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Abstract: The minimal supersymmetric extension of the Standard Model (SM) is a well

motivated scenario for physics beyond the SM, which allows a perturbative description of

the theory up to scales of the order of the Grand Unification scale, where gauge couplings

unify. The Higgs mass parameter is insensitive to the ultraviolet physics and is only sen-

sitive to the scale of soft supersymmetry breaking parameters. Present collider bounds

suggest that the characteristic values of these parameters may be significantly larger than

the weak scale. Large values of the soft breaking parameters, however, induce large radia-

tive corrections to the Higgs mass parameter and therefore the proper electroweak scale

may only be obtained by a fine tuned cancellation between the square of the holomorphic µ

parameter and the Higgs supersymmetry breaking square mass parameter. This can only

be avoided if there is a correlation between the scalar and gaugino mass parameters, such

that the Higgs supersymmetry breaking parameter remains of the order of the weak scale.

The scale at which this happens is dubbed as focus point. In this article, we define the

general conditions required for this to happen, for different values of the messenger scale

at which supersymmetry breaking is transmitted to the observable sector, and for arbi-

trary boundary conditions of the sfermion, gaugino, and Higgs mass parameters. Specific

supersymmetry breaking scenarios in which these correlations may occur are also discussed.

Keywords: Supersymmetry Phenomenology

ArXiv ePrint: 1402.1735

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP04(2014)093

mailto:antonio.delgado@nd.edu
mailto:quiros@ifae.es
mailto:cwagner@anl.gov
http://arxiv.org/abs/1402.1735
http://dx.doi.org/10.1007/JHEP04(2014)093


J
H
E
P
0
4
(
2
0
1
4
)
0
9
3

Contents

1 Introduction 1

2 General Focus Point 3

3 Focus Point for particular models 5

3.1 The CMSSM 5

3.2 Gauge mediation 7

3.3 Mirage mediation 9

4 Conclusion 10

A General Focus Point equations 12

1 Introduction

The Standard Model (SM) of particle physics provides an excellent description of all known

fundamental particle interactions, excluding gravity. Mass generation in the SM is obtained

via the Higgs mechanism, induced by the presence of a scalar (Higgs) field, which transforms

in the fundamental representation of the SM SU(2) gauge group. The properties of the

recently discovered resonance at the LHC [1, 2] seem to be close to the ones expected for

the SM Higgs boson, and hence the physics at the weak scale is well described by the SM.

Supersymmetry (SUSY) [3–5], as the simplest solution to the hierarchy problem, pro-

vides a well motivated extension of the SM, with new particle masses determined by the

soft supersymmetry breaking mass scale. If the sparticle masses are flavor independent, the

supersymmetric particles effects tend to decouple in a fast way at scales below these masses

and one recovers the SM as a low energy effective theory, as required by observations. The

radiative corrections to the Higgs mass parameter are governed by the soft SUSY breaking

scale, and therefore in order to avoid a large fine-tuning, the SUSY breaking masses should

not be much larger than the weak scale [6]. More precisely, there is a specific combination

of the SUSY breaking masses that determines the value of the low energy Higgs mass pa-

rameter and this combination should remain small (of the order of the weak scale) in order

to avoid fine-tuning.

In view of the increasingly stronger bounds set at the LHC on the masses of possible

beyond the Standard Model (BSM) particles introduced to solve the hierarchy problem, as

e.g. the supersymmetric partners of the SM particles [1, 2], it is interesting to find regions

in the parameter space where the fine-tuning problem is alleviated. In the particular case

of the minimal supersymmetric extension of the Standard Model (MSSM), an interesting
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observation was done in ref. [7–10], in which it was demonstrated that, starting with uni-

versal supersymmetry breaking scalar masses at the GUT scale, the Higgs mass parameter

could become small based on the existence of a renormalization group equation (RGE)

focus point (FP) at the electroweak (EW) scale QEW . The original focus point allowed

to obtain the proper electroweak symmetry breaking scale for large values of the squark

and slepton masses and subleading values of the stop mixing parameter At and gaugino

masses Ma. More recently, this solution was reconsidered, including the presence of large

stop mixing At [11], large (non universal) gaugino masses [12–14] and in the framework of

gauge mediation [15, 16].

In general, one would be interested in solutions in which the Higgs mass parameter does

not scale with the rest of the soft supersymmetry breaking parameters. This is relevant,

since experimental data suggest that gluinos and sfermion masses may be much larger than

the weak scale [1, 2]. If this were the case, these particles would decouple at some scale

Q0 ≫ QEW , and therefore the matching between the SM and the SUSY extension should

be performed at the scale Q0, at which the heavy particles are decoupled.

The matching condition yields a relationship between the SM Higgs boson

potential parameters

V (H) = −m2|H|2 + λ

2
|H|4, (1.1)

where m2(QEW ) = 1
2m

2
H , and the supersymmetric parameters at the scale Q0 as [17]

m2 =
m2

HD
−m2

HU

tan2 β − 1
−m2

HU
− |µ|2 (1.2)

λ =
1

4
(g21 + g22) cos

2 2β +
3h2t
8π2

X2
t

(
1− X2

t

12

)
(1.3)

where Xt =
(At−µ/ tanβ)

mQ
, and mQ ≃ Q0 is the stop mass parameter which we will consider

as the generic value of the supersymmetric mass spectrum. As the m2-parameter on the

left-hand side of eq. (1.2) does run very slowly with the RGE scale Q [18] we can replace

it by m2
H/2.

