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Abstract

The document presents ATLAS implementation of the generic track-based alignment framework.
Being modular and highly configurable, it is applicable to all tracking systems in ATLAS; the silicon
and drift tubes of the Inner Detector, as well as the gaseous Muon System. The implementation of
the common parts and virtual interfaces is separated from the detector system specific parts. The
formalism of the alignment based on the least squares principle and the general layout of the software
implementation within the Athena framework are presented.
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1 Introduction

While track reconstruction in modern high energy physics experiments is a very complex task, align-
ment of the detector elements to ever increasing precision is even more complex.
In ATLAS [1], alignment of two different tracking systems, the Inner Detector (ID) [2] and Muon
Spectrometer (MS) [3], is required. The ID, consisting of the pixel detector at the innermost radii,
the Semiconductor Tracker (SCT) using silicon strips and a Transition Radiation Tracker (TRT), are
aligned using tracks. Until recently, two independent alignment algorithms were in place: one used
for the Pixel and SCT alignment [4, 5]; and the other used for TRT alignment [6]. Both followed a
global χ2 minimization approach using reconstructed tracks. For the MS, the Monitored Drift Tube
(MDT) chambers, Cathode Strip Chambers (CSC) and Thin Gap Chambers (TGC) all must all be
aligned using tracks.
In this note we describe the common framework allowing the alignment of the ATLAS Muon Spec-
trometer and Inner Detector components. This framework is based on the alignment algorithms al-
ready in use for ID alignment.
We present the track-based alignment formalism, as well as its implementation in the common soft-
ware framework, Athena [7]. The fundamental formalism is described in section 2 while section 3
describes the implementation of the core generic algorithms as well as the ID and MS specific parts.

2 Alignment Approaches

2.1 χ2 Alignment

The chapter summarizes the formalism for alignment using reconstructed tracks. It starts with a
description of track fitting using the Newton-Raphson method, and then extends the formalism of
track fitting to include a fit for the alignment parameters.

2.1.1 Track fitting with the Newton-Raphson method

The Newton-Raphson uses an iterative approach to find the best fit of a track to a set of measurements.
The quality of the fit is characterized by a track χ2, determined from the distances between the track
measurements and the fitted track. The track is parametrized by a set of five fit parameters, as well as
additional parameters to allow for the effects of multiple Coulomb scattering (MCS). For a track fit
without scattering, the track parameters τ = (d0, z0, φ0, θ0,Q/p), all defined at a perigee either on the
beam line or at the muon spectrometer entrance, are used to define the track [8].
For a track without scattering effects, the track χ2 is calculated from the biased measurement residuals,
ri = (ei(τ) − mi), where mi is the local coordinate of the ith measurement, and ei is the local coordi-
nate of the extrapolation of the fitted track to the surface on which the ith measurement is recorded.
The track χ2 is then defined as the sum of the squares of the residuals divided by the measurement
uncertainties, σi:

χ2 =
∑

i

(
ri

σi

)2

. (1)

Using vector notation, where r is a vector of track residuals and Ω is the covariance matrix of the
corresponding measurements (m), the track χ2 can be expressed as:

χ2 = rT Ω−1r. (2)

The track χ2 minimization is done using the first and second derivatives of the χ2 with respect to track
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parameters. Defining the derivative G = dr/dτ, the condition for the minimization of χ2 is:

dχ2

dτ
= 2GT Ω−1r = 0. (3)

The value of τ satisfying Eq. (3) is found using the Newton-Raphson method. This is done iteratively
by evaluating the first and second derivatives of χ2 with respect to track parameters evaluated using
the track parameters of the current iteration, τ0:

dχ2

dτ

∣∣∣∣∣∣
τ0

= 2GT Ω−1r0 (4)

and
d2χ2

dτ2

∣∣∣∣∣∣
τ0

= 2GT Ω−1G, (5)

giving the solution for τ:

τ1 = τ0 −

(
d2χ2

dτ2

)−1
dχ2

dτ
. (6)

If the derivative G is constant, the problem is linear and the solution is exact. In general the derivative
G depends on the track parameters, τ, and τ1 is merely closer to the set of track parameters that
minimizes χ2. Recomputing the first and second derivatives at τ1 can be used to get a new set of track
parameters, τ2, and the procedure can be repeated until a convergence criterion is met.

2.1.2 Track fitting with multiple scattering effects

The track fit can be improved by allowing for the track to scatter as it passes through material in the
detector. To include the effects of multiple scattering, terms are added directly to the track χ2:

χ2 =
∑

i

(
ρi(τ, θ)
σi

)2

+
∑

j

(θ̂ − θ j)2

Θ j j
. (7)

Note that the residuals now also depend on the scattering angles, θ. The scattering expectation
value, θ̂, is zero and its variance, Θ j j, depends on the particle momentum and amount of material
traversed [9]. The χ2 has to be minimized for τ and θ simultaneously. Defining the derivative of
residuals with respect to perigee and scattering parameters to be:

G ≡
∂r
∂τ

S ≡
∂r
∂θ

(8)

the derivatives of χ2 with respect to the perigee and scattering parameters are:

1
2

dχ2

dτ
= GT Ω−1r, (9)

1
2

dχ2

dθ
= S T Ω−1r + Θ−1θ. (10)

Neglecting second-order derivatives of residuals, the second derivatives of χ2 with respect to perigee
and scattering parameters are:

1
2

d2χ2

dτ2 = GT Ω−1G, (11)

1
2

d2χ2

dθ2 = S T Ω−1S + Θ−1, (12)

1
2

d2χ2

dθdτ
= GT Ω−1S . (13)
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The above can be written down in a compact form:

1
2

dχ2

dπ
= HT V−1ρ, (14)

1
2

d2χ2

dπ2 = HT V−1H, (15)

where we additionally define:

ρ ≡

(
r
θ

)
, (16)

