resonance,
In this plot, sidebands 2,3,4,5,6 and 8 can be identified. The 7th
sldeband 1s not present because the Bessel Ffunction J7(105/Qm) goes
through zerc for the parameters chosen. In this example the islands are
well separated and the phase space 1s stable.

5.4 Stochastiec threshold

The presence of synchrotron satellites 'enormously increasss the
density of resonances thereby reducing the Chirikov threshold for
resonance overlap and stochastic behaviour. This threshold can be computed
from the resonant invariant bY equating the 4island widths to their
separation, The threshold linear tune shift for stochastic behaviour is
given by3]'26].

¢.m 1
4n " N
Ur(a) v, () Jk(nQ/QmJ

(5.7)

Bigure 20 shows the ratio Qm/E as a function of amplitude for the
case of a 10th order resonance.
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A.
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Fig.

19

Phase space trajectories for an unperturbed
tune of 0.7 with £ = 0.01, modulation
tune Qp = 0.004 and amplitude @ = 0.01.
Synchrotron sidebands of a 10th order
resonances of order 2 (outer) to & are
visible at amplitudes corresponding to tune
values 0.7 + nQgp/10. The 7th sideband 1is
not visible because the Bessel function
goes through zero.
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Fig. 20 Stochastic threshold as a function of
- amplitude computad for a 10th order
beam-beam resonance.

It 1s of some 1interest to compare this analytically computed
threshold with the results of a computer simulation. Figure 21 shows the
pPhase space trajectory of a particle with initial amplitude of 4¢ in the
vicinity of a 10th order resonance and with the very modest beam-beam tune
shift parameter ¢ = 1.5 x 10 and a tune modulatien amplitude a
of only 4 x 10™*.The theory predicts that the phase space should be
stable when the tune modulation Frequency 1is higher than 5.1 x 107°*.
This agrees quite well with the computer experiment.

The most dominant sources of tune modulation in the SPS collider are
due to the unaveidable small residual chromaticity combined with the
synchrotron motion and current ripple on the main power supplies. This
second source 1s particularly dangerous because it is at low frequency and
a great deal of effort has gone into eliminating it up to a point where
the residual modulation 4is practically unmeasurable on the sensitive
Schottky system used to monitor the machine tunes {a =4 x 107*). This
frequency dependence of the stochastic threshold may also have important
consequences for the very big hadron colliders under consideration at the
present time, where the synchrotron frequency is low.
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&. Beam Disruption
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This is an extreme form of the beam-beam interaction which will be of
considerable importance in single pass linear colliders like the SLC6].
For twoe beams of different sign (e*e‘) the electiromagnetic fields due

to the beam-beam interaction produce a ‘'pinch' effect, where both beams
27]

are focussed. Figure 22

shows a computer simylation of this effect.

Zfoy
Fig. 22 Pinch effect due to coaliding bunches of
electrons and positions€6l,

The magnitude of the effect 1s normally parameterized in terms of a
disruption parameter D, defined as the ratio of the r.m.s. bunch length to

the focal length

now

80

1 e
ra (6.1)
o’y
X
nr o
D - —E-Z (6.2)
Yo

D« 4nf =2 (6.3)
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Lepton storage rings generally operate with az/B* = 1 and the
£ = 0.05, giving an effective maximum disruption parameter for a storage
ring of the order of 0.6.

In linear colliders it is of interest to operate at a substantially
larger value of the disruption parameter because the pinching of the beams
can result in a substantially higher luminosity. Figure 23 shows the
luminosity gain as a function of D computed for the case of the SLC. For
D~ 5 this simulation predicts a facter of 6 improvement in luminosity.
For values of D above about 10 the luminosity gain starts to drop off as
the beams pinch each other so strongly as to start to defocus each other
within the length of a bunch.

o] i 1 ]
o] 10 20 30
DISRUPTION PARAMETER -
Fig. 23 Luminosity  gain in an ete- tinear

collider as__a function of the disruption
parameter DZ#T]. Fer large D the beams are
so strongly disrupted that the luminosity
falls off.

7. Conclusions

Over the last ten years or so, a great deal of effort has gone into
trying to understand the details of the beam-beam interaction. For lepton
machines, computer simulation has proved to bhe a powerful tool. Simulation
codes have now been developed to the point where they have real predictive
value.

For hadron machines the situation is less satisfactory. Although it
has not been possible to produce a dquantitative predictive model,
analytical calculations supported by computer simulations have shown that
synchrobetatron resonances c¢an reduce the threshold For stochastic beam
behaviour to a level where the beam-beam interaction has been shown
experimentally to play an important role. In future hadron colliders the
effect of the low synchrotren tune and the regquirement of a non-zero
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crossing angle at the collision points will have to be glven serious
consideration.

In linear colliders a new beam-beam effect should manifest 1itself.
Hopefully the SLC will manage to get inte a range where the physics of
this effect can be investigated experimentally.
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