A heavy supersymmetric spectrum in general implies that the MSSM soft-breaking

terms for the scalars and gauginos (m2
Q, m

2
U , m

2
HU

, Ma) are large at the high scale M

at which they are generated, in which case one expects also m2
HU

(Q0) to be large, thus

triggering a huge fine-tuning for eq. (1.2) to be satisfied. A rough definition of the sensitivity

with respect to the model parameters a was given in ref. [6] as

∆a =

∣∣∣∣
∂ logm2

H

∂ log a

∣∣∣∣ (1.4)

while the overall measure of fine tuning can be defined as ∆ = maxa{∆a}. In particular

the fine-tuning in µ is very special as its low energy value is determined by the equation

of minimum (EOM) (1.2) and it turns out that in the MSSM the fine-tuning is often

dominated by ∆µ [13]. In the case of large or moderate values of tanβ one gets from (1.2)

∆µ2 ≃
∣∣∣∣∣1 + 2

m2
HU

m2
H

∣∣∣∣∣ (1.5)
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Therefore if there is a RGE FP at the scaleQ0, which we define asm2
HU

(Q0) = 0, then in the

moderate or large tanβ regime ∆µ = 1 (i.e. no fine-tuning), eq. (1.2) is widely insensitive to

the boundary conditions at the scale M , and the fine-tuning is greatly alleviated. Of course

there is an underlying tuning by which the hidden sector provides, at the scale of messenger

masses, a particular pattern of values of the supersymmetry breaking (and µ) parameters

which will in turn predict a given FP of the RGE. In the absence of a precise theory of

supersymmetry breaking this fine tuning in the underlying theory cannot be computed.

In this paper we have integrated the RGE from the high-scale M to the low-scale Q0

and provided a formally analytical expression for m2
HU

(Q0) in terms of all supersymmetric

parameters defined at M . For vanishing values of the hypercharge D-term, it turns out

to be a linear combination of m2
Q, m2

U , m2
HU

, MaMb, MaAt, and A2
t , with coefficients

that depend on M and Q0. We have made very accurate fits for the different coefficients

fixing Q0 = 2TeV and for M ∈ [105, 1017] GeV so that the FP condition can be written

as an algebraic equation involving log(M/Q0) and the soft-breaking terms at the scale M .

The result, presented in section 2, is an easy-to-use equation from where the FP condition

can be established for arbitrary boundary conditions and an arbitrary scale M . We also

provide the (very simple) contributions that should be added for non-vanishing values of

the hypercharge D-term. In section 3 we have applied the general equations to some of the

most popular models, including CMSSM and gravity mediated models, gauge mediated

models and mirage models. We did not exhaust the different possible models (or made

scatter plots on all models) as it should be trivial to apply our formulae to any particular

model. Finally in section 4 we present our conclusions. Some technical details of the

calculation are postponed to appendix A.

2 General Focus Point

We will assume that the MSSM soft-breaking terms, in particular (m2
Q, m

2
U , m

2
HU

, Ma, At),

are generated at the high-scale M . The value of m2
HU

at the scale Q can then be computed

on general grounds as1

m2
HU

(Q) = m2
HU

+ ηQ[Q,M ](m2
Q +m2

U +m2
HU

) +
∑

a

ηa[Q,M ]M2
a

+
∑

a 6=b

ηab[Q,M ]MaMb +
∑

a

ηaA[Q,M ]MaAt + ηA[Q,M ]A2
t +∆Y,HU

(2.1)

where the soft breaking terms on the right-hand side are defined at the scale M and the

coefficients ηX depend on the scales M and Q, and the last term represents the hypercharge

D-term contribution. This expression describes the one-loop evolution of the Higgs square

mass parameter m2
HU

, when the bottom and tau Yukawa couplings are small, as happens

for moderate values of tanβ. The hypercharge D-term vanishes in all the supersymmetry

1We are assuming moderate values of tanβ. For larger values of tanβ one could not neglect hb,τ effects

in eq. (2.1), which would induce additional terms proportional to the down Higgs, right-handed sbottom

and stau square mass parameters, m2

HD
, m2

D, m2

E,L, and to the sbottom and stau trilinear mass parameters

Ab,τ .
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n 10 an
Q 102 an

1 10 an
2 102 an

3 104 an
12 103 an

13 102 an
23 103 an

1A 102 an
2A 10 an

3A 10 an
A

0 1.289 1.124 -2.324 4.276 -5.669 -1.373 -1.022 -4.815 -3.230 -1.329 2.510

1 -0.529 0.540 0.377 1.820 2.784 0.873 0.598 1.111 0.767 0.333 -1.171

2 0.015 0.038 -0.010 -0.624 -0.337 -0.121 -0.080 -0.006 -0.009 -0.006 0.134

3 0.0007 -0.007

4 0.0001

Table 1. Values of the fitted coefficients in (2.3) for Q0 = 2TeV.

breaking schemes that we analyze in this article, and therefore we shall not consider it in

our analysis. However, for completeness, in the appendix we provide the expression of the

additional corrections induced by ∆Y,HU
.

