The Performance and Radiation Hardness of the _ Outer Tracker Detector for LHCb

8 Oct 2013 13th Topical Seminar on Innovative Particle and Radiation Detectors

Niels Tuning on behalf of the LHCb Outer Tracker

Outer Tracker collaboration

R. Arink¹, S. Bachmann², Y. Bagaturia², H. Band¹, Th. Bauer¹, A. Berkien¹, Ch. Färber², A. Bien², J. Blouw², L. Ceelie¹, V. Coco¹, M. Deckenhoff³, Z. Deng⁷, F. Dettori¹, D. van Eijk¹, R. Ekelhof³, E. Gersabeck², L. Grillo², W.D. Hulsbergen¹, T.M. Karbach^{3,4}, R. Koopman¹, A. Kozlinskiy¹, S. Kukulak⁵, Ch. Langenbruch², V. Lavrentyev¹, Ch. Linn², M. Merk¹, J. Merkel³, M. Meissner², J. Michalowski⁵, P. Morawski⁵, A. Nawrot⁶, M. Nedos³, A. Pellegrino¹, G. Polok⁵, O. van Petten¹, J. Rövekamp¹, F. Schimmel¹, H. Schuylenburg¹, R. Schwemmer^{2,4}, P. Seyfert², N. Serra¹, T. Sluijk¹, B. Spaan³, J. Spelt¹, B. Storaci¹, M. Szczekowski⁶, S. Swientek³, N. Tuning¹, U. Uwer², D. Wiedner², M. Witek⁵, M. Zeng⁷, A. Zwart¹.

¹Nikhef, Amsterdam, The Netherlands
²Physikalisches Institut, Heidelberg, Germany
³Technische Universität Dortmund, Germany
⁴CERN, Geneva, Switzerland
⁵H. Niewodniczanski Institute of Nuclear Physics, Cracow, Poland
⁶A. Soltan Institute for Nuclear Studies, Warsaw, Poland
⁷Tsinghua University, Beijang, China

Outline

- LHCb and the Outer Tracker
- Ageing: the saga
- OT performance in LHC run I
- Radiation hardness
- Outlook

A CON

ARC N-

12

23 sep 2010 Run 79646

19:49:24 Event 143858637

Other LHCb contributions (Yesterday, Monday 16:55)

- Christian Elsasser
- Agnieszka Oblakowska
- Kazu Akiba

<u>The LHCb Silicon Tracker</u> <u>The LHCb Vertex Locator - Performance and Radiation Damage</u> <u>The LHCb Vertex Locator - Upgrade Plans</u>

N. Tuning (7/27)

Tracking: $dp/p \sim 0.4-0.6\%$

Tracking: $dp/p \sim 0.4-0.6\%$

Outer Tracker

The set

- Contraction

R. a

N. Tuning (10/27)

Outer Tracker

Outer Tracker

- Very rapid; -30% in 15 hours
- Not seen in R&D phase, despite extensive ageing tests

N. Tuning (13/27)

> <u>Cause:</u>

- Manufacturer changed plastifier: $AY103 \rightarrow AY103-1$
- Culprit: di-isopropyl-naphthalene

Good news:

- Oxygen slows ageing (increase of ozone)
- Large dark currents cures gain loss

Outline

- LHCb and the Outer Tracker
- Ageing: the saga
- ➢ OT performance in LHC run I
- Radiation hardness
- Outlook

OT Performance in LHC Run I

LHCb Integrated Luminosity pp collisions 2010-2012

Radiation hardness

OT Performance in LHC Run I - Readout

- <u>Gas gain</u>: ~ 5×10^4
- Analog signal: ~ $10^6 e^-$
- ASD: Ampl, Shape, Discr.
- TDC: 0.4 ns stepsize

120

110

100

90

80

70

Threshold

(a)

- <u>Pipeline</u>: 160 BX deep (= 4 μ s)
- <u>GOL</u>: Upon L0 trigger, readout 3 BX

Fast and

Detector module 2 x 64 straws

Noise level ~ 10⁻⁴

Niels Tuning (17)

OT Performance in LHC Run I – Dead channels

• <u>During data taking</u>: use test pulses

• Offline: find channels too few/many hits

Noise/Dead channels: ~ 200/53760 = 0.4%

 \rightarrow run number

OT Performance in LHC Run I – Calibration

OT Performance in LHC Run I – Drift time spectrum

OT Performance in LHC Run I – Occupancy

OT Performance in LHC Run I – Efficiency

- Efficiency to detect hit in center of cell |r|<1.25mm: ~ 99.3%
- Average efficiency per module: ~ **98.8%**

Single hit efficiency |r|<1.25mm: ~ 99.3%</p>

OT Performance in LHC Run I – Alignment/Resolution

- Design specification: 200 µm
- Straws accurately positioned in module $\pm 50 \ \mu m$
- Module hung with accuracy of $\pm 50 \ \mu m$ (\rightarrow are modules straight?)
- Frames positioned within ±1 mm
- Optical survey ±0.2 mm
- Final alignment with tracks

> Internal alignment of mono-layers within a module improves resolution $210 \rightarrow 180 \mu m$

Outline

- LHCb and the Outer Tracker
- Ageing: the saga
- OT performance in LHC run I
- Radiation hardness
- Outlook

Radiation hardness

Two methods to monitor gain loss

- 1) During technical stops
 - ⁹⁰Sr scans to measure detector response

2) During LHC operation

Radiation hardness

et al, 62

Conclusions & Outlook

- Outer Tracker performed superbly in run I
 - Few dead or noisy channels
 - No irradiation effects observed
 - High hit efficiency (>99%) and resolution (~200 μ m)
- Looking forward to **run II**
 - 2015
 - $-\sqrt{s} = 13 \text{ TeV}$
 - 25 ns bunch spacing

- Tracker for **run III** to be decided
 - 2020
 - $L = 2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$
 - Occupancy too high for present OT

- Internal misalignments
- Effective ionization length
- Signal reflections: "walk" correction

Internal module alignment

- Recently improved alignment
- Relative shift of monolayers
- > Resolution 210 → 179 μ m

Ionization length

cathode surface

Signal reflections; walk correction

- Signal is reflected at center
- Hits close to center, get larger amplitude
- Larger amplitude, earlier time: "walk"

> Time correction as function of vertical position