V ≡
(

Ω 0
0 Θ

)
, (17)

π ≡

(
τ
θ

)
, (18)

H ≡
(

G S
∂θ
∂τ = 0 ∂θ

∂θ = 1

)
. (19)

2.1.3 Track fitting with significant energy loss

Whenever energy loss due to material effects is large enough to produce significant fluctuations (e.g.
combining the ID and MS measurements to fit a combined muon track), an extra term is added to
the track χ2, and an extra fit parameter (∆E) accounts for the energy loss in the calorimeter. ∆E
is the expectation value for the energy loss for the known amount of traversed material and particle
momentum, and σ∆E its statistical spread. The track χ2 becomes:

χ2 =
∑

i

(
ρi(τ, θ,∆E)

σi

)2

+
∑

j

(θ̂ − θ j)2

Θ j j
+

(∆E − ∆E)2

σ2
∆E

. (20)

The derivatives of residuals with respect to the additional fit parameter must be calculated, as well as
the derivative of the additional term in the track χ2.
When fitting hadronic tracks within the ID alone, the energy loss fluctuations may be neglected.
Instead, the mean energy loss corresponding to the chosen particle hypothesis is attributed to every
traversed material [10].

2.1.4 Global χ2 method for alignment

The alignment parameters, α, are determined by minimizing the global χ2. The global χ2 is simply
the sum of the χ2 values for all tracks:

χ2
global =

∑
i

χ2
i , (21)

where χ2
i is the χ2 of the ith track. The residuals, ri(π,α), now depend on the alignment parameters

as well as the track fit parameters.
The total derivatives of the χ2 with respect to the alignment parameters needs to be determined first.
Defining:

d
dα

=
∂

∂α
+

dπ
dα

∂

∂π
, (22)
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the required derivative dπ
dα is determined from the condition that, once at a minimum, the global χ2 is

at a minimum with respect to track parameters:

d
dα

∂χ2

∂π
= 0, (23)

resulting in
dπ
dα

= −

(
∂2χ2

∂π2

)−1
∂2χ2

∂α∂π
. (24)

Defining:

A ≡
∂ρ

∂α
, (25)

neglecting second derivatives and using the fact that the covariance matrix of the track parameters, C,
is

C =
1
2

(
d2χ2

dπ2

)−1

=
(
HT V−1H

)−1
, (26)

the total derivative operator with respect to α can be rewritten as:

d
dα

=
∂

∂α
− AT V−1HC

∂

∂π
. (27)

The first and second derivative of the global χ2 with respect to α are then:

dχ2

dα
= 2

∑
tracks

AT V−1(V − HCHT )V−1ρ (28)

d2χ2

dα2 = 2
∑

tracks

AT V−1(V − HCHT )V−1A. (29)

Here the term HCHT represents the covariance of the track parameters in measurement space. The
matrix given by

R = V − HCHT (30)

is the covariance matrix of the residuals of the track fit.

2.1.5 Newton-Raphson method for Global χ2 alignment

As with the method for track fitting described in Section 2.1.1, an iterative approach is used to solve
for the alignment parameters. The first and second derivatives are obtained using Eqs. 28 and 29
evaluated for the initial set of alignment parameters, α0, giving the solution for ∆α0:

∆α0 = −

 d2χ2

dα2

∣∣∣∣∣∣
α0

−1
dχ2

dα

∣∣∣∣∣∣
α0

. (31)

This is repeated for successive iterations until the ∆α is negligible.

2.1.6 Locality ansatz

If the initial track parameters, π0, are those that minimize the track χ2 for the initial set of alignment
parameters, then HT V−1ρ is zero, and the first term in Eq. (28) simplifies to:

dχ2

dα

∣∣∣∣∣∣
πo

= 2
∑

tracks

AT V−1ρ. (32)
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Thus only residuals ri for which A = ∂ri/∂α are non-zero contribute to the first derivative, and all
other residuals and their derivatives do not. In particular, contributions to the χ2 from chambers not
being aligned, multiple scattering, and energy loss in the calorimeter can all be ignored. This useful
property dubbed the locality ansatz was first defined in [6] and provides an important simplification
for the software implementation.

2.1.7 Adding constraints on track parameters

It is of particular importance for alignment to be able to constrain track parameters in order to elim-
inate unwanted biases [11]. This can be included naturally in the global χ2 method by adding extra
terms to the expression for the χ2 in Eq. 21. For an individual track one has:

χ2
cons = rT V−1ρ + (π − q)T T−1(π − q), (33)

where q is a vector defining the constraint on the track parameters (π) and T is its covariance matrix.
The additional constraint leads to the modified 14 and 15 expressions:

1
2

dχ2

dπ cons
= HT V−1ρ + T−1(π − q), (34)

1
2

d2χ2

dπ2 cons
= HT V−1H + T−1. (35)

Within the ATLAS tracking model the above is realized by adding a pseudo-measurement on a
track [8]. The solution for the alignment parameters (α) is given by Eq. 31 where for each constrained
track:

C =
1
2

(
d2χ2

dπ2 cons

)−1

(36)

is consequently used and the first derivative of the global χ2 reads:

dχ2

dα

∣∣∣∣∣∣
α0

= 2
∑

tracks

AT V−1(V − HCHT )V−1ρ(α0) − AT V−1HCT−1(π(α0) − q). (37)

It is worth noting at this point, that if tracks have been refitted with the imposed constraint the locality
ansatz fantastically simplifies Eq. 37. Vanishing expression 34 leads to Eq. 37 simplifying to Eq. 32.
This property is used in the ATLAS implementation.