In particular if we fix the low scale as the scale where supersymmetric particles decouple

Q = Q0 (in the few TeV range) we can write the focus point scale as the scale where the

condition m2
HU

(Q0) = 0 is satisfied, i.e.

0 = m2
HU

+ η0Q(M)(m2
Q +m2

U +m2
HU

) +
∑

a

η0a(M)M2
a

+
∑

a 6=b

η0ab(M)MaMb +
∑

a

η0aA(M)MaAt + η0A(M)A2
t (2.2)

where now the coefficients η0X(M) only depend on the (messenger) scale M at which super-

symmetry breaking is transmitted. These coefficients are computed semi-analytically [19–

25]–[28] and their explicit expressions can be found in the appendix. In fact if we choose

a value of Q0 = 2TeV they are can be fitted by an expression as

η0X(M) =
∑

n≥0

anX yn(M), y(M) ≡ log10(M/GeV ) (2.3)

where the fitted coefficients are given in table 1 for Q0 = 2TeV and values of M in the

interval M ∈ [105, 1017] GeV. The functions η0X(M) are plotted in figure 1 from where

we can see that for the case of high-scale supersymmetry breaking (i.e. M ≃ 1016GeV)

the plot is dominated by η03 (i.e. by the term M2
3 ) while for low-scale supersymmetry

breaking (i.e. M ≃ 105GeV) the function η0Q (i.e. the term m2
Q +m2

U +m2
HU

) takes over

and dominates.

Moreover eq. (2.2) is telling us that if we scale all soft-breaking terms as

(m2
Q, m

2
U , m

2
HU

, Ma, At) → (λ2m2
Q, λ

2m2
U , λ

2m2
HU

, λMa, λAt) (2.4)

the equation is still valid. This shows the insensitivity of the FP to the boundary conditions.

Alternatively we can leave one of the soft-breaking terms as a free (floating) parameter,

e.g. the boundary value m2
HU

. So in general using the scale invariance of eq. (2.2) we

can express all masses in units of mHU
≡

√
|m2

HU
|. Of course the scale at which the FP

happens should depend on the boundary values of the soft-breaking terms, so that fixing

it to Q0 amounts to a relation between the scale at which supersymmetry is broken M and

the soft-breaking terms.
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Figure 1. Left panel: from top to bottom along the left vertical axis, plots of −η0Q, −η0A, η
0

3A, η
0

2A,

η0
1A as functions of M . Right plot: from top to bottom along the left vertical axis, plots of −η0

3
,

−η0
1
, −η0

23
, −η0

13
, −η0

12
, −η0

2
as functions of M .

Let us also stress that the (absolute value of the) mass parameters in the stop sector

are constrained by the condition of obtaining the proper value of the observed Higgs mass,

mH ≃ 125.6GeV. This fixes the possible range of values of Q0, which for moderate values of

tanβ may vary between values lower than a TeV and values of the order of 10TeV, depend-

ing on the value of the stop mixing parameter [30]–[36]. The general focus point solution

define correlations between the different SUSY breaking parameters at the messenger scale

M required to make the Higgs mass parameter small at the decoupling scale Q0. In this

article, we have studied these correlations by means of the one-loop renormalization group

evolution of the mass parameters. Two loop-corrections, as well as threshold corrections

at the scale Q0, will also affect the value of m2
HU

. For large values of the messenger scale

M , these corrections are expected to be subleading and of the same order as the variation

of the Higgs mass parameter in the range of values of Q0 quoted above. In this article,

we have not studied the precise dependence on Q0, but instead we have taken Q0 = 2TeV

as a representative value. Although the Higgs mass parameter can have significant vari-

ations with the scale Q0, we don’t expect the correlations needed to make m2
HU

small to

depend strongly in the precise value of this scale. In the following section we will explore

some popular theories of supersymmetry breaking in where certain relations among the

boundary conditions are predicted.

3 Focus Point for particular models

As we have seen in the previous section, the FP in the MSSM translates into a condition

between the different soft breaking parameters (mQ, mU , mHU
, M1, M2, M3, At) at the

scale M , the scale at which supersymmetry is transmitted to the observable sector, and

hence depends on the precise value of M . In this section we will study the FP predictions

in the MSSM assuming some patterns of supersymmetry breaking at the scale M , moti-

vated by particularly appealing mechanisms of supersymmetry breaking mediation to the

observable sector.

3.1 The CMSSM

In this theory [dubbed constrained MSSM (CMSSM)], and inspired by minimal supergrav-

ity (SUGRA) [3–5], we have as independent parameters m0, m1/2 and At, in such a way

– 5 –



J
H
E
P
0
4
(
2
0
1
4
)
0
9
3

0.15

0.5

1

1.5

2

2.5

6 8 10 12 14 16
-2

-1

0

1

2

log10@M�GeVD

A
t�

m
0

0.1

0.3

0.4

0.5

0.6

0.7

0.8

0.0 0.2 0.4 0.6 0.8 1.0
-2

-1

0

1

2

m0�mH

A
t�

m
H

Figure 2. Left panel: contour lines of m1/2/m0 in the plane (log
10
[M/GeV], At/m0) for the bound-

ary conditions in eq. (3.1). Right panel: contour lines of of m1/2/mH in the plane (m0/mH , At/mH)

for a scale M = 1016 GeV and the boundary conditions in eq. (3.2).

that at the scale M

mQ = mU = mHU
≡ m0, Ma ≡ m1/2 (3.1)

We can see from the left panel of figure 2 that values of M around the unification scale

can only be reached for very small values of At and m1/2. This is nothing but the original

focus point solution found in ref. [7–10] and is related to an intriguing cancellation of the

overall dependence of m2
HU

on m0. More precisely, the overal coefficient vanishes due to

the fact that ηQ ≃ 1/3. Since, from eq. (A.6), ηQ = y/2, this happens because at large

tanβ the square of the Yukawa coupling is close to two thirds of the value that it would

obtain if it were very large at the scale M ≃ 1016GeV. For smaller values of M one sees

that the value of m1/2 in general increases and that solutions with large At exist.

