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The kinetic freeze-out for the hydrodynamical description of relativistic heavy-ion collisions is discussed using
a background-fluctuation splitting of the hydrodynamical fields. For a single event, the particle spectrum, or its
logarithm, can be written as the sum of the background part that is symmetric with respect to azimuthal rotations
and longitudinal boosts and a part containing the contribution of fluctuations or deviations from the background.
Using a complete orthonormal basis to characterize the initial state allows one to write the double differential
harmonic-flow coefficients determined by the two-particle correlation method as matrix expressions involving
the initial fluid correlations. We discuss the use of these expressions for a mode-by-mode analysis of fluctuating
initial conditions in heavy-ion collisions.
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I. INTRODUCTION

Fluid-dynamic models of relativistic heavy-ion collisions
at BNL Relativistic Heavy Ion Collider (RHIC) and at the
CERN Large Hadron Collider (LHC) provide an overall good
description of transverse momentum spectra and harmonic-
flow coefficients up to about pT � 2–3 GeV [1–13]; for
reviews, see Refs. [14–16]. The initialization of these models
needs to account for eventwise fluctuations [17–22], as they
may arise either from quantum fluctuations or from the
substructure of nuclei in terms of nucleons. Recently, we have
developed an approach [23] that allows for a differential study
of the effects of such fluctuations in the fluid-dynamic fields.
It is based on a mode-by-mode decomposition of fluctuations
in single events, on a functional characterization of initial
conditions for event classes, and on a background-fluctuation
splitting for the hydrodynamical evolution. Here, we give a
technically complete documentation of how kinetic freeze-out
of fluctuating modes is handled in this mode-by-mode hydro-
dynamics. In particular, we provide explicit expressions for
the hadronic response to specific fluid-dynamic fluctuations.
These expressions are of more general interest because they
can be used to establish to what extent specific fluid-dynamic
features are washed out or survive hadronization.

In general, a fluid-dynamic description of an expanding
system ceases to be valid at kinetic freeze-out, when densities
become too low and microscopic interaction times become
too long to maintain the system close to local equilibrium.
This transition from fluid-dynamic behavior to free-streaming
particles occurs within a finite time after the collision and
within finite volume around the collision point. The Cooper-
Frye freeze-out prescription [24] is based on the assumptions
that freeze-out occurs sufficiently rapidly to approximate
it along a sharp three-dimensional freeze-out hypersurface
�f , and that the occupation numbers on �f are given
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by free thermal single-particle distribution functions.1 Both
assumptions may be questioned. In particular, one often
employs in phenomenological applications a smoother freeze-
out prescription in which the switch to particle distribution
functions at fixed �f is followed by an intermediate regime of
hadronic scatterings, described, for example, by Boltzmann’s
equation; see, for example, Ref. [25] for a discussion how this
can be done within viscous hydrodynamics. This procedure
is interesting because it can give insight into the relevance
of a four-dimensional freeze-out volume and a regime of
hadronic scattering. However, the usual choice for initializing
this regime is again some Cooper-Frye freeze-out prescription,
although it would be more consistent to base the initialization
in this case on occupation numbers for interacting particles.
At least in this sense, the currently used refinements of
the Cooper-Frye freeze-out prescription involve additional
model assumptions. In the present work, we study freeze-out
of fluid-dynamic fluctuations into free-streaming particles
without taking hadronic scattering into account, but we discuss
finally how these effects could be taken into account and where
they may be relevant.

This paper is organized as follows. In Sec. II, we first review
the Cooper-Frye freeze-out condition for a fluid with finite bulk
and shear viscosity. We focus, in particular, on azimuthally
symmetric freeze-out conditions, but we emphasize already
here that such highly symmetric freeze-out conditions are
also relevant for collisions at finite impact parameter. The
reason is that mode-by-mode hydrodynamics employs a
background-fluctuation splitting of all fluid-dynamic fields.
The background part is chosen to be invariant under rotations in
the transverse plane and longitudinal boosts, and the freeze-out
hyper-surface will inherit these symmetries because we take
it as the surface of constant background temperature. This
is slightly different from standard Cooper-Frye prescriptions,

