

Rencontres de Moriond. QCD and High Energy Interactions. La Thuile, March 22-29, 2014.

CP Violation in the B system at LHCb

Juan J. Saborido University of Santiago de Compostela (USC) On behalf of the LHCb collaboration

Outline

Highlights of LHCb results on CP violation (CPV) in the B system

Direct CPV
$$\Gamma(B \to f) \neq \Gamma(\overline{B} \to \overline{f})$$

$$B^{0} \rightarrow \phi K^{*0}$$

$$B_{(s)} \rightarrow K\pi$$

$$B^{\pm} \rightarrow h^{\prime \pm} h^{+} h^{-}$$

$$(h^{\prime} = K, \pi)$$

$$B^{\pm} \rightarrow \phi K^{\pm}$$

$$B_{s}^{0} \rightarrow K^{+} K^{-}$$

$$B^{0} \rightarrow \pi^{+} \pi^{-}$$

$$\begin{array}{c} \textbf{CPV in mixing} \\ \Gamma\left(B \to \overline{B}\right) \neq \Gamma\left(\overline{B} \to B\right) \end{array}$$

$$B_s^0 \to D_s^{\pm}(\phi \pi^{\pm}) X \mu^{\pm} \nu$$

 $B_s^0 \to K^+ K^-$
 $B^0 \to \pi^+ \pi^-$

$$\begin{array}{c} \textbf{CPV in mixing-decay} \\ \Gamma\left(B \to f_{CP}\right) \neq \Gamma\left(\overline{B} \to f_{CP}\right) \end{array}$$

$$\begin{split} B^0_s &\to J/\psi\phi \\ B^0_s &\to J/\psi K^+ K^- \\ B^0_s &\to J/\psi \pi^+ \pi^- \end{split}$$

1 fb⁻¹ of 2011 data at 7 TeV. 1655 ± 42 signal events

arXiv:1403.2888v1

 $P \rightarrow VV$ decay: angular analysis to study the helicity structure

Three P-wave contributions: f_L, f_{\parallel} and f_{\perp} with $f_{\parallel} = 1 - f_L - f_{\perp}$

Naive theory predicts [Chen, Keum, PRD 66 (2002) 054013] a dominant f_ (~ 0.8), but observed $f_L\sim 0.5$

Two S-wave contributions:

 $B^0 \to \phi K^+ \pi^-$ and $B^0 \to K^* (892)^0 K^+ K^-$

$B^0 \rightarrow \phi K^*$ polarization amplitudes

Direct CP asymmetry in $B^0 \rightarrow \phi K^*$

Flavor-specific decay: $B^0 \rightarrow \phi K^{*0}$, $\bar{B}^0 \rightarrow \phi \bar{K}^{*0}$

 $K^{*0} \to K^+ \pi^-, \quad \bar{K}^{*0} \to K^- \pi^+$

Measure the "raw" asymmetry from time-integrated rates:

$$A = \frac{N(\bar{B}^0 \to \phi \bar{K}^*(892)^0) - N(B^0 \to \phi K^*(892)^0)}{N(\bar{B}^0 \to \phi \bar{K}^*(892)^0) + N(B^0 \to \phi K^*(892)^0)}$$

Use the control channel $B^0 \rightarrow J/\psi K^{*0}$ to cancel instrumental and production asymmetries through the following difference:

$$\Delta A_{CP} = A_{CP}(\phi K^{*0}) - \overbrace{A_{CP}(J/\psi K^{*0})}^{\approx 0} \approx A_{CP}(\phi K^{*0})$$
$$A_{CP}(\phi K^{*0}) = (+1.5 \pm 3.2 \pm 0.5)\%$$
arXiv:1403.2888v

Result consistent with zero asymmetry, in agreement with BaBar and Belle results, but with smaller (factor 2) uncertainties.