One can think that the fine-tuning will then be eliminated when m2
HU

≃ 0, since

when one varies all parameters at once, respecting the given correlation, the value of m2
HU

remains small. Of course, as we already mentioned, that will only be true if the correlation

among the different parameters is indeed a prediction of the UV theory.

The correlation between scalar and gaugino masses changes if one does not assume

universality of scalar and/or gaugino masses. So a variant of the CMSSM where univer-

sality of scalar masses is given up, often considered in the literature and motivated by

string constructions where the Higgs fields live in a different location to the rest of matter

fields [37, 38], has an extra parameter mH . It is dubbed NUHM1 [39] and the soft-breaking

parameters are then2

mQ = mU ≡ m0, mHU
= mHD

≡ mH , Ma ≡ m1/2 (3.2)

2One such model has been constructed in ref. [40] to provide, by the RGE running, the light stop scenario

and further motivated by electroweak baryogenesis studies in the MSSM.

– 6 –
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For such a model contour lines of m1/2/mH for M = 1016GeV are shown in the right

panel of figure 2 where we see that solutions where all masses are heavy do exist. Larger

values of mHU
/m0 generate a positive coefficient in m2

0, while larger values of At do the

opposite. The overall coefficient in m2
1/2 remains negative. Hence, solutions exist only

when m0/mHU
< 1 and large values of At can only be obtained for small values of the

gaugino masses. The asymmetry between positive and negative values of At observed in

this figure is due to the existence of a non-vanishing coefficient in m1/2At.

Another possibility is giving up universality of the gaugino masses. To this end we will

introduce extra parameters δa such that

Ma = δam1/2 (3.3)

where one of the parameters can be fixed to one as it can be reabsorbed in a redefinition of

the parameter m1/2. A nontrivial pattern for the δa-parameters can arise in the effective

theories of string constructions [41]. In particular an analysis of fine-tuning has been done

in ref. [42] where δ3 = 1 has been fixed. In this case the contours lines of m0/m1/2 for

M = 1016GeV are shown in figure 3 as a function of δ1 and δ2 for At = −2.5m0 (left

panel) and At = 0 (right panel). In the left panel, for At = −2.5m0, the region where

gauginos are heavy, i.e. m0/m1/2 ∈ [0, 1], is much larger than in the right panel, for At = 0,

which corresponds to the external ring. The reason for the change in the position of the

ellipses for which the fine-tuning disappears is again the fact that for At = 0 the overall

coefficient in m2
0 is small and positive and therefore it can be cancelled when the overall

coefficient onm2
1/2 is negative. On the contrary, for non-vanishing At = −2.5m0, the overall

coefficient on m0 is negative and can only be cancelled when the overall coefficient on m2
1/2

becomes positive. The contour m0/m1/2 = 0 corresponds to the condition under which the

overall coefficient controlling the m2
1/2 dependence of m2

HU
vanishes, and it is the same,

independently of the relation of At with m0, as can be easily seen by comparing the left and

right panels of figure 3. When such condition is approximately fulfilled, the dependence

on both m2
0 and m2

1/2 becomes small, and then the fine-tuning is greatly reduced, a result

that was first pointed out in ref. [42].

3.2 Gauge mediation

In gauge mediation models [43], supersymmetry is broken in a hidden sector (X = M+θ2F )

coupled to a number of messenger fields (charged under the standard model gauge groups)

by the following superpotential coupling W = ΦIXΦ̄I . Supersymmetry breaking is then

communicated to the visible sector via gauge interactions generating the following soft

breaking masses:

m2
Q = 2

(
4

3
α2
3 +

3

4
α2
2 +

1

60
α2
1

)
Λ2
S

m2
U = 2

(
4

3
α2
3 +

4

15
α2
1

)
Λ2
S

m2
HU

= 2

(
3

4
α2
2 +

3

20
α2
1

)
Λ2
S

Ma = αaΛG, At = 0 (3.4)
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Figure 3. Left panel: contour lines of m0/m1/2 in the plane (δ2, δ1) for M = 1016 GeV and

At = −2.5m0. Right panel: the same for At = 0.

where in minimal models ΛG = NF/4πM and ΛS =
√
NF/4πM , N being the number of

messengers. Vanishing values of the stop mixing parameter at the messenger scale imply

that in order to obtain the proper Higgs mass one needs either large values of the messenger

scale or a heavy supersymmetric spectrum [44].