1Historically, the Cooper-Frye condition was proposed as an
improvement of earlier freeze-out conditions going back to the work
of Landau [26], and there is some debate on how freeze-out along a
sharp hypersurface may be improved further [27,28].
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where �f is defined as the surface of constant temperature, but
the two descriptions can be mapped to each other to a given
order. At linear order in perturbations of the fluid-dynamic
fields around the background they are actually identical as we
show in Appendix B. All azimuthal asymmetries, irrespective
of whether they arise from eventwise fluctuations or from
collisions at finite impact parameter, are then encoded in
fluctuating modes that are frozen out on the azimuthally
symmetric hypersurface �f . We discuss this procedure for
the background fields and for the fluctuating fields in Sec. III.
In Sec. IV we finally provide explicit expressions for a
mode-by-mode decomposition of the fluctuating fields before
briefly discussing our results in an outlook and conclusions
section. Appendix A compiles some analytic expressions for
rapidity and azimuthal integrals and we discuss the difference
between a freeze-out at constant background temperature and
one at constant total temperature in Appendix B.

II. COOPER-FRYE KINETIC FREEZE-OUT AND
OCCUPATION NUMBER

Quite generally, we assume that at a space-time point x
where the system is still close to local thermal equilibrium the
occupation number for a specific particle species i takes the
form

dNi

d3pd3x
= fi(pμ; T (x),uμ(x),πμν(x),πbulk(x)). (1)

Here the single-particle distribution function fi depends on
the four-momentum pμ of the particle, and it depends on the
position x through the values that the fluid-dynamic fields take
at x. In Eq. (1), we have written the fluid-dynamic fields of
temperature T , velocity uμ, shear stress πμν , and bulk viscous
pressure πbulk explicitly. Equivalently, we could have used
reparametrizations of these fields, such as energy density, en-
tropy, or enthalpy, instead of T . If further fluid-dynamic fields
would be relevant for characterizing the fluid, the distribution
function fi would depend on them as well. In particular, we
neglect here and in what follows nonzero conserved baryon
number or electric charge, as well as electromagnetic fields,
and we do not consider the dependence of occupation numbers
on spin. The expression in Eq. (1) can be used both for (a set of)
on-shell particles where E =

√
m2

i + �p2 and for resonances
with nonzero width. In that case, E =

√
νi + �p2 and the values

of νi are determined by the spectral density ρi(νi).
Following the prescription of Cooper and Frye the particle

spectrum after kinetic freeze-out is given as

E
dNi

d3p
= − 1

(2π )3
pμ

×
∫

�f

d�μ fi(pμ; T (x),uμ(x),πμν(x),πbulk(x)).

(2)

The integral is here over a three-dimensional hypersurface �f ,
where kinetic equilibrium is just still valid. This is sometimes
referred to as the “surface of last scattering.” The minus
sign accounts for our choice of the metric with signature
(−,+,+,+).

There is no precise theory on how the freeze-out surface
is determined by physical principles.2 The general idea is that
it corresponds to the point in the evolution of a fluid element
where the scattering rate between particles becomes too small
to maintain kinetic equilibrium. This is characterized often
by the condition that particle densities become smaller than
a certain value corresponding to some freeze-out temperature
Tfo. However, a dynamical freeze-out criterion may be more
physical; see, for example, Ref. [32] for a recent attempt in
this direction. This is so because freeze-out should depend
also on the history of the collision as can be understood
when thinking about a hypothetical very slow expansion where
thermal equilibrium would be maintained down to very small
temperatures.

A. Freeze-out at constant background temperature

As recalled in Sec. IV, mode-by-mode hydrodynamics
is based on a background-fluctuation splitting of all fluid-
dynamic fields. Instead of the standard condition of freeze-out
on a hypersurface of constant temperature, we work in the
following with the related but slightly different prescription of
using a hypersurface of constant background temperature. For
a particular event the actual temperature as determined by the
sum of background and fluctuating hydrodynamical fields can
then vary on this surface, and the occupation numbers must
be corrected accordingly. To any given order in fluctuations,
a freeze-out at strictly constant temperature can be mapped
to this description. In principle, one has to include correction
terms that account for the change in particle spectra between
the two surfaces. To linear order in fluid-dynamic fields these
correction terms vanish as we show in Appendix B. In any
case, in the absence of a precise theory of freeze-out we do not
see a physics argument that would prefer one of these closely
related freeze-out conditions.