CPV in B system. Moriond QCD 2014

Direct CPV in B \rightarrow K π decays

Direct CPV in 3-body charmless B decays

First evidence of inclusive CP asymmetries in $B \rightarrow 3h$, $(3\sigma - 5\sigma)$

LHC

Phase-space dep. CPV in $B^+ \rightarrow h^+h^-h^+$ (h=K, π)

LHC

Large CP asymmetries observed in regions of phase space outside resonances

CP-violating charge asymmetries in $B^{\pm} \rightarrow \phi K^{\pm}$

${f B}^+ o \phi {f K}^+$ is a ${f b} o {f ssar s}$ FCNC penguin process

CP-violating charge asymmetry very small in the SM (1-2%).

$$A_{CP}(B^{\pm} \to \phi K^{\pm}) = \frac{\mathcal{B}(B^{-} \to \phi K^{-}) - \mathcal{B}(B^{+} \to \phi K^{+})}{\mathcal{B}(B^{-} \to \phi K^{-}) + \mathcal{B}(B^{+} \to \phi K^{+})}$$

 $\mathbf{B}^+ \to \phi \pi^+$: FCNC $\mathbf{b} \to \mathbf{ds}\mathbf{\bar{s}}$ process, CKM and OZI suppressed. SM prediction: $\mathcal{B}(B^{\pm} \to \phi \pi^{\pm}) \sim (5-10) \times 10^{-9}$

LHCb analysis of 1fb⁻¹ of data to measure the two observables: [PLB 728 (2014) 85–94]

$$\Delta A_{CP} = A_{CP} (B^{\pm} \to \phi K^{\pm}) - A_{CP} (B^{\pm} \to J/\psi K^{\pm})$$

$$\begin{array}{c} \overline{\mathcal{B}(B^{\pm} \to \phi \pi^{\pm})} \\ \overline{\mathcal{B}(B^{\pm} \to \phi K^{\pm})} \end{array}$$

to finally determine $A_{CP}(B^{\pm} \to \phi K^{\pm})$ and $\mathcal{B}(B^{\pm} \to \phi \pi^{\pm})$

CPV in B system. Moriond QCD 2014

CPV-violating charge asymmetries in $B^{\pm} \rightarrow \phi K^{\pm}$

[PLB 728 (2014) 85-94]

$$A_{CP}(B^{\pm} \to \phi K^{\pm}) = 0.022 \pm 0.021 \pm 0.009$$

A factor of 2 more precise than the current world average (0.10 \pm 0.04), and consistent both with the SM prediction and no CPV.

 $< 1.5(1.8) \times 10^{-7}$ at 90%(95%) CL.

$$\mathcal{B}(B^{\pm} \to \phi \pi^{\pm}) = \left(5.8^{+6.1}_{-5.8} \pm 2.5\right) \times 10^{-8},$$

CPV in B system. Moriond QCD 2014

Time-dependet CPV in $B_s^0 \rightarrow K^+K^-$ and $B^0 \rightarrow \pi^+\pi^-$

CPV in B system. Moriond QCD 2014

CP-violating semileptonic asymmetry a_{sl}^s measured in $B_s^0 \rightarrow D_s^{\pm}(\phi \pi^{\pm}) X \mu^{\pm} \nu$ decays

$$a_{sl} = \frac{\Gamma(\bar{B}(t) \to f) - \Gamma(B(t) \to \bar{f})}{\Gamma(\bar{B}(t) \to f) + \Gamma(B(t) \to \bar{f})} \approx \frac{\Delta\Gamma}{\Delta M} \tan\phi_{12} \qquad \phi_{12} = \arg(-M_{12}/\Gamma_{12})$$

CP-violating asymmetry a_{s1}^{s} in B_{s}^{0} decays

Measures CPV in mixing. f is a flavour-specific final state

 ϕ_{12} very small in the SM: $a_{sl}^s = (1.9 \pm 0.3) \times 10^{-5}$ $a_{sl}^d = (-4.1 \pm 0.6) \times 10^{-4}$ Lenz, Nierste (2012)

Measure time-integrated asymmetry with 1fb⁻¹ of data. Use mostly data driven corrections.

$$A_{\text{meas}} \equiv \frac{\Gamma[D_s^-\mu^+] - \Gamma[D_s^+\mu^-]}{\Gamma[D_s^-\mu^+] + \Gamma[D_s^+\mu^-]} \approx \frac{a_{sl}^s}{2}$$

$$\frac{a_{sl}^s}{2} = A_{\rm raw} - A_{\rm det} - A_{\rm bkg}$$

CP-violating asymmetry a_{sl}^s in B_s^0 decays

CPV in B system. Moriond QCD 2014

The inteference between two "decay paths" of a B_s meson to a CP eigenstate Gives rise to a (final state dependent) weak phase $\phi_s = \phi_M - 2\phi_D$

NP might add larges phases to the SM prediction: $\phi_s = \phi_s^{SM} + \phi_s^{NP}$

For $b \to c\bar{c}s \ (B_s^0 \to J/\psi\phi)$ indirect determination in the SM via global fits gives (neglecting penguin contributions):

$$\phi_s^{\text{SM}} = -2 \arg\left(\frac{-V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}\right) = 0.0364 \pm 0.0016 \text{ rad}$$
 CKMfitter, PRD 84 (2011) 033005

A precise determination of ϕ_s is as a sensitive test of NP in the B_s sector.