In order to explain the generation of the µ/Bµ terms in gauge mediation we should

admit direct couplings with hidden sector operators, as in the superpotential W =

λUHUOD + λDHDOU [45, 46], which lead at one-loop to the masses

δm2
HU,D

= |λU,D|2Λ2
D,U (3.5)

where 4πΛD,U parametrizes the contributions coming from the two-point function of the

F -component of the hidden sector operators OD,U . Assuming then that ΛU,D ≃ ΛS the

electroweak symmetry breaking requirement leads to values λU,D ∼ α2 in which case the

total contribution to the Higgs mass can be parametrized as

m2
HU,D

+ δm2
HU,D

≡ (1 + λ) m2
L (3.6)

where L is the slepton doublet and the parameter λ, 0 . λ . O(few), parametrizes the

correction to m2
HU

in eq. (3.6). In the left panel of figure 4

we show contour lines of constant λ in the plane (log10[M/GeV],ΛG/ΛS). We can see

that there is no FP for the case λ = 0 which corresponds to the case of standard gauge

mediation. The behavior is easily understood due to the fact that for λ = 0, the overall

coefficient on m2
HU

becomes negative, and the overall coefficient on the overall gaugino

masses is also negative. When λ is sizable, instead, the overall coefficient on m2
HU

becomes

positive and then there exist correlations for which m2
HU

vanishes.

A variant of the previous models happens when there are several fieldsXI in the hidden

sector such that the coupling with the messengers is by the superpotential W = ΦIXIΦ̄I .

In this case different messenger components XI are affected by different breakings FI . A

– 8 –
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defined by eqs. (3.4) and (3.6). Right panel: FP lines in the plane (log
10
[M/GeV],Λ2/Λ3) for the

model of eq. (3.7).

simple model along these lines was constructed in refs. [28, 29], where there is a pair of

messengers in the 5 + 5 representation of SU(5) which decompose into the SU(3) triplet

(I = 3) and SU(2) doublet (I = 2) components. Correspondingly there are two fields in

the hidden sector: X3 = M + θ2F3 giving a mass to the gluino and colored scalars and

X2 = M + θ2F2 whose auxiliary component F2 gives a mass to the SU(2)⊗U(1) gauginos

and scalars. The contribution to the soft breakings at the scale M is given by

m2
Q = 2

[
4

3
α2
3Λ

2
3 +

3

4
α2
2Λ

2
2 +

1

60
α2
1

(
2

5
Λ2
3 +

3

5
Λ2
2

)]

m2
U = 2

[
4

3
α2
3Λ

2
3 +

4

15
α2
1

(
2

5
Λ2
3 +

3

5
Λ2
2

)]

m2
HU

= 2

[
3

4
α2
2Λ

2
2 +

3

20
α2
1

(
2

5
Λ2
3 +

3

5
Λ2
2

)]

M1 = α1

(
2

5
Λ3 +

3

5
Λ2

)

M2 = α2Λ2, M3 = α3Λ3 (3.7)

where ΛI = FI/4πM . The FP results for this model are shown in the right panel of

figure 4. Large values of Λ2/Λ3 reduces the stop contributions and lowers the negative

dependence on the overall scalar mass parameters, implying the existence of solutions.

Since all parameters are correlated, for each scale M , the solutions occur for a specific

value of the ratio Λ2/Λ3.

3.3 Mirage mediation

This scenario is inspired by string compactification with fluxes [47] and it is

dubbed as mixed-modulus-anomaly mediated supersymmetry breaking and also mirage
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mediation [48, 49] as gaugino masses “apparently” unify at a scale much below MGUT. Mi-

rage mediation assumes that the contributions from gravity mediation [3–5] and anomaly

mediation [50, 51] are comparable in size. Anomaly mediation assumes that supersymetry

breaking is communicated via the trace anomaly of any non-conformal theory and it is

proportional to the RGE evolution of parameters. Therefore the spectrum at the super-

symmetry breaking scale M is given by

m2
HU

= m2
0 +

[
3αt

(
6αt −

16

3
α3 − 3α2 −

13

15
α1

)
− 3

2
α2
2b2 −

3

10
α2
1b1

]
m̃2

3/2

m2
Q = m2

0 +

[
αt

(
6αt −

16

3
α3 − 3α2 −

13

15
α1

)
− 8

3
α2
3b3 −

3

2
α2
2b2 −

1

30
α2
1b1

]
m̃2

3/2

m2
U = m2

0 +

[
2αt

(
6αt −

16

3
α3 − 3α2 −

13

15
α1

)
− 8

3
α2
3b3 −

8

15
α2
1b1

]
m̃2

3/2

At = A0 −
(
6αt −

16

3
α3 − 3α2 −

13

15
α1

)
m̃3/2

Ma = m1/2 + αabam̃3/2 (3.8)

where m̃3/2 = m3/2/4π and ba = (33/5, 1,−3). It is known that for m0 = 0, the slepton

square masses become negative and therefore no physical solution exist [50, 51]. For positive

values of m0 and m1/2 instead, positive slepton masses may be obtained. It is easy to show

that whenever mHU
(Q0) = 0, the slepton masses become positive at the same scale. It is

also easy to show that in order to find such a solution, the value ofm2
HU

at the scaleM must

be positive. In figure 5 we plot in the plane (m̃3/2,m1/2) contour lines of constant value

of A0 for M = 1016GeV. Here all masses are normalized to the value of mHU
≡

√
m2

HU

at the scale M . The solutions are symmetric under a simultaneous change of sign of m1/2,

m̃3/2 and A0. Moreover, solutions may be only obtained for moderate values of A0/mHU

and disappear for large values of this parameter.