In the following, we choose to absorb the entire nontrivial
dependence of fluid-dynamic fields on azimuthal angle and
space-time rapidity in the fluctuating part of fluid-dynamic
fields. The background part of the fluid-dynamic fields is
then invariant under azimuthal rotations and Bjorken boost
transformations. In general, the freeze-out surface at constant
temperature will depend on the azimuthal angle 0 � ϕ < 2π ,
the space rapidity −∞ < η < ∞, the proper time τ , and
the radius r . However, for the symmetric background field
considered here, freeze-out on a hypersurface of constant
background temperature is characterized for all ϕ and η by
the same one-parameter curve in the τ -r plane,

τ = τ (α), r = r(α), (3)

2Here, we discuss only kinetic freeze-out. For the chemical freeze-
out it has been argued that the QCD phase transition or rapid crossover
with decreasing temperature at small baryon densities provides a
distinguished event in the typical evolution of a heavy-ion collision,
where the scattering rates drop quickly [29], leading to Tfo ≈ Tc; see
also Ref. [30] for arguments in this direction. At high baryon number,
or lower collision energy, the chemical freeze-out does not seem to be
related to any phase transition but rather to a fixed value for baryon
number density [31].
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FIG. 1. (Color online) Freeze-out curve at constant background
temperature T0 = 120 MeV in the plane of Bjorken time τ =√

t2 − z2 and radius r =
√

x2
1 + x2

2 for a central Pb-Pb collision at
LHC energy. We compare different choices for the shear viscosity-to-
entropy ratio: η/s = 0 (gray, uppermost curve at small r), η/s = 0.08
(blue, middle curve at small r), and η/s = 0.3 (orange, lowermost
curve at small r). The arrows indicate the direction of the fluid velocity
at freeze-out for the case η/s = 0.08.

where without loss of generality we take α ∈ [0; 1]. Figure 1
shows the freeze-out curve in the τ -r plane at constant
background temperature T0 for a central Pb-Pb collision at
LHC energies. The location of the freeze-out surface and the
values of all fluid-dynamic fields along it vary with the value
of the shear viscosity over entropy ratio; see Fig. 1.

Because we expand also events at finite impact parameter
in terms of fluctuations on top of an azimuthally symmetric
background, the freeze-out for central and noncentral Pb-Pb
collisions is always described by a one-parameter curve of
the form (3). In practice, one can define this background field
for instance as the azimuthally averaged event sample of the
corresponding centrality class [33]. To formulate freeze-out
along (3), we use standard Cartesian laboratory coordinates
t,x1,x2,z,

t = τ (α) cosh(η), x1 = r(α) cos(ϕ),
(4)

x2 = r(α) sin(ϕ), z = τ (α) sinh(η),

and we write the surface element as

d�μ = τ (α)r(α)

(
∂r

∂α
cosh(η),

∂τ

∂α
cos(ϕ),

∂τ

∂α
sin(ϕ),

∂r

∂α
sinh(η)

)
dαdϕdη. (5)

For the particle four-momentum,

pμ = (−E,p1,p2,p3) = (−mT cosh(ηP ),pT cos(φ),

pT sin(φ),mT sinh(ηP )), (6)

we use a parametrization in terms of the transverse mass

m2
T = E2 − p2

3, the transverse momentum pT =
√

p2
1 + p2

2,
the momentum-space rapidity ηP = arctanh(p3/E), and the

(momentum) azimuthal angle φ = arctan(p2/p1). Transverse
mass and momentum are related by m2

T = m2
i + p2

T or m2
T =

νi + p2
T for particles and resonances, respectively. In these

coordinates, the freeze-out surface element that enters the
Cooper-Frye formula (2) reads

− pμd�μ = τ (α)r(α)

[
∂r

∂α
mT cosh(ηP − η)

− ∂τ

∂α
pT cos(φ − ϕ)

]
dαdϕdη. (7)

B. Distribution functions at freeze-out

We now discuss the distribution function fi in Eq. (1). Close
to thermal equilibrium, it is of the form

fi = fi,eq + δfi, (8)

where fi,eq accounts for the equilibrated part and δfi describes
some deviation. The equilibrated part does not depend on
the shear stress and the bulk viscous pressure. It is a Lorenz
scalar and must therefore be of the form fi,eq = fi,eq(pμuμ,T ).
If kinetic freeze-out happens in a regime where chemical
equilibrium is no longer maintained, then the equilibrated
occupation numbers fi,eq also depend on chemical potentials
μi(T ). In agreement with our approximation to neglect all
conserved currents apart from energy and momentum these
chemical potentials are not independent in the thermodynamic
sense but are functions of the temperature.