2.1.8 Vertex fitting with the reduced track model

The χ2 fit of the alignment parameters can be extended to require a common origin for a group of
tracks stemming from a common interaction vertex. This could be done using conventional vertex
fitting algorithms as proposed in [12] but it would require retaining the full correlation matrix between
all tracks concerned. Such a functionality is not available from the standard vertex fitters implemented
for ATLAS. This is why an alternative approach that is particularly suitable for that purpose has been
developed. It consists of a common fit of all vertexed tracks under the explicit assumption they share
a common origin. In order to achieve that a new reduced track model is needed. Each constituent
track is thus defined by only three perigee parameters π = (φ0, θ0, Q/p). Impact parameters of
contributing tracks are reduced to a set of common vertex parameters (b = (xb, yb, zb)). Residuals of
the measurements on track explicitly depend on three parameters:

r ≡ r(π, b,α). (38)
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The generic solution from Eq. 31 still holds, however, the full derivative takes a more complicated
form:

d
dα

=
∂

∂α
+

∂

∂π

dπ
dα

+
∂

∂b
db
dα

,

dπ
dα

= −CHT V−1(A + F
db
dα

), (39)

db
dα

= −

 vtx∑
tracks

FT WF

︸           ︷︷           ︸
Mb

−1 vtx∑
tracks

FT WA

,
where F ≡ ∂r

∂b were additionally defined. Despite the above complexity, the final solution can be
written as:

δα = −M−1V (40)

where the matrixM and the vectorV take the new form:

M = 2
∑

tracks

(AT WA) − 2
∑
vtx

 vtx∑
tracks

(AT WF)M−1
b

vtx∑
tracks

(FT WA)

 (41)

V = 2
∑

tracks

(AT Wρ0) − 2
∑

tracks

 vtx∑
tracks

(AT WF)M−1
b FT Wρ0

 (42)

and we used:
W ≡ V−1

(
V − HCHT

)
V−1. (43)

It is important to note that, before the expressions 41 and 42 can be used for the alignment fit, the
tracks concerned for the vertex fit (together with their residuals) need to be redefined in such a way
that they do originate from a common vertex seed and the remaining three perigee parameters are
defined with respect to it. In particular the track angles (φ0 & θ0) denote rotations around the vertex
seed position.

2.1.9 Vertex fitting with the locality ansatz

After the above redefinition the tracks will not, in general, remain in the χ2 minimum of their indi-
vidual fits. This will not affect the alignment fit as Eq. 42 makes no implicit assumptions about the χ2

of the input tracks. However, in order to ensure the locality ansatz is valid (Section 2.1.6), one needs
to refit tracks using the new, reduced parametrization. The standard track fitter used in ATLAS [13]
does not offer such a functionality. However, the reference perigee point can be chosen in any arbi-
trary way and a pseudo-measurement can be added to the collection of real measurements associated
with the track [8]. Consequently, the fitter can force the trajectory through a chosen space-point with
an arbitrary accuracy. This is achieved by setting the new perigee in the vertex seed position and
constraining the two impact parameters (d0 & z0) to be zero. This renders both the residuals and their
derivatives with respect to track parameters (H) in agreement with the new formalism. The reduced
covariance matrix CR can be obtained from the standard one:

CR =

 (C−1)n−2


−1

(44)

following the observation that the additional pseudo-measurement does not affect the sub-matrix
(C−1)n−2. With the above conditions satisfied Eq. 42 is simplified to:

VLTRK = 2
∑

tracks

(AT V−1ρ0) − 2
∑

tracks

 vtx∑
tracks

(AT WF)M−1
b FT V−1ρ0

 (45)
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and more importantly maintains the simplicity of local implementation.
It is worth noting that the locality ansatz can be promoted to the level of the vertex fit itself, thus
reducing equation 42 to a very basic form:

VLVTX = 2
∑

tracks

(AT V−1ρ0). (46)

Although tempting, this option does not bring in practice any simplification to the algorithm and
additionally requires extra step in the loop, namely a vertex refit followed by one more iterations of
the track fit in order to recover locality at the track level. Altogether, this presents no advantage from
the algorithmic point of view. For that reason, the ATLAS implementation adopted the track locality
paradigm alone and realizes algorithmically Eq. 45.

2.1.10 Adding a constraint on the vertex position

The fitted common vertex can be further constrained to an arbitrary position, e.g. to be compatible
with the beam interaction region. This can be realised in a standard way, in analogy to adding con-
straints on track parameters described in Section 2.1.7. If the vertex position constraint is described
by the three-component verctor v and its covaraince T , the first derivative vector and the second
derivative matrix of Eqs. 41 and 42 are incremented by the extra terms:

M −→M +
db
dα

T
T−1 db

dα
(47)

V −→ V +
db
dα

T
T−1(b0 − v), (48)

where b0 is the initial estimate of the vertex position and the full derivative db
dα is given in the Eq. 40.

2.1.11 Local χ2 alignment

The power of the Global χ2 method derivesis from its rigorous treatment of the correlations between
alignable objects through the tracks connecting them. However, this approach becomes technically
unfeasible for very large number of degrees of freedom (DoF). This is the case e.g. for the alignment
of individual TRT straws, which involves ≈ 700, 000 parameters. To deal with such problems a
simplified version of the χ2 approach, dubbed the Local χ2, has been put in place. It is based on
minimization of the same χ2 of Eq. 21, however, the implicit dependence on the fitted track parameters
is dropped, which reduces eq. 22 to a simple form:

d
dα

=
∂

∂α
. (49)

Consequently, Eq. 28 and Eq. 29 take a much simpler form:

dχ2

dα
= 2

∑
tracks

AT Ω−1r (50)

d2χ2

dα2 = 2
∑

tracks

AT Ω−1A. (51)

and more importantly the problem breaks down to separate systems of equations describing individual
alignable modules. The method loses part of its potential but at the same time eliminates all numerical
challenges. Only many small systems of up to 6 parameters need to be solved. Moreover, besides
pathologies, these systems are guaranteed to be positive definite and directly solvable.
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3 Alignment Framework

The common alignment framework was developed in such a way that it could easily be used for
various types of alignment. It was developed specifically for the global χ2 and the local χ2 alignment
approaches. A single algorithm, AlignAlg, can be used for all types of alignment. AlignAlg is
configured by means of jobOptions with tools to perform functions specific to various alignment
approaches with jobOptions.
Several Event Data Model (EDM) objects containing information necessary for alignment are used
in the common alignment framework. Whenever possible, they were derived from objects used in the
standard ATLAS tracking EDM [8]. These are described here:

• AlignModule: a collection of detector elements, specifically TrkDetElementBase objects,
grouped together to be aligned as a single body. Each AlignModule has its own global to
alignment frame transform, as well as transforms to go from each detector element alignment
frame to the AlignModule frame.

