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Abstract

We provide evidence from full numerical solutions that the hydrodynamical evolution of initial density
fluctuations in heavy ion collisions can be understood order-by-order in a perturbative series in deviations
from a smooth and azimuthally symmetric background solution. To leading linear order, modes with different
azimuthal wave numbers do not mix. Quadratic and higher order corrections are small and can be understood
as overtones with corresponding wave numbers.

In recent years, fluid dynamic simulations of relativistic heavy ion collisions have provided strong evidence
for a picture according to which the momentum distributions of soft hadrons result from a fluid dynamic
evolution of initial density fluctuations, see Refs. [1, 2, 3, 4] for recent reviews. The research focusses now
on understanding in detail the mapping from fluctuations in the initial state to experimentally accessible
observables in the final state [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. The present letter aims at quantifying to
what degree this hydrodynamic mapping is linear in the strength of initial fluctuations around some suitably
chosen background, and on what scale non-linearities arise. This is of interest since an approximately linear
relation (by which we mean a mapping in which non-linearities can be understood as small corrections of
a predominantly linear mapping) would provide a particularly simple and thus particular powerful tool for
relating experimental observables to the initial conditions of heavy ion collisions and to those properties of
matter that govern their fluid dynamic evolution [17].

We consider initial conditions of heavy ion collisions, specified in terms of fluctuating fluid dynamic fields
hi on a hyper surface at fixed initial time τ0. Here, the index i runs over all independent fields,

hi(τ, r, ϕ, η) =
(
w, ur, uφ, uη, πbulk, π

ηη, . . .
)
, (1)

including e.g. the enthalpy density h1 = w, three independent fluid velocity components, the bulk viscous
tensor, the independent components of the shear viscous tensor, etc. In the following we assume Bjorken
boost invariance and drop the rapidity-argument η in the hydrodynamical fields. Following Refs. [17, 18],
we express hi in terms of a background component hBGi and an appropriately normalized perturbation h̃i.
The background is taken to be a solution of the non-linear hydrodynamic equations initialized at τ0 with
an azimuthally symmetric average over many events. It is evolved with the fluid dynamic solver ECHO-
QGP[22]. For any sample of events, this background needs to be determined only once. The time evolution
of the h̃i is viewed as a perturbative series on top of the background fields,

h̃i(τ, r, ϕ) =

∫
r′,ϕ′

Gij(τ, τ0, r, r
′, ϕ− ϕ′) h̃j(τ0, r′, ϕ′)

+
1

2

∫
r′,r′′,ϕ′,ϕ′′

Hijk(τ, τ0, r, r
′, r′′, ϕ− ϕ′, ϕ− ϕ′′) h̃j(τ0, r′, ϕ′) h̃k(τ0, r

′′, ϕ′′) +O(h̃3) , (2)
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Figure 1: Results for the hydrodynamic evolution of the initial condition (5), obtained with ECHO-QGP.
Upper row: the time dependence of the enthalpy density is shown separately for the background wBG(τ, r)

and for the perturbation w̃(2)(τ, r) initialized with w̃
(2)
1 = 0.5. Middle row: the dependence of the pertur-

bations w̃(2) on the initial weight for τ = τ0 + 5fm/c (left) and scaled by the initial weights, w̃(2)(τ, r)/w̃
(2)
1

(right). This scaling establishes that the fluid dynamic response to perturbations is approximately linear.
Lower row: same results as shown in middle row, but for τ = τ0 + 10fm/c.

where
∫
r

=
∫∞

0
dr r,

∫
ϕ

=
∫ 2π

0
dϕ etc. The kernels Gij , Hijk (and corresponding terms for higher orders

in h̃i) depend on the time-evolved background hBGi only. Due to the azimuthal rotation symmetry of the
background, Gij depends on the angles ϕ and ϕ′ only via the difference ϕ − ϕ′ and similarly for Hijk.
The question we raise in the title can now be made more precise: We ask whether the expansion (2) is
possible for a suitably chosen background 1 and whether it is dominated by the first linear term. To address
this question, we compare in the following numerical results from a full causal dissipative hydrodynamic
evolution to expectations based on the structure and on the symmetries of the perturbative series (2).