CPV in B system. Moriond QCD 2014

 $\phi_s \text{ from } B^0_s \to J/\psi K^+ K^-$

- $P \rightarrow VV$ decay with CP-even and CP-odd components.
- Fit invariant mass, decay time and angular distributions of flavour-tagged events.
- 1fb⁻¹ of data at Vs=7 TeV. (27617 ± 115 events)

(Definition of helicity angles as for the $B^0 \rightarrow \phi K^*$ decay in slide 4)

CP-odd component in the final state > 97.7% at 95% CL \rightarrow no ang. analysis required.

From the analysis of 1 fb⁻¹ data [PLB 713 (2012) 378]: $\phi_s = -0.14^{+0.17}_{-0.16} \pm 0.01$ rad

•New amplitude analysis with 3 fb⁻¹ (full LHCb data) to study resonant and CP components.

(arXive:1402.6248)

•Five interfering $\pi^{+}\pi^{-}$ states required to describe the decay: f₀(980), f₀(1500), f₀(1790), f₂(1270), f₂(1525).

•CP-odd component > 97.7% confirmed.

Combined measurement of ϕ_s

Combined fit to $B_s^0 \to J/\psi K^+ K^-$ and $B_s^0 \to J/\psi \pi^+ \pi^-$ (1 fb⁻¹).

[PRD 87, 112010 (2013)]

$$\phi_s = 0.01 \pm 0.07 \pm 0.01 \text{ rad} \Gamma_s = 0.661 \pm 0.004 \pm 0.006 \text{ ps}^{-1} \Delta\Gamma_s = 0.106 \pm 0.011 \pm 0.007 \text{ ps}^{-1}$$

•In agreement with the SM: $\phi_s = -0.0364 \pm 0.0016$ rad.

•Limits NP contributions to Bs mixing to less than 30% at 3σ (A. Lentz arXiv:1203.0238v2).

•Update with 3 fb⁻¹ coming soon.

Conclusions

□ All results (still) in good agreement with the SM. Many more not shown here.

- □ Most of the measurements based only on 1/3 of the data available.
- □ Results with 3 fb⁻¹ luminosity gradually coming.
- **Eagerly waiting for LHC run 2.**

Thanks for your attention

BACKUP

CPV in B system. Moriond QCD 2014

The LHCb detector

Muon system

- Single arm forward spectrometer ($2 < \eta < 5$, 4% of solid angle).
- Trigger reduces rate from 40MHz to 5kHz.
- 3 fb-1 of data collected in 2011-2012.
- High-precision tracking system (Dp/p ~0.5%)
 - Vertex detector
 - Silicon-strip detector
- Charged hadrons identified using two RICH detectors
- Photon, electrons and hadrons identified by calorimeters

Vertex

detector

Vertex Locator RICH

Calorimeters

M2

M3 M4 M

ECAL SPD/PS

RICH2 M1

T2

• 2.08 fb⁻¹ at √s=8TeV (2012)

Tracking system

RICH detectors

Magnet

$$\begin{split} & \bar{\mathbf{B}}_{s}^{0} \rightarrow \mathbf{D}_{s}^{-} \mathbf{D}_{s}^{+} \text{ and } \bar{\mathbf{B}}_{s}^{0} \rightarrow \mathbf{D}^{-} \mathbf{D}_{s}^{+} \text{ effective lifetimes} \end{split} \\ & \mathbf{U} \\ &$$

1

CPV in B system. Moriond QCD 2014

LHCb / Juan J. Saborido

$ar{ m B}^0_{ m s} o { m D}^-_{ m s} { m D}^+_{ m s} ~{ m and}~ ar{ m B}^0_{ m s} o { m D}^- { m D}^+_{ m s} ~{ m effective}~{ m lifetimes}$