• AlignTSOS: an extension of Trk::TrackStateOnSurface, containing a pointer to the
AlignModule to which it belongs, the type of measurement, and either the RIO OnTrack or
CompetingRIOsOnTrack belonging to the track.

• AlignTrack: an extension of Trk::Track, contains a vector of AlignTSOS, and the full
covariance and derivative matrices if needed for alignment.

• AlignPar: a class containing the initial alignment parameter, the change in alignment parame-
ter found by the alignment algorithm, and the final alignment parameter. It can be used to store
the alignment information for either an AlignModule or a detector element, so it contains a
pointer to either object.

• AlignVertex: a class containing all objects describing a common vertex including its position,
covariance matrix, derivatives, pointers to all contributing tracks and optionally information
on the constraint on its position. Appart from the default empty constructor, it contains a
constructor taking a VxCandidate as an input. The main method of the AlignVertex class is
AlignVertex::fitVertex which finds the vertex position and its covariance matrix from the
contributing tracks. This method has to be executed before the vertex is used for constrained
alignment.

As illustrated in Figure 1, alignment is done in the following steps:

1. Build Geometry. Here the AlignModule objects are defined, along with the alignment frames
of reference, and transforms to go from the local and/or global frames to the alignment frames
of reference. In addition, the degrees of freedom of the AlignModule objects to be aligned are
defined. This is implemented as a tool inheriting from the IGeometryManagerTool.

2. Process Events.

(a) Process Track Collection. Before processing individual tracks, an initial processing is
done of the track collection. Any initial track or hit selection with track refitting is done
in this stage. This is implemented as a tool inheriting from IAlignTrackPreProcessor.

(b) Create AlignTSOS and store on AlignTrack. Loops over hits on track, creat-
ing AlignTSOS for each hit that is in an AlignModule, and stores the collec-
tion of AlignTSOS on AlignTrack. Even though the AlignTrack is created by
IAlignTrackPreProcessor, the tool interface used for creating the AlignTSOS col-
lection is (for historical reasons) named IAlignTrackCreator.
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(c) Dress AlignTrack. Calculate additional information needed for alignment and store on
AlignTrack. The tool interface is IAlignTrackDresser.

(d) Accumulate for the common vertex fit. In the accumulateVTX method, implemented by
IAlignTrackPreProcessor, objects needed for the vertex fit are incremented by the
contributing track information.

(e) Solve for the vertices accumulated in the previous step. This is done in the solveVTX
method, implemented by IAlignTrackPreProcessor.

(f) Accumulate. More calculations are done if necessary and combined with information
from earlier tracks. The tool interface used for accumulation is IAlignTool. This step
is executed in a separate loop over AlignTracks as the vertex fitting step has to be com-
pleted beforehand.

3. Solve. Once information from all tracks has been accumulated, the solving for alignment pa-
rameters is done by IAlignTool.

4. Process Alignment Constants. Alignment constants are written to databases by detector-
specific tools inheriting from ITrkAlignDBTool.

More information about the concrete implementations of the interfaces described above and others
are given in the following sections.

Detector−specific code

track

GeometryManagerTool
−−> add detector elements to AlignModules

−−> set active alignment parameters
−−> based on the alignment level

Build Geometry

Process Events

Process Track Collection

−−> refit tracks
−−> select tracks
AlignTrackPreProcessor

Process Tracks

Create AlignTrack

AlignTrackDresser

Process Track

−−> calculate and store derivatives, 
weights, residuals, etc.

AlignTool

Accumulate

−−> add derivatives 
−−> store hits in histograms 

AlignTrackCreator
−−> create AlignTSOSCollection 
−−> set residuals for AlignTSOS

Solve

Process Alignment Constants

next

Figure 1: Overview of Common Alignment Framework
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3.1 Building Geometry

Building the geometry is specific to the type of detector being aligned, so there is no implementation
of IGeometryManagerTool in TrkAlignGenTools.
The tool inheriting from IGeometryManagerTool must implement the ReadGeometry method, the
main method called by AlignAlg. It does the following:

• Defines the collection of detector elements in the AlignModule objects.

• Defines the parameters to be aligned.

• Defines the necessary transforms for the various frames of reference.

It returns the total number of degrees of freedom, with each degree of freedom being an alignment
parameter for an AlignModule.
IGeometryManagerTool contains a pointer to an ntuple, which can be created by AlignAlg and set
by IGeometryManagerTool::setNtuple method. This is for debugging and validation purposes
only.
The geometry is created by a geometry manager tool, and is stored in a tool inheriting from
TrkAlignGenTools/AlignModuleTool. The tool is also used to access the geometry information.
TrkAlignGenTools/AlignModuleTool is a concrete implementation of IAlignModuleTool that
is not detector-specific, and each implementation of IGeometryManagerTool should make use of
one or more tools that inherit from AlignModuleTool.
The geometry manager tool creates the following and stores in its align module tool(s):

• A list of AlignModule objects, stored as a vector of vector of AlignModule objects for each
detector type.