For the initial conditions, we make assumptions that are widely spread in the phenomenological literature.
The initial transverse velocity components vanish, the longitudinal velocity is Bjorken boost invariant, the
shear stress tensor is initialized by its Navier-Stokes value, and the bulk viscous pressure is neglected. Initial
fluctuations reside then only in the initial enthalpy density w(τ, ~r), that we parametrize in terms of an

1Hydrodynamic evolution is governed by non-linear partial differential equations and it may be chaotic or it may contain
terms that are non-analytic in the initial fluid fields h̃j . Hence, the validity of the expansion (2) is not guaranteed. Also, it

will depend on the choice of the background hBG and on the strength of the perturbations h̃.
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azimuthally averaged background wBG(τ, r) and the weights w̃
(m)
l of the azimuthal (m) and radial (l) wave

numbers of a discrete orthonormal Bessel-Fourier decomposition [17]

w(τ0, r, ϕ) = wBG(τ0, r)

(
1 +

∞∑
m=−∞

w̃(m)(τ0, r) e
imϕ

)
, w̃(m)(τ0, r) =

∞∑
l=1

w̃
(m)
l Jm

(
k

(m)
l r

)
. (3)

Here k
(m)
l = z

(m)
l /R, where z

(m)
l is the l-th zero of the modified Bessel function Jm and R = 8 fm throughout

this work. Since w̃(τ, r, ϕ) is real, we have w̃(m)(τ, r) = w̃(−m)∗(τ, r). In the following, we take the weights
with m ≥ 0 as the independent ones and write

w̃
(m)
l = |w̃(m)

l |e−imψ
(m)
l . (4)

The corresponding modes with m < 0 are then not independent and are defined by the condition |w̃(m)
l | =

|w̃(−m)
l | with azimuthal angle ψ

(−m)
l = ψ

(m)
l ± π.

We consider first the case for which one single fluctuating basis mode is embedded on top of wBG(τ0, r).

For example, we specify this mode with the weight w̃
(2)
1 , so that the initial enthalpy density reads

w(τ0, ~r) = wBG(τ0, r)
[
1 + 2|w̃(2)

1 |J2

(
k

(2)
1 r

)
cos
(

2(ϕ− ψ(2)
1 )
)]

. (5)

For one single mode, we can set without loss of generality ψ
(2)
1 = 0. Assuming for simplicity a Bjorken-

boost invariant longitudinal dependence, we evolve these initial conditions with the 2+1 dimensional version
of the hydrodynamical code ECHO-QGP [22] with a value η/s = 1/4π for the ratio of shear viscosity to
entropy density 2. Following Ref. [19], we use the equation of state s95p-PCE which combines lattice QCD
results at high temperatures with a hadron resonance gas at low temperatures. The background wBG used
throughout this paper is initialized at τ0 = 0.6 fm/c with an azimuthally symmetric average of Glauber
model initial conditions for Pb+Pb collisions at the LHC, described in Ref. [18]. The time evolution of
wBG determined from ECHO-QGP is shown in Fig. 1. The time-evolved fluctuation w̃(2)(τ, r) is determined
from the full hydrodynamic evolution via Fourier analysis. Results are shown in Fig. 1 for different weights

w̃
(2)
1 . Fluctuations at time τ0 are cut-off in the region of very low background density, see e.g. w̃(2)(τ0, r) in

Fig. 1 – we have checked that this does not affect our results. The main conclusion from Fig. 1 is that at all

relevant times and even for relatively large initial amplitudes w̃
(2)
1 , the fluid dynamic response wBGw̃

(2)(τ, ~r)

to an initial perturbation scales approximately linearly with the weight w̃
(2)
1 . This is the behavior expected

from the linear term in eq. (2). We observe this linear dependence with similar accuracy also for other basic
modes (data not shown).