If deviations δfi from equilibrium are sufficiently small,
then they will be linear in the shear stress tensor and the bulk
viscous pressure. Using that δfi is a Lorentz scalar and that
uμπμν = 0, one can write

δfi = pμpνπ
μν gi(pμuμ,T ,μi)

(ε + p)T 2

+pμpν�
μν πbulk

hi(pμuμ,T ,μi)

(ε + p)T 2
, (9)

where �μν = gμν + uμuν . The ansatz chosen here makes the
functions gi and hi dimensionless. According to this ansatz,
the most general distribution function fi in Eq. (1) can be
written in terms of the three functions fi,eq, gi , and hi . The
explicit form of the distribution fi,eq is, of course, fixed from
the condition of thermodynamic equilibrium. However, the
functions gi and hi that characterize deviations will depend on
the microscopic dynamics underlying equilibration processes.
In principle, these functions can be determined from a proper,
microscopic, quantum field theoretic calculation in thermal
equilibrium using linear response theory.

So far we made no assumptions about the size of interaction
effects and the discussion was actually not constrained to the
regime where perturbation theory or kinetic theory are valid.
In particular one may use the formula derived so far to switch
from the hydrodynamic description to a more microscopic
scattering theory when a particular hypersurface, for example
at a certain temperature, is crossed. In general, the equilibrated
occupation numbers fi,eq on such a hypersurface would be
those of an interacting system and would differ from the ideal
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gas form. We now leave these general considerations aside
and specialize to a freeze-out happening at a point where
interaction effects cease to be important. Then, the equilibrated
occupation numbers are given by their ideal gas form,

fi,eq(pνu
ν,T ,μi) = 1

e
−pνuν−μi

T ∓ 1
, (10)

for bosons and fermions, respectively. Also, the energy-
momentum tensor at a point x is then linear in the occupation
numbers for different particle species i,

T μν =
∑

i

T
μν
i =

∫
d3p

(2π )3E
pμpν fi. (11)

Identifying the equilibrated parts on both sides of this equation,
one finds for the energy density and pressure

εi =
∫

d3p

(2π )3E
E2 fi,eq,

(12)

pi =
∫

d3p

(2π )3E

1

3
�p2 fi,eq.

For simplicity we have chosen here a reference frame where
uμ = (1,0,0,0). Similarly, projecting the nonequilibrated part
of Eq. (11) to the transverse and traceless component yields

π
jk
i = πjk

(ε + p)T 2

∫
d3p

(2π )3E

2

15
| �p|4 gi, (13)

and taking the trace one gets

πbulk,i = πbulk

(ε + p)T 2

∫
d3p

(2π )3E

1

3
| �p|4 hi. (14)

The form of δf in Eq. (9) makes sure that energy density
and pressure are not corrected by the shear viscous part ∼gi .
For hi one has one additional constraint,∫

d3p

(2π )3E
E2| �p|2 hi = 0, (15)

which ensures that energy density is not modified. Com-
parison to Eq. (14) shows that hi = 0 for massless
particles.

As mentioned above, the specific form of gi will depend on
the microscopic dynamics of equilibration processes. To what
extent this form is model-dependent has been discussed, for
instance, in Ref. [34]. In what follows, we use the so-called
quadratic ansatz [34,35],

gi = 1
2fi,eq(1 ± fi,eq). (16)

For a single-component gas one can check that with this
choice Eq. (13) is fulfilled within a few percent for bosons,
fermions, and Boltzmann distributed particles. Technically,
it is convenient to expand fi,eq in powers of the Boltzmann
factor exp[pνu

ν+μi

T
]. We therefore work in the following with

the occupation numbers

fi =
∞∑

j=0

[
1 + pμpνπ

μν

2(ε + p)T 2
(1 + j )

]
(±1)j e

pνuν+μi
T

(1+j )

(17)
for bosons and fermions, respectively.