• A mapping for each type of detector from the detector element IdentifierHash (returned by
Trk::TrkDetElementBase::identifyHash() method) to the AlignModule. This is used
to make the identification of the AlignModule to which a hit on the track belongs much faster.

• A list of all the alignment parameters (AlignPar objects) for each AlignModule.

• A separate list of the alignment parameters for each AlignModule that are to be aligned.

The lists of alignment parameters are stored as 2-dimensional lists, with a vector of alignment parame-
ters being stored for each AlignModule in an outer vector of AlignModule objects. A 1-dimensional
vector is also used to simplify its use by the matrix tool. The list of AlignModule objects is also
available as a 1-dimensional vector for the same reason.

3.2 Initial Track Processing (before Vertex Refit)

The tool inheriting from IAlignTrackPreProcessor can do any or all of the following:

1. Apply track selection to remove tracks.

2. Remove hits from tracks.

3. Refit tracks with or without a primary vertex constraint.

4. Create the AlignTrack, an extension of the Trk::Track EDM object.
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5. If the track is refitted, store the full covariance and derivative matrices on the AlignTrack.

It is worthwhile to note that the ability to refit tracks with a primary vertex constraint is the
main reason for the initial processing of the track collection before the processing done by
IAlignTrackCreator.
TrkAlignGenTools/AlignTrackPreProcessor is a specific tool inheriting from
IAlignTrackPreProcessor. It can be used for any type of alignment. It is configured by
jobOptions with the following tools:

• TrackFitterTool: inherits from IGlobalTrackFitter, used to refit a track. The default fitter is
Trk::GlobalChi2Fitter/MCTBFitter. IGlobalTrackFitter is used because it has the
FullCovarianceMatrix and DerivMatrix methods.

• SLTrackFitterTool: inherits from IGlobalTrackFitter, optional fitter used to fit straight
tracks. Needed for refitting straight muon tracks. If UseSingleFitter is set to True, the
SLTrackFitterTool will not be used.

• TrackSelectorTool: inherits from ITrackSelectorTool, optional tool used to select
tracks. Used if SelectTracks is True.

The method processTrackCollection is called in the execute method of the AlignAlg algorithm.
The collection of Trk::Track objects is passed to AlignTrackPreProcessor in this method. For
each track in the collection, the following is done:

1. The track is selected or rejected by TrackSelectorTool.

2. If the track passes selection, the track is refit by the appropriate track fitter.

3. If the track refit succeeds, an AlignTrack is created with no AlignTSOSCollection. The
covariance and derivative matrices are set on the AlignTrack.

4. The AlignTrack is pushed back on the collection of AlignTrack objects.

The collection of AlignTrack objects is returned to AlignAlg.

3.3 Creation of AlignTSOSCollection

The tool inheriting from IAlignTrackCreator has the following functions and capabilities:

1. Create collection of AlignTSOS objects. The AlignTrack is created by the
IAlignTrackPreProcessor in the previous step, but it contains only pointers to the fit ma-
trices.

2. Select tracks passing through AlignModule objects.

3. Select hits to be used to create AlignTSOS objects. Note that hits are not removed from the
track by AlignTrackCreator.

4. Store run and event numbers with selected tracks in a good event list, to be used for selection
in later iterations.

5. Set residuals on AlignTSOS objects.
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IAlignTrackCreator::processAlignTrack is called by AlignAlg

for each track in the collection of AlignTrack objects returned by
IAlignTrackPreProcessor::processTrackCollection. If the track passes the selection
criteria, IAlignTrackCreator::processAlignTrack returns true.
TrkAlignGenTools/AlignTrackCreator is a specific tool inheriting from
IAlignTrackCreator. It is configured by jobOptions with the following tools:

• ResidualCalculator: a tool used to calculate residuals for hits and scatterers on the track.
ResidualCalculator is not used directly since it does not calculate residuals for scatterers.

• AlignModuleTool: described in Section 3.1. It is used to identify the AlignModule to which
a hit on a track belongs.

3.4 AlignTrack Dressing

The tool inheriting from IAlignTrackDresser makes calculations for each track and stores the re-
sults of the calculations on the AlignTrack. The method dressAlignTrack is called by AlignAlg
after processing by IAlignTrackCreator.
The calculations that need to be done depend on what type of alignment is being performed. For local
and global χ2 alignment, first and second derivatives of residuals with respect to alignment parameters
are calculated. These are implemented with the TrkAlignGenTools/AlignTrackDresser tool,
described below.

3.5 AlignTrackDresser with Derivatives

TrkAlignGenTools/AlignTrackDresser is the implementation of IAlignTrackDresser spe-
cific to local and global χ2 alignment. It is configured by jobOptions to have an implementation
of IDerivCalcTool specific to the type of derivatives being calculated. The currently used de-
fault derivative calculator tool, TrkAlignGenTools/AnalyticalDerivCalcTool is described in
Appendix A.
In the method AlignTrackDresser::dressAlignTrack, the following is done:

• The residuals for all AlignTSOS on the AlignTrack are retrieved from the AlignTSOS (set
by AlignTrackCreator) and stored in a vector on AlignTrack. This is done because the
residuals are needed for calculations by GlobalChi2AlignTool (described in Section 3.8).

• The method IDerivCalcTool::setDerivatives is called, which calculates the first deriva-
tives of hit residuals with respect to alignment parameters on the AlignTrack.

• The method IDerivCalcTool::setResidualCovMatrix is called, which calculates the
residual covariance matrix (see Section 2.1).

• If the calculations are done successfully, then true is returned and the track and AlignAlg
continues with processing. Otherwise, the track is skipped.