4 Conclusion

In this article we have found the conditions to obtain small values of the soft supersymmetry

breaking parameter of the Higgs field at low energies, even in the case where the high

energy values of the scalar and gaugino supersymmetry breaking parameters are much

larger than the weak scale. These conditions do not depend on the overall scale of the

supersymmetry breaking parameters, and therefore define correlations between the different

mass parameters. When these conditions are fulfilled, the proper electroweak symmetry

breaking may be obtained for small values of µ, without the need of fine tuning. Needless

to say, this fine tuning is traded for the above defined correlations, which, however, may

have a dynamical origin.

For universal values of the scalar mass parameters, the conditions are fulfilled for a

large messenger scale, of the order of the GUT scale, moderate or large values of tanβ

(but not large enough to make the bottom Yukawa effects relevant) and for values of the

gaugino masses significantly smaller than the scalar masses. This is nothing but the original
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m

H
U
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Figure 5. Contour lines of constant A0 in the plane (m1/2/mHU
, m̃3/2/mHU

) for a fixed value of

the high scale, M = 1016 GeV.

Focus Point solution and therefore we have defined the solutions found in this paper as

General Focus Point solutions. Using the one-loop renormalization group evolution of the

mass parameters, our article defines the correlations that the soft supersymmetry breaking

parameters must fulfill, for all reasonable values of the messenger scale and for arbitrary

high energy values of these parameters.

We also analyzed particular cases in which the supersymmetry breaking mechanism

is such that there is an automatic correlation between some of the soft supersymmetry

breaking parameters. This include the case of universal scalar masses, non-universal Higgs

mass parameters, non-minimal gauge mediation and the mirage mediation extension of

the anomaly mediation mechanism. In all cases, the requirement of a small Higgs mass

parameter leads to additional correlations beyond those that are implicit in the given

mechanism. In order to really improve the fine tuning problem, these correlations should

have a dynamical origin, and would lead naturally to a small weak scale.
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A General Focus Point equations

In this appendix we are going to summarize the analytical solution to the RGE evolution

of the soft masses the leads to eq. (2.1), following the results derived in refs. [6, 19–28]. Let

us start with the solution to the top-quark Yukawa coupling. In general, we can encode

the top-quark Yukawa coupling dependence on the scale in terms of a variable y, defined

as the ratio of the square of the Yukawa coupling at the weak scale over the value that

would be obtained if the Yukawa coupling at the messenger scale M were large,

y = − 6αt(M)F (Q)

(4π)
[
1− 6αt(M)F (Q)

4π

] , (A.1)

where Q < M and αt = h2t /(4π). We will ignore the bottom Yukawa coupling, considering

it to be small compared with the top Yukawa coupling. The effect of the bottom Yukawa

coupling on the evolution of the soft supersymmetry breaking parameters may be relevant

if tanβ is very large, tanβ & mt/mb. Hence, our analysis is valid in the small and moderate

tanβ regimes.

The function F is defined by

F (Q) =

∫ Q

M
E(t)dt, E(Q) =

∏

a

(
αa(Q)

αa(M)

)−cat /ba

, (A.2)

where t = log(Q2), ba is the βa-function coefficient of the gauge group Ga in the effective

theory defined in the energy range between the scalesM andQ, and cat = 2(caQL
+caUR

+caHU
)

with caQ being the quadratic Casimir of the superfield Q under the Ga gauge group, which,

for a fundamental representation of SU(N) takes the value cQ = (N2 − 1)/2N , while

cQ = 3/5× (QQ − T3)
2 for U(1), where QQ is the charge of the field Q. We are implicitly

working with a normalization of the gauge couplings consistent with their unification at high

energies, so α1 = 5/3 αSM
Y . We will also define the linear integral function H by [26, 27],

H(f) =

∫ Q

M
f(t)dt− 1

F (Q)

∫ Q

M
F (t)f(t)dt, (A.3)

which is most useful to express the soft supersymmetry-breaking parameters at the weak

scale in a compact form.

The soft supersymmetry breaking parameters at low energies may be obtained in terms

of their boundary conditions at the messenger scale and functions that depend on the gauge

and Yukawa couplings of the theory. The gaugino masses have a very simple dependence

at one-loop, namely

Ma(Q) = Ma(M)
αa(Q)

αa(M)
. (A.4)

The trilinear soft supersymmetry-breaking mass terms, instead, not only depend on the

gauge sector, but are also affected by top quark Yukawa dependent effects, that modify

their renormalization group evolution.

At(Q) =
catMa(M)

4παa(M)

[∫ Q

M
α2
a(t)dt− yH(α2

a)

]
+At(M) (1− y) . (A.5)
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The scalar mass parameters are also affected by gauge and top-quark Yukawa contributions.