III. PARTICLE SPECTRA AND BACKGROUND-
FLUCTUATION SPLITTING

In Sec. II, we have shown that the particle spectrum (2) can
be written as

E
dNi

d3p
= 1

(2π )3

∫
�f

dαdϕdη τ (α) r(α)

[
∂r

∂α
mT cosh(ηP − η) − ∂τ

∂α
pT cos(φ − ϕ)

]

×
∞∑

j=0

[
1 + pμpνπ

μν

2(ε + p)T 2
(1 + j )

]
(±1)j e

pνuν+μi
T

(1+j ), (18)

where integration is over an azimuthally symmetric and
Bjorken boost invariant hypersurface �f . The fluid-dynamic
fields uμ, T , πμν , and μi that appear in Eq. (18) are
evaluated on �f . Choosing this freeze-out to occur at
constant background temperature T0 means that we perform
a background-fluctuation splitting of the temperature into a
position-independent background and a position-dependent
fluctuation term,

T (α,ϕ,η) = T0 + δT (α,ϕ,η). (19)

For all other fluid-dynamic fields, the background terms can
depend on the position along �f , but they share the symmetries
of �f . We therefore write for the background-fluctuation

splitting

uμ(α,ϕ,η) = u
μ
0 (α) + δuμ(α,ϕ,η), (20)

πμν(α,ϕ,η) = π
μν
0 (α) + δπμν(α,ϕ,η), (21)

and likewise for other fluid-dynamic fields such as πBulk. The
chemical potentials μi are assumed to depend only on temper-
ature T so that they can be written as in Eq. (19). We recall
that the ansatz (19)–(21) is valid also for collisions at finite
impact parameter, because it allows for the parametrization of
arbitrary ϕ dependencies of the fluid fields. One way to see that
the background-fluctuation splitting (19)–(21) is physically
meaningful is to consider the background parts of all fields as
characterizing the event average over many collisions (with
random azimuthal orientation), while the fluctuating parts
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characterize event-specific fluctuations. For more technical
details on this point, see Ref. [33].

The strategy of the following is to use the ansatz
(19)–(21) to expand the spectrum (18) in fluctuations around
the background fields. We do this by evaluating first the
zeroth-order background contribution to Eq. (18) in Sec. III A.
We then discuss in Sec. III B the contributions that arise from
first order in fluctuations. We anticipate that the final result
of this exercise will be a set of equations that relate in a
very explicit form-specific modes of fluctuating hydrodynamic
fields to specific features in experimental observables.

A. Zeroth order in fluctuations: The background contribution

To zeroth order in fluctuations, the temperature dependence
of the spectrum (18) reduces to a dependence on T0. As for the

background fluid velocity u
μ
0 , symmetries imply that only the

temporal and radial components can take nonvanishing values
in Bjorken coordinates τ,r,ϕ,η. The Lorentz scalar pμu

μ
0 in

Eq. (18) hence takes the form

pμu
μ
0 = −mT uτ

0 cosh(ηP − η) + pT ur
0 cos(φ − ϕ).

(22)

For the background part of the shear stress tensor symmetries
imply that only the components πττ

0 , πτr
0 , πrτ

0 , πrr
0 , π

ϕϕ
0 ,

and π
ηη
0 are nonzero. Owing to the transverse and traceless

constraints, only two of them are actually independent. We
choose a parametrization of the form [still in coordinates
(τ,r,ϕ,η)]

π
μν
0 = (ε0 + π0)

⎛
⎜⎜⎜⎜⎜⎝

(
ur

0

)2(
π̃ t

0 − 1
2 π̃

ηη
0

)
uτ

0u
r
0

(
π̃ t

0 − 1
2 π̃

ηη
0

)
0 0

uτ
0u

r
0

(
π̃ t

0 − 1
2 π̃

ηη
0

) (
uτ

0

)2(
π̃ t

0 − 1
2 π̃

ηη
0

)
0 0

0 0 1
r2

( − π̃ t
0 − 1

2 π̃
ηη
0

)
0

0 0 0 1
τ 2 π

ηη
0

⎞
⎟⎟⎟⎟⎟⎠. (23)

Here and in the following, we denote with a tilde suitably rescaled field components. Entering with these equations the single
inclusive hadron spectrum (18) and performing the integrals over space rapidity η and azimuthal angle ϕ using the identities in
Appendix A, one finds

S0(mT ,pT ) = 1

2π2

∫
dα τ (α)r(α)

∞∑
j=0

(±1)j e
μi0
T0

(1+j )
[

dr

dα
mT K1

(
mT uτ

0

T0
(1 + j )

)
I0

(
pT ur

0

T0
(1 + j )

)
− dτ

dα
pT

×K0

(
mT uτ

0

T0
(1 + j )