3.6 Accumulating for fitting of the vertices

TrkAlignGenTools/BeamSpotVertexPreProcessor is the current default implementation of
IAlignTrackPreProcessor. Appart from the functionalities described earlier, it also imple-
ments methods needed for the accumulation and fitting of the common vertices implemented
by the AlignVertex class. In the first loop over AlignTracks, after track dressing, the
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IAlignTrackPreProcessor::accumulateVTX method is called by the IAlignAlg. The ob-
jects needed for the vertex fit as well as auxilliary objects needed for the vertex-constrained align-
ment are incremented by the information from the current track. In the current implementa-
tion vertex candidates are identified as primary vertices from the event record and selected in the
BeamSpotVertexPreProcessor::processTrackCollection.

3.7 Fitting the vertices

The IAlignTrackPreProcessor::solveVTXmethod is called by the IAlignAlg just after the first
loop over AlignTracks. It loops over all accumulated AlignVertex’s and invokes the
AlignVertex::fitVertex for all vertices containing more than one track.

3.8 Accumulation of Data

The tool inheriting from IAlignTool is responsible, in part, for accumulating the information cal-
culated by IAlignTrackDresser for each track. The method accumulate is called by AlignAlg
after the IAlignTrackDresser::dressAlignTrack has been called. In accumulate the final al-
gebra objects which are used to solve for alignment corrections are incremented. In particular, for
the Global χ2 method, the contributions to the first and the second derivatives of the global χ2, as
defined in Eqs. 28 and 29 are calculated. This can be extended to the full vertex constraint described
by Eqs. 41 and 45, if the option has been configured in IAlignTrackPreProcessor. Then, they
are added to the vector of first derivatives and the matrix of second derivatives implemented by the
TrkAlignMatrixTool.

3.9 Solving

When solving a linear system of equations the properties of the matrix determine which solution tech-
nique should be used. As described earlier, the matrix produced during alignment is symmetric and,
without constraints, singular. The various constraint techniques will usually render the matrix positive
definite. Practical experience shows that without any preconditioning the matrix will also be poorly
conditioned. This is due to the existence of so-called “weak modes” of the solution, which correspond
to geometry deformations leaving the global χ2 of the system virtually unchanged. More specifically,
weak modes transform helical trajectories of particles into other helical trajectories, possibly altering
their reconstructed kinematic parameters.
Finding a solution to a system with a large number of DoF is both computationally intensive and
memory intensive. The size and condition of the matrix may also require machine precision to be
taken into account when choosing a solution technique.
The interface to the different solvers is realized by the TrkAlignMatrixTool and the
TrkAlignAlgebraUtils.

3.9.1 Diagonalisation of the matrix

By far the best control of the solution can be obtained using diagonalisation, i.e. transforming the
the whole system to its diagonal basis where all the parameters (directions) are linearly independent.
Mathematically the transformation is given by the unitary rotation matrixU:

MX = Y =⇒ UMU
T
UX = UY =⇒ DXD = YD, (52)
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where D is a diagonal matrix containing the eigenvalues of M (λi) on its diagonal. In this basis
solution for each direction can be extracted independently. They are given by:

Xi
D =

1
λi

Y i
D with σ(Xi

D) =
1
√
λi

(53)

Clearly, solution to the singular modes cannot be determined as their eigenvalues are zero, while
the weak modes can have an arbitrarily large associated uncertainty, given by the square root of the
reciprocal of their eigenvalue. Such modes must be excluded from the solution.
There are a number of software packages that are able to perform the diagonalisation of a large matrix.
LAPACK’s DSPEV [14] has been chosen as the baseline for the ATLAS implementation. Alternative
options based on ROOT [15] linear algebra classes and CLHEP [16] are also available.
The computation time for diagonalisation in general scales as O(DoF3). Solving for very large sys-
tems soon becomes untenable on a single machine. Similarly, even with 64-bit words the numerical
precision limits solutions for problems exceeding ≈10,000.

3.9.2 Direct solving

Even for very large problems, as long as the matrix remains sparse, direct solvers offer an accurate
and cpu-efficient workaround. Also, as they do not invert or diagonalise the matrix they require much
less memory than full diagonalisation.
The MA27 [17] direct solver was implemented for the ATLAS alignment as it is freeware and found to
be sufficiently performant at solving problems of the size ATLAS alignment. It has been shown that
using such a procedure on a 35000 × 35000 matrix takes less than 10 minutes.
As direct solution does not offer the possibility of analysing and eliminating unwanted eigenmodes,
other precondititioning techniques must be used in order to extract a meaningful solution.

3.9.3 The Soft Mode Cut

Weak modes must always be removed from the solution. The problem is aggravated when the system
becomes too large to use diagonalisation in order to explicitly analyze the eigen-pulls. For such sys-
tems direct fast solvers are usually applied. That means that the system must be pre-conditioned prior
to solving. A straightforward way dubbed the “soft-mode-cut” has been proposed for ATLAS [11].
The method benefits from the typically exponential nature of the eigen-spectrum and consists of in-
crementing diagonal elements of the matrixM.
Cut-off in the diagonal basis
In the simplest case a common value is added and eigen-modes of the system remain unchanged.
Only the eigen-values are incremented by the added quantity:

MX = Y, UMU
T
UX = UY ⇒ DXD = YD (54)

M→M + κ1, D → D + κ1, λi → λi + κ. (55)

As a result, all corrections get suppressed by the factor λi/(λi + κ) that diverges significantly from
one for λi � κ. As can be seen this simple operation provides an effective suppression of weak
eigen-modes of the solution. Needless to say, the singularity of the matrix is removed by the pre-
conditioning.
Cut-off in the natural basis
Turning again to the preconditioning described in Eq. 54, the addition of the constant term κ to the
diagonal ofM is equivalent to constraining the solution in the natural basis to its current value with
σ = 1/

√
κ.
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Recalling:

Mi j =
dχ2

dαidα j
, Yi =

dχ2

dαi
, (56)

the alignment may now be reparameterized by replacing the variables a by the ones normalized to
their requested error:

Mi j =
dχ2

d α
σ id

α
σ j
, Mi j −→ σ(αi)σ(α j)Mi j (57)

Such a change of variables, of course, cannot change the solution to the χ2 problem provided that the
normalized variables get unfolded in the solution. However, if we add a unit matrix to the matrixM
we effectively constrain each DoF to one sigma of its assumed uncertainty. Further, that is equiva-
lent to accepting in the solution only those diagonal modes that lead to uncertainties on the derived
alignment corrections not exceeding the assumed σ values.
At closer inspection, there is no need to actually change variables and redefineM and Y objects. The
pre-conditioning gives:

(σ(αi)σ(α j)Mi j + 1)
X j

σ(α j)
= σ(αi)Yi =⇒ (Mi j +D(

1
σ(αi)2 ))X j = Yi (58)

Here, D( 1
σ(αi)2 ) denotes a diagonal matrix with 1

σ(αi)2 elements on the diagonal. In summary, the
scaled soft mode cut is realized by adding the diagonal matrixD to the original matrixM.
This method proved very powerful in controlling solutions of large problems where the use of ex-
plicit diagonalisation is not feasible but one still needs to control the uncertainties on the extracted
corrections. However, the error on the parameter corrections is, by construction, contained within the
assumed σ values1.

4 Implementation for Inner Detector Alignment

The Inner Detector (ID) [2] is the main tracking device of ATLAS. It is composed of two silicon
subsystems: the Pixels and the SCT complemented by the gaseous drift straw tube system, the TRT.
Other than the mechanical survey information from the assembly, the alignment of the ID relies
entirely on the track-based alignment.
As a very complex system its alignment involves very large number of degrees of freedom additionally
distributed over mechanically different devices offering fairly different measurement accuracy [18].
The ID adopted the global χ2 alignment method as its main strategy. However to align ≈ 700, 000
degrees of freedom of the TRT straw tubes the local χ2 method (see 2.1.11) is used.
In order to better reflect the mechanical structure of the ID and the expected magnitudes of mis-
alignment, the following alignment levels and corresponding types of alignment modules have been
defined:

• Level 0: each of the three ID subsystems (Pixels, SCT, TRT) is aligned as a rigid body.

• Level 1: the barrel and each endcap of the three ID subsystems, are aligned as separate rigid
bodies.

• Level 2: the barrel cylinders and the endcap disks of the three silicon detectors as well as the
barrel modules and the endcap wheels of the TRT are aligned as rigid bodies.

• Level 3: all of the silicon modules and TRT straws are aligned individually.

Importantly, alignment levels of the three subsystems can be combined in an arbitrary way.
1Note, this does not put any limit on the derived corrections themselves.
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4.1 Software Implementation

The ID AlignModule’s are created prior to data accumulation by the InDetGeometryManagerTool
which implements the IGeometryManagerTool. The earlier benefits from the hierarchi-
cal underlying structure. Individual subsystems are managed by their respective tools:
PixelGeometryManagerTool, SCTGeometryManagerTool and the TRTGeometryManagerTool.
Additionally, the SiGeometryManagerTool deals with silicon-specific geometry setup. Each tool
manages the different options for the alignment such as which degrees of freedoms are switched on
or off, the softcuts for different degrees of freedom and the alignment level.

4.1.1 Geometry setup

The InDetAlignModuleTool is a tool derived from Trk::AlignModule that implements the
method for returning a sub-TrkDetElementBase structure identifier Hash. This is only needed for
TRT where the structure is a single straw and allows to set detector specific properties of AlignTSOS.
Fan-out angle is set here for SCT measurements in the endcaps. The currently implemented geometry
ManagerTools are:

• PixelGeometryManagerTool: the tool used to manage the modules of the pixel subdetector.
This tool allows to select the alignment level for the Pixel:

– Level 1: All pixel subdetector as one structure.

– Level 1.5: Pixel barrel split in two parts, top and bottom. Endcaps are aligned as one
structure each one.

– Level 2: Pixel barrel layers and endcap disks.

– Level 2.2: Each Pixel barrel layer is split into two half-shells.

– Level 2.7: Considers the Pixel barrel staves as alignable structures.

– Level 3: All Pixel modules are aligned.

• SCTGeometryManagerTool: the tool used to manage the modules of the SCT subdetector.
This tool allows to select the alignment level for the SCT.

– Level 1: Uses three structures, the SCT barrel and the two endcaps.

– Level 2: SCT barrel layers and endcap disks.

– Level 2.2: Each pixel barrel layer is splitted in two half-shells.

– Level 2.5: The disks fo the endcaps are splitted in rings.

– Level 2.7: Considered the SCT barrel staves as alignable structures.

– Level 3: All SCT modules are aligned.

• TRTGeometryManagerTool: the tool used to manage the modules of the TRT subdetector.
This tool allows to select the alignment level for the TRT.

– Level 1: Uses 3 structures, the TRT barrel and the two endcaps.

– Level 2: TRT barrel modules and endcap wheels.

– Level 3: All TRT straws are aligned as independent structures.

• SiGeometryManagerTool: tool used to manage the silicon modules, it calls
SCTGeometryManagerTool and PixelGeometryManagerTool.

• IndetGeometryManagerTool: tool used to manage the Inner Detector modules, it calls
SiGeometryManagerTool and TRTGeometryManagerTool.
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4.1.2 Database interface

There are three Database Tools; they are used to store the alignment corrections in the database.
For the case of level 1, 2 and 3 the corrections are stored directly in the database. For the other
intermediate levels (rings, staves, ...) the corrections need to be transformed to a level defined in the
database and the tool transforms these corrections to level 3 corrections. There are three different
tools:

• SiTrkAlignDBTool: manages the Pixel and SCT corrections.

• TRTTrkAlignDBTool: manages the TRT corrections.

• InDetTrkAlignDBTool: manages all the Inner Detector corrections, it calls the two previous
tools.