The Yukawa dependence enters only through the renormalization group evolution of these

parameters. In the case of real gaugino masses, the general expression is given by

m2
Q(Q) = m2

Q(M)− 4caQ
M2

a (M)

α2
i (M)

×
∫ Q

M

α3
a(t)

4π
dt

−
ydtQ
6

(
m2

QL
(M) +m2

UR
(M) +m2

HU
(M)

)

−
2dtQy

6

cbtMb(M)catMa(M)

αa(M)αb(M)
H

(
α2
b(t)

(4π)2

∫ Q

M
α2
a(t

′)dt′
)

+
2dtQy

6

catM
2
a (M)

α2
a(M)

H

(
α3
a

4π

)
+

dtQ
6

(
ycatMa(M)

αa(M)
H

(
α2
a

4π

))2

−
dtQy(1− y)

6

2catMa(M)

αi(M)
H

(
α2
a

4π

)
At(M)

−
dtQy(1− y)

6
At(M)2 +∆Y,Q(Q) (A.6)

where dtQL
= 1, dtUR

= 2, and dtHU
= 3, where QL and UR are the third generation left-

handed quark doublet and right-handed up quark singlet, respectively, and HU is the Higgs

that couples to up-type quarks superfields. This expression for the case of HU corresponds

to eq. (2.1). The term ∆Y comes from the possible contribution of the hypercharge D-

terms, which takes the generic form

∆Y,Q(Q) =
1

11
YQ × g21(Q)− g21(M)

g21(M)
×
∑

Q

YQm
2
Q(M) (A.7)

where YQ = QQ − T3 is the SM hypercharge and

∑

Q

YQm
2
Q = m2

HU
−m2

HD
+
∑

i

(
m2

Q − 2m2
U +m2

D −m2
L +m2

E

)
i

(A.8)

and i is a generation index. It is easy to prove from here that
∑

YQm
2
Q/g

2
1 is a renormal-

ization group invariant quantity.3 The dependence of ∆Y,Q on the gauge couplings may be

rewritten taking into account that

1

α1(Q)
=

1

α1(Mt)
− 41

20π
log

( Q
Mt

)

1

α1(M)
=

1

α1(Q)
− 33

10π
log

(
M

Q

)
(A.9)

and Mt is the value of the top mass. Hence, for the particular case of HU

∆Y,HU
= − 1

22
×

66 log
(
M
Q

)

1200 π − 41 log
(

Q
Mt

)
∑

Q

YQm
2
Q(M), (A.10)

3There are 14 RG invariants in the MSSM, that can be efficiently used to extract information of the

underlying theory if sparticles were observed [52–58].
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where we have approximated 1/α1(Mt) ≃ 60. The coefficient of
∑

Q YQm
2
Q(M) is small and

negative, and its absolute value becomes smaller for lower messenger scales. For Q = 2TeV

and the large messenger scale M = 1016GeV, this coefficient is equal to −0.024, while for

M = 106GeV is equal to −0.005.

Finally, let us write the expression for the B parameter, which governs the relation

between the bilinear terms in the superpotential and the bilinear soft supersymmetry-

breaking parameters in the scalar potential. This is given by

B(Q) = B(M)−
ydtHU

6
At(M)

+
4caHU

Ma(M)

4παa(M)
×

∫ Q

M
α2
a(t) dt−

catMa(M)

4παa(M)

ydtHU

6
H(α2

i ). (A.11)
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[41] A. Brignole, L.E. Ibáñez and C. Muñoz, Towards a theory of soft terms for the

supersymmetric Standard Model, Nucl. Phys. B 422 (1994) 125 [Erratum ibid. B 436 (1995)

747] [hep-ph/9308271] [INSPIRE].

[42] A. Kaminska, G.G. Ross and K. Schmidt-Hoberg, Non-universal gaugino masses and fine

tuning implications for SUSY searches in the MSSM and the GNMSSM,

JHEP 11 (2013) 209 [arXiv:1308.4168] [INSPIRE].

[43] G. Giudice and R. Rattazzi, Theories with gauge mediated supersymmetry breaking,

Phys. Rept. 322 (1999) 419 [hep-ph/9801271] [INSPIRE].

[44] P. Draper, P. Meade, M. Reece and D. Shih, Implications of a 125GeV Higgs for the MSSM

and low-scale SUSY breaking, Phys. Rev. D 85 (2012) 095007 [arXiv:1112.3068] [INSPIRE].

[45] Z. Komargodski and N. Seiberg, µ and general gauge mediation, JHEP 03 (2009) 072

[arXiv:0812.3900] [INSPIRE].

[46] A. De Simone, R. Franceschini, G.F. Giudice, D. Pappadopulo and R. Rattazzi, Lopsided

gauge mediation, JHEP 05 (2011) 112 [arXiv:1103.6033] [INSPIRE].

[47] S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory,

Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].

[48] K. Choi, A. Falkowski, H.P. Nilles, M. Olechowski and S. Pokorski, Stability of flux

compactifications and the pattern of supersymmetry breaking, JHEP 11 (2004) 076

[hep-th/0411066] [INSPIRE].

[49] K. Choi, A. Falkowski, H.P. Nilles and M. Olechowski, Soft supersymmetry breaking in

KKLT flux compactification, Nucl. Phys. B 718 (2005) 113 [hep-th/0503216] [INSPIRE].

[50] L. Randall and R. Sundrum, Out of this world supersymmetry breaking,

Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [INSPIRE].

[51] G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets,

JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE].