)
I1

(
pT ur

0

T0
(1 + j )

)
+ dr

dα
mT π̃ t

0 Z1

(
mT

T0
,
pT

T0
,uτ

0,u
r
0,j

)
− dτ

dα
pT π̃ t

0 Z2

(
mT

T0
,
pT

T0
,uτ

0,u
r
0,j

)

+ dr

dα
mT π̃

ηη
0 Z3

(
mT

T0
,
pT

T0
,uτ

0,u
r
0,j

)
− dτ

dα
pT π̃

ηη
0 Z4

(
mT

T0
,
pT

T0
,uτ

0,u
r
0,j

)]
. (24)

Here In(z) and Kn(z) are modified Bessel functions of the first
and second kind, respectively, and the integration kernels Z1,
Z2, Z3, and Z4 are given in Appendix A.

For a given form of the independent hydrodynamic fields
T0, ur

0, π̃ t
0, and π̃

ηη
0 , Eq. (24) determines the correspond-

ing background particle spectrum as an integral over the
freeze-out hypersurface at fixed background temperature.
It can be evaluated for different particle species by using
the appropriate relation between mT and pT and adding
the appropriate degeneracy factors for spin and isospin. In
Fig. 2 we show the functions τ (α), r(α), ur

0(α), π̃ t
0(α),

and π̃
ηη
0 (α) for a hydrodynamic calculation corresponding to

central Pb-Pb collisions at the LHC. The parameters such
as initialization time, initial temperature, etc., have been
chosen as in Ref. [36] and the freeze-out curve corresponds to
Fig. 1.

In Fig. 3 we plot the background contribution S0(mT ,pT ) to
the single inclusive transverse momentum spectrum of pions

and protons, neglecting spin and isospin degeneracy factors,
as well as chemical potentials. We compare different values of
the shear viscosity-to-entropy ratio. We also show the result
obtained without the term linear in the shear stress, i.e., with
π̃ t

0 = π̃
ηη
0 = 0 in Eq. (24). The result changes only slightly:

At LHC energies the lifetime of the fireball is long enough for
the background part of the shear stress to relax, largely to its
equilibrium value.

B. Particle spectra and harmonic-flow owing
to fluctuating fields

We discuss now how fluctuations around the background
hydrodynamic fields contribute to the particle spectrum
at freeze-out. To that end we first introduce a specific
parametrization for fluctuations in all scalar, vector, and tensor
fields. For the enthalpy density w = ε + p and the fluid

034914-5



STEFAN FLOERCHINGER AND URS ACHIM WIEDEMANN PHYSICAL REVIEW C 89, 034914 (2014)

(a) (b)

ur t

FIG. 2. (Color online) (a) Freeze-out time τ (solid curves) and radius r (dashed curves) as a function of the parameter α which parameterizes
the freeze-out surface. (b) Background fluid velocity ur

0 (solid curves) and shear stress components π̃ t
0 (dashed curves) and π̃

ηη
0 (dotted curves)

as a function of the parameter α. We compare different choices for the shear viscosity to entropy ratio with the same color coding as in Fig. 1.

velocity on the freeze-out surface, we write to lowest order
in the deviations from the background fields

w = w0 + w0w̃ , uτ = uτ
0 + ur

0

uτ
0

ũr ,

(25)

ur = ur
0 + ũr , uϕ = 1

r
ũϕ, uη = 1

τ
ũη.

Here the fluctuating part is parametrized such that w̃, ũr , ũϕ ,
and ũη are dimensionless. It is useful to introduce a circular
polarization basis for the transverse components of the vector
field,

ũr = 1√
2

(ũ− + ũ+), ũϕ = 1√
2

(i ũ− − i ũ+). (26)

For the shear stress tensor, we parametrize fluctuations around
the background field to linear order in the form

πμν = π
μν
0 + (ε0 + p0)

⎛
⎜⎜⎜⎝

π̃ ττ π̃ τr 1
r
π̃ τϕ 1

τ
π̃ τη

π̃ rτ π̃ rr 1
r
π̃ rϕ 1

τ
π̃ rη

1
r
π̃ϕτ 1

r
π̃ϕr 1

r2 π̃
ϕϕ 1

τr
π̃ϕη

1
τ
π̃ ητ 1

τ
π̃ ηr 1

τr
π̃ ηϕ 1

τ 2 π̃
ηη

⎞
⎟⎟⎟⎠.