5 Implementation for Muon Alignment

The muon spectrometer uses a number of methods to achieve the desired alignment. An optical
alignment system is used to align most Monitored Drift Tube (MDT) chambers. While the optical
alignment system is able to achieve the desired precision for most MDT chambers, there are a number
of types of detectors that are not instrumented for optical alignment. For these chambers, muon
tracks must be used for alignment. The chambers installed without optical alignment are the BEE
chambers mounted on the endcap toroid housings, EEL chambers in sector 5, BIS8 chambers, and all
small barrel chambers. Moreover, tracks can be used to align the MDT endcap relative to the MDT
barrel, and to align the muon spectrometer relative to the inner detector. Lastly, track-based alignment
provides an alternative in the event that optical alignment ceases to function for some MDT chambers,
and also provides a valuable cross-check of the proper functioning of the optical alignment system.
To facilitate alignment of the muon spectrometer, the following types of alignment modules are de-
fined:

• Level 0: the entire muon spectrometer is aligned as a rigid body.

• Level 1: the barrel and each endcap, including trigger chambers, are aligned as separate rigid
bodies.

• Level 3: MDT, CSC, and/or TGC chambers are aligned individually.

The L0, L1, or L3 alignment modules are created

5.1 Software Implementation

EDM objects specific to muon alignment are defined in the MuonAlignEvent package. Tools specific
to the implementation of the alignment framework for muon spectrometer alignment are contained in
the MuonAlignGenTools package. These are described in the rest of this section.

5.1.1 MuonAlignEvent

The CombinedMuonAlignModule class is the implementation of Trk::AlignModule used to define
groups of muon detectors for alignment. The implementation for muon chambers provides methods
used to shift muon chambers by a small amount prior to refitting muon tracks. This is necessary for
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determining numerical derivatives of χ2 with respect to alignment parameters. The shifts are carried
out by calling methods of the specific readout element classes of MuonReadoutGeometry.
MdtAlignModule, CscAlignModule, TgcAlignModule, and RpcAlignModule inherit from
CombinedMuonAlignModule and exist to allow methods specific to muon subdetector types.

5.1.2 MuonAlignGenTools

The muon-specific implementation of TrkAlignGenTools, as well as other tools useful for muon
alignment, are provided in the MuonAlignGenTools package. These are the following:

• MuonGeometryManagerTool. Implements IGeometryManagerTool.

• MuonTrackPreProcessor

• MuonTrackCollectionProvider

• MuonAlignDBTool

6 Summary

In the note, we presented the basics of the track-based software implementation in the ATLAS com-
puting framework, Athena. The software is built in a modular and configurable manner allowing for
efortless extensions and modifications. The alignment software is well integrated into the standard
tracking realm of ATLAS reusing information, methods and data structures. The implementation pre-
sented is generic and has been used to align both the Inner Detector as well as the Muon System.
Any combination of systems and subsystems may be configured for simultaneous alignment. The im-
plementation clearly separates the core algorithm from the detector specific parts. The latter contain
configuration of the specific geometry and definition of alignable parameters as well as storing of the
derived alignment corrections in the database.

A Analytical Derivatives

The global χ2 method for alignment described earlier in this document requires various partial deriva-
tives being calculated. In its basic form the algorithm needs derivatives of track-hit residuals with
respect to track parameters (H) and with respect to alignment parameters (A). Along the lines of the
general philosophy of ATLAS the implementation of the alignment software attempts to maximally
integrate with the general tracking realm in order to avoid duplications and incompatibilities. This
is why it was chosen to use directly derivatives with respect to track parameters that are computed
and used by the χ2 based track fitter of ATLAS [10]. The derivative matrix H is imported directly
from the fitter following the track refit. Derivatives with respect to alignment parameters have no
precedence in the rest of ATLAS tracking software and hence must be calculated within the align-
met specific part, namely the TrkAlignGenTools/AnalyticalDerivCalcTool. The calculation is
done purely analytically based on the known track direction at the intersection with the planar module
(silicon wafers) or the closest approach to the cathode wire (TRT straw tubes) and the local degrees
of freedom of the corresponding AlignModule. We define an auxiliary vector S :

S x = OLA
xx − Pxloc/Pzloc ∗ OLA

xz

S y = OLA
yx − Pxloc/Pzloc ∗ OLA

yz (59)

S z = OLA
zx − Pxloc/Pzloc ∗ OLA

zz



20

where Pxloc and Pzloc are the track momentum components in the local frame of the measurement and
OLA is the rotation matrix from the local measurement frame to the reference frame of the alignable
module. For example, the Inner Detector defines the local measurement frame in the following way:

1. Pixel Detector: x along the most sensitive measuring direction in the wafer plane (across the
module); y along the orthogonal direction in the wafer plane (along the module); z perpendicu-
lar to the wafer plane.

2. SCT: x perpendicular to strips in the wafer plane; y along strips in the wafer plane; z perpen-
dicular to the wafer plane.

3. TRT: x perpendicular to the track and the straw; y along the starw wire; z perpendicular to the
wafer plane.

Additionally we define vector Pref as the position of track-module itersection point in the reference
frame of the alignable module. With the above definition and Eq. 59 the derivatives of the residual
measured in the x direction w.r.t. alignment parameters read:

∂rx/∂T = S (60)

∂rx/∂R = Pref × S

The global χ2 vertex constrained fit requires additionally the partial derivatives of the resid-
uals wih respect to the vertex position (F). These are also custom calculated by the
TrkAlignGenTools/AnalyticalDerivCalcTool as a translation of the rigid track trajectory due
to the shift of its origin. The vector of derivatives with respect to the three DoF’s of the vertex position
is given by:

∂rx/∂b = −OAGS . (61)

Here OAG denotes the rotation matrix from the alignment to the global ATLAS frame.
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