The almost exact linear scaling of the hydrodynamic response w̃(m)(r, τ) with the initial weights w
(m)
l

does not imply that non-linearities are absent. To see that, consider the Fourier series h̃i(τ, r, ϕ) =
1

2π

∑∞
m=−∞ eimϕ h̃

(m)
i (τ, r), where h̃

(m)
i (τ, r) are in general complex expansion coefficients, but h̃

(m)
i (τ, r) =

h̃
(−m)∗
i (τ, r) since h̃(τ, r, ϕ) ∈ R. Since the kernels in (2) depend only on the background field, they are

invariant under azimuthal rotation and their Fourier expansions read

Gij(τ, τ0, r, r
′,∆ϕ) =

1

2π

∞∑
m=−∞

eim∆ϕG
(m)
ij (τ, τ0, r, r

′) ,

Hijk(τ, τ0, r, r
′, r′′,∆ϕ′,∆ϕ′′) =

1

(2π)2

∞∑
m′,m′′=−∞

ei(m
′∆ϕ′+m′′∆ϕ′′)H

(m′,m′′)
ijk (τ, τ0, r, r

′, r′′) ,

(6)

2For these 2+1 dimensional simulations in Bjorken coordinates, we adopt a uniform grid in x and y with a spatial resolution
of 0.2 fm, whereas the time-step is set to 10−3 fm/c, with a Courant number of 0.2 to ensure stability. Spatial reconstruction
is achieved by employing the MPE5 scheme, the most accurate one available in ECHO-QGP (fifth order for smooth flows). For
further technical details, see Ref.[22].
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Figure 2: Left column: the zeroth, fourth and sixth harmonic perturbations induced by an initial fluctuation

in the second harmonic, shown for different values of the initial weight w̃
(2)
1 . Right column: Same results but

rescaled by the second (third) power of the weight w̃
(2)
1 . This scaling establishes that w̃(0)(τ, r) and w̃(4)(τ, r)

(w̃(6)(τ, r)) can be understood as overtones that are induced by the initial second harmonic perturbation as
a perturbative second (third) order correction to (2). The short-range fluctuations in the rescaled w̃(6)(τ, r)

result from amplifying the numerical uncertainties of very small number by a large scaling factor (1/w̃
(2)
1 )3 =

1000.

and so on. From Gij(τ, τ0, r, r′,∆ϕ) ∈ R one obtains G
(m)
ij = G

(−m)∗
ij and similarly H

(m′,m′′)
ijk = H

(−m′,−m′′)∗
ijk .

One obtains then from eq. (2)

h̃
(m)
i (τ, r) =

∫
r′

G
(m)
ij (τ, τ0, r, r

′) h̃
(m)
j (τ0, r

′)

+
1

2

∫
r′,r′′

1

2π

∑
m′,m′′

δm,m′+m′′H
(m′,m′′)
ijk (τ, τ0, r, r

′, r′′) h̃
(m′)
j (τ0, r

′) h̃
(m′′)
k (τ0, r

′′) + . . .
(7)

For the case that initial conditions contain only fluctuations of enthalpy density, we have h̃
(m)
j (τ0, r) =

δj1 w̃
(m)(τ0, r). Using the orthonormal expansion (3) for w̃(m)(τ0, r), one can write eq. (7) as

h̃
(m)
i (τ, r) =

∑
l′

G
(m)
i1 ; l′(τ, τ0, r) w̃

(m)
l′ +

1

4π

∑
m′,m′′,l′,l′′

δm,m′+m′′H
(m′,m′′)
i11 ; l′l′′ (τ, τ0, r) w̃

(m′)
l′ w̃

(m′′)
l′′ + . . . (8)
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with

G
(m)
i1 ; l′(τ, τ0, r) =

∫
r′

G
(m)
i1 (τ, τ0, r, r

′) Jm

(
k

(m)
l′ r′

)
, (9)

and similarly for Hi11 ; l′l′′ .

According to (7), if one initializes fluctuations with a single mode of weight w̃
(m)
l , as done in Fig. 1, then

corrections that are quadratic in the fluctuations h̃i(τ0) will not appear in the time-evolved harmonics h̃
(m)
i ,

but in the harmonics h̃
(2m)
i and h̃

(0)
i instead. Also the third order correction enters the fluctuating fields in

h̃
(3m)
i (and it enters in h̃

(m)
i as a correction that is subleading by two orders compared to the leading linear

response). To illustrate this general feature, one can compare the dominant linear response wBG w̃
(2) shown