(27)

Not all components of this shear stress tensor are inde-
pendent. There is a constraint from the symmetry πμν =

πνμ that implies π̃μν = π̃ νμ. Also, the shear stress tensor
is traceless, πμ

μ = 0 and hence π̃ ττ = π̃ rr + π̃ϕϕ + π̃ ηη.
In addition, there is the orthogonality relation uμπμν = 0
that implies to linear order in the fluctuation field [uμ −
(u0)μ]πμν

0 + (u0)μ(πμν − π
μν
0 ) = 0. As a consequence of

these constraints, only five components of π̃μν are indepen-
dent. We choose them to be π̃ rϕ , π̃ϕϕ , π̃ rη, π̃ϕη, and π̃ ηη.
Again it is useful to employ a circular polarization basis,
writing

π̃ rϕ = 1√
2

(π̃−− + π̃++),

π̃ϕϕ = 1√
2

(iπ̃−− − iπ̃++) − 1

2
π̃ ηη,

(28)

π̃ rη = 1√
2

(π̃−η + π̃+η),

π̃ϕη = 1√
2

(iπ̃−η − iπ̃+η).

The dependent components of the shear stress tensor can be
expressed in terms of the independent ones as well as the

S pT S pT

pT pT

FIG. 3. (Color online) Background contribution to the particle spectrum S0(pT ) for pions (a) and protons (b). Spin or isospin degeneracy
factors are not taken into account. The curves are for different values of the shear viscosity-to-entropy ratio with the same color coding as in
Fig. 1. We also show the curves obtained if the shear stress contribution at freeze-out (“quadratic ansatz”) is neglected (dashed lines).
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velocity field,

π̃ ττ = 2ur
0

(
π̃ t

0 − 1

2
π̃

ηη
0

)
1√
2

(ũ− + ũ+) − (
ur

0

)2 1√
2

(iπ̃−− − iπ̃++) − 1

2

(
ur

0

)2
π̃ ηη,

π̃ τr =
(

uτ
0 +

(
ur

0

)2

uτ
0

)(
π̃ t

0 − 1

2
π̃

ηη
0

)
1√
2

(ũ− + ũ+) − uτ
0u

r
0

1√
2

(iπ̃−− − iπ̃++) − 1

2
uτ

0u
r
0π̃

ηη,

π̃ rr = 2ur
0

(
π̃ t

0 − 1

2
π̃

ηη
0

)
1√
2

(ũ− + ũ+) − (
uτ

0

)2 1√
2

(iπ̃−− − iπ̃++) − 1

2

(
uτ

0

)2
π̃ ηη, (29)

π̃ τϕ = − 1

uτ
0

(
π̃ t

0 + 1

2
π̃

ηη
0

)
1√
2

(iũ− − iũ+) + ur
0

uτ
0

1√
2

(π̃−− + π̃++),

π̃ τη = 1

uτ
0

π̃
ηη
0 ũη + ur

0

uτ
0

1√
2

(π̃−η + π̃+η).

In our construction the background fields w0, u
μ
0 , π

μν
0 and the freeze-out surface are symmetric with respect to azimuthal

rotations and Bjorken boost transformations. It is therefore useful to make a Fourier expansion for the fluctuation field according
to

w̃(τ (α),r(α),ϕ,η) =
∞∑

m=−∞

∫
dkη

2π
w̃(τ (α),r(α),m,kη)eimϕ+ikηη,

(30)
w̃(τ (α),r(α),m,kη)∗ = w̃(τ (α),r(α), − m, − kη),

and similar for ũ−, ũ+, and ũη and the fluctuations π̃μν in the shear viscous tensor. On the linear level, one can determine the
contribution of each mode to the spectrum separately. For symmetry reasons, this contribution will be proportional to a phase
factor eimφ+ikηηP , where φ and kη denote the momentum space azimuthal angle and rapidity, respectively. We introduce the
shorthand notation

w̃(α) = w̃(τ (α),r(α),m,kη), (31)

etc. On the freeze-out hypersurface, each mode is then characterized by the set of ten functions which are w̃(α), ũ−(α), ũ+(α),
and ũη(α) and the five independent components of π̃μν(α). From Eq. (18), we find for the contribution of each single fluctuating
mode to the spectrum up to linear order

S̃(mT ,pT ) = 1

(2π )3

∫
dα

∫ 2π

0
dϕ

∫