[52] D.A. Demir, Renormalization group invariants in the MSSM and its extensions,

JHEP 11 (2005) 003 [hep-ph/0408043] [INSPIRE].

[53] M. Carena, P. Draper, N.R. Shah and C.E. Wagner, Determining the structure of

supersymmetry-breaking with renormalization group invariants,

Phys. Rev. D 82 (2010) 075005 [arXiv:1006.4363] [INSPIRE].

– 16 –

http://arxiv.org/abs/1312.4937
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.4937
http://dx.doi.org/10.1103/PhysRevD.89.055023
http://arxiv.org/abs/1312.5743
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.5743
http://dx.doi.org/10.1016/0550-3213(92)90189-I
http://arxiv.org/abs/hep-th/9202046
http://inspirehep.net/search?p=find+EPRINT+hep-th/9202046
http://dx.doi.org/10.1016/0550-3213(94)00487-Y
http://arxiv.org/abs/hep-ph/9407251
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9407251
http://dx.doi.org/10.1140/epjc/s10052-011-1835-7
http://arxiv.org/abs/1109.3859
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.3859
http://dx.doi.org/10.1007/JHEP04(2012)137
http://arxiv.org/abs/1201.5164
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.5164
http://dx.doi.org/10.1016/0550-3213(94)00068-9
http://arxiv.org/abs/hep-ph/9308271
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9308271
http://dx.doi.org/10.1007/JHEP11(2013)209
http://arxiv.org/abs/1308.4168
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.4168
http://dx.doi.org/10.1016/S0370-1573(99)00042-3
http://arxiv.org/abs/hep-ph/9801271
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9801271
http://dx.doi.org/10.1103/PhysRevD.85.095007
http://arxiv.org/abs/1112.3068
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.3068
http://dx.doi.org/10.1088/1126-6708/2009/03/072
http://arxiv.org/abs/0812.3900
http://inspirehep.net/search?p=find+EPRINT+arXiv:0812.3900
http://dx.doi.org/10.1007/JHEP05(2011)112
http://arxiv.org/abs/1103.6033
http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.6033
http://dx.doi.org/10.1103/PhysRevD.68.046005
http://arxiv.org/abs/hep-th/0301240
http://inspirehep.net/search?p=find+EPRINT+hep-th/0301240
http://dx.doi.org/10.1088/1126-6708/2004/11/076
http://arxiv.org/abs/hep-th/0411066
http://inspirehep.net/search?p=find+EPRINT+hep-th/0411066
http://dx.doi.org/10.1016/j.nuclphysb.2005.04.032
http://arxiv.org/abs/hep-th/0503216
http://inspirehep.net/search?p=find+EPRINT+hep-th/0503216
http://dx.doi.org/10.1016/S0550-3213(99)00359-4
http://arxiv.org/abs/hep-th/9810155
http://inspirehep.net/search?p=find+EPRINT+hep-th/9810155
http://dx.doi.org/10.1088/1126-6708/1998/12/027
http://arxiv.org/abs/hep-ph/9810442
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9810442
http://dx.doi.org/10.1088/1126-6708/2005/11/003
http://arxiv.org/abs/hep-ph/0408043
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0408043
http://dx.doi.org/10.1103/PhysRevD.82.075005
http://arxiv.org/abs/1006.4363
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.4363


J
H
E
P
0
4
(
2
0
1
4
)
0
9
3

[54] M. Carena, P. Draper, N.R. Shah and C.E. Wagner, SUSY-breaking parameters from RG

invariants at the LHC, Phys. Rev. D 83 (2011) 035014 [arXiv:1011.4958] [INSPIRE].

[55] J. Jaeckel, V.V. Khoze and C. Wymant, Mass sum rules and the role of the messenger scale

in general gauge mediation, JHEP 04 (2011) 126 [arXiv:1102.1589] [INSPIRE].

[56] J. Jaeckel, V.V. Khoze and C. Wymant, RG invariants, unification and the role of the

messenger scale in general gauge mediation, JHEP 05 (2011) 132 [arXiv:1103.1843]

[INSPIRE].

[57] J. Hetzel and W. Beenakker, Renormalisation group invariants and sum rules: fast diagnostic

tools for probing high-scale physics, JHEP 10 (2012) 176 [arXiv:1204.4336] [INSPIRE].

[58] M. Carena, J. Lykken, S. Sekmen, N.R. Shah and C.E. Wagner, The pMSSM interpretation

of LHC results using rernormalization group invariants, Phys. Rev. D 86 (2012) 075025

[arXiv:1205.5903] [INSPIRE].

– 17 –

http://dx.doi.org/10.1103/PhysRevD.83.035014
http://arxiv.org/abs/1011.4958
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.4958
http://dx.doi.org/10.1007/JHEP04(2011)126
http://arxiv.org/abs/1102.1589
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.1589
http://dx.doi.org/10.1007/JHEP05(2011)132
http://arxiv.org/abs/1103.1843
http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.1843
http://dx.doi.org/10.1007/JHEP10(2012)176
http://arxiv.org/abs/1204.4336
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.4336
http://dx.doi.org/10.1103/PhysRevD.86.075025
http://arxiv.org/abs/1205.5903
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.5903

	Introduction
	General Focus Point
	Focus Point for particular models
	The CMSSM
	Gauge mediation
	Mirage mediation

	Conclusion
	General Focus Point equations