in Fig. 1 with the leading quadratic (wBG w̃
(0), wBG w̃

(4)) and cubic (wBG w̃
(6)) corrections displayed in

Fig. 2. We observe that quadratic (cubic) corrections scale with the square (the cube) of the initial weight

w̃
(2)
1 , as expected from (7). Moreover, even for a weight w̃

(2)
1 = 0.5, quadratic corrections are approximately

a factor 5 smaller than the linear response, and cubic corrections are another factor 5 smaller than the
quadratic ones. From Ref. [18], we know that for realistic initial conditions in heavy ion collisions, the

average weights of basis modes are of order O(0.1) and that only the tails of event distributions in w̃
(m)
l

may reach values of order 0.5. Fig. 2 thus indicates that non-linear corrections, while clearly present, can
be treated as small perturbations for fluctuations of realistic weight.

So far, we have demonstrated with examples that Eq. (8) explains the dominance of linear response and
the relative size and ordering of the overtones induced by one basis fluctuation. We have checked extensively
that the same equation explains also the structure and symmetries of the hydrodynamic interactions between
initial perturbations with different wave numbers. Fig. 3 illustrates this point with a case for which two

perturbations w̃
(2)
2 , w̃

(3)
1 are embedded on top of the initial background fields. We have checked that the

second (third) harmonics w̃(2)(τ, r) (w̃(3)(τ, r)) of the fluid dynamic response scale linearly with the initial

weight w̃
(2)
2 (w̃

(3)
1 ) and that they agree to high accuracy with the response to an initial configuration in

which only one mode w̃
(2)
2 (w̃

(3)
1 ) is embedded on top of wBG (data not shown). Also, w̃(4)(τ, r) scales with

the square of w̃
(2)
2 (data not shown), similarly to the case shown in Fig 2. For studying interactions between

different modes, we show in Fig. 3 the first and fifth harmonics that according to eq. (8) are the only

harmonics that receive leading second order contributions proportional to w̃
(2)
2 w̃

(3)
1 . If ψ(2) 6= ψ(3), then the

responses wBGw̃
(1) and wBGw̃

(5) have both a real and an imaginary part. Both parts exhibit the expected

scaling with w̃
(2)
2 w̃

(3)
1 , as seen in Fig. 3. Also, according to (8), the phases of the first and fifth harmonics are

determined by the orientations of the initial perturbations. The comparison with the full numerical results
in the middle panel of Fig. 3 shows that this perturbative expectation is realized approximately (strong
deviations are seen only for values of the radius r for which either Re

[
w̃(m)

]
or Im

[
w̃(m)

]
approach zero

and for which the orientation is thus not well defined). To add one level of complication, we consider finally

the sixth harmonics wBGw̃
(6) that, according to (8), receives corrections of second order in w̃

(3)
1 and of third

order in w̃
(2)
2 . Fig. 3 shows that weighting both contributions with the perturbatively expected information

on phases and amplitude provides for a full quantitative understanding of the numerically determined signal
wBGw̃

(6) as overtones of the two initial perturbations.
Realistic initial conditions for the fluid dynamic evolution of heavy ion collisions are expected to involve

fluctuations on many different length scales and with large amplitude. Could it be that the examples dis-
cussed so far, although initialized with relatively large amplitudes, are still academic, and that they cannot
be extended to deal with the complexity of a realistic heavy ion collision? To lay such concerns at rest, we
have embedded simple basis modes in realistic initial conditions with many and large fluctuations. Fig. 4
shows such an initial distribution. It is constructed by subtracting from an arbitrary initial condition gener-
ated by a Glauber model the contribution leading to a second harmonic and adding then the perturbation
of (5). In this way, we have an analytically controlled initial perturbation on top of a realistically fluctuat-
ing background, and we can extract this initial perturbation and the time dependence of its fluid dynamic
response via Fourier analysis. The lower panel of Fig. 4 shows that this dynamical response in an event with
realistic fluctuations is described to high accuracy by the linear response on top of the smooth background
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Figure 3: Results from ECHO-QGP for evolving up to τ = τ0+10 fm/c on top of the background of Fig. 1 an

initial condition composed of two basis modes with weights w̃
(2)
2 , w̃

(3)
1 and angles ψ(2) = 0 and ψ(3) = −0.2.

Upper row: Real and imaginary part of the first (wBGw̃
(1)) and fifth (wBGw̃

(5)) harmonics of the enthalpy.

The curves shown are for the four combinations of w̃
(2)
2 = 0.1, 0.25 and w̃

(3)
1 = 0.1, 0.25 and illustrate scaling

behavior. Middle row: The phase Arg
[
w̃(m)(τ, r)

]
of the m-th harmonic mode (solid) compared to the

perturbative expectation (dashed line) based on Eq. (8). Lower row: Real and imaginary part of the sixth
harmonic (solid lines). The dashed and dotted lines show results for the individual contributions of single
basis modes. When appropriately weighted with the phase factors according to the perturbative Eq.(8), their
sum agrees with the full numerical result. This illustrates that the interaction between initial perturbations
of different wave numbers can be understood perturbatively.

that we had established in Fig. 1.
In summary, the evolution of initial anisotropic density perturbations as determined numerically with the

fluid dynamics solver ECHO-QGP seems to follow a simple pattern that can be understood order-by-order
in a perturbative expansion for small deviations from an azimuthally symmetric event-averaged background.
The leading order is linear and modes with different azimuthal wave numbers do not mix. Quadratic and
higher orders can be seen as next-to-leading order corrections. They influence modes with azimuthal wave
numbers that can be written as sums (or differences) of the seed wave numbers. Since the non-linear
couplings are numerically small, the higher harmonics generated by two-mode or three-mode interactions
will often be small in comparison to initially present and linearly evolving perturbations. This ordering
may be less pronounced for non-central collisions where the elliptic modes (with m = 2) have a particularly
strong weight such that its overtones with m = 4, 6 etc. may dominate over primordial density perturbations
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Figure 4: Upper panels: Left: Example of an initial condition with many fluctuating modes w̃
(m)
l , m 6= 2,

and the mode w̃
(2)
1 = 0.5 on top of the background wBG. Right: The same distribution, evolved up to

τ = τ0 + 5 fm/c. Lower panel: The second harmonics w̃(2)(τ, r) extracted for different times τ . Results
extracted from the fluctuating event shown in the upper panel are compared to the case shown in Fig. 1

in which w̃
(2)
1 = 0.5 is the only mode embedded on top of a smooth background. This illustrates that the

assumption of a predominantly linear response on top of a suitably chosen background is applicable for
realistic initial conditions that display strong fluctuations.

with these wave numbers. We also note that the relative importance of linear and non-linear terms depends
significantly on the dissipative properties of the medium. In exploratory studies that lie outside the scope
of this letter, we found that for increasing η/s, the linear response is more dominant and the relative weight
of higher non-linear orders decreases. Such a more laminar behavior is expected on general grounds. All
results shown in this Letter are for a rather minimal value of η/s = 1/4π which maximizes contributions
from non-linear corrections.

The perturbative picture expressed by eqs. (2) or (7) provides a useful ordering scheme for a more detailed
understanding of the evolution of fluctuations in hydrodynamic fields. The numerical results discussed here
provide motivation for a more formal and thorough development of this kind of perturbation theory. It is
unclear whether all initial perturbations in hydrodynamic fields follow a similar pattern. In particular, from
general fluid dynamic considerations one may expect that non-linear terms are more important for vorticity
excitations [24].

Another open question concerns the freeze-out from hydrodynamic fields to particle spectra. To linear
order in a mode-by-mode treatment of fluid dynamic perturbations this was discussed recently [21]. However,
non-linear corrections arise there as well. For instance, the proportionality v4 ∝ (v2)2 was conjectured in
[23] as a consequence of this effect. It would be interesting to see how large these non-linearities are in
comparison to the ones from the fluid dynamic propagation as discussed here.

It will also be interesting to investigate whether the approach presented here can provide a more detailed
dynamical underpinning of results in the recent literature. For instance, the experimentally accessible
reaction plane correlations formulated and studied in Refs. [7, 25, 26, 27] are akin of the constraints on the

7



phases of higher order contributions in the perturbative ansatz (8). Similarly, the (non-linear) response to
cumulants of the initial density distribution as formulated and studied in Refs. [10, 11, 27] may be related
to some integrated version of eq. (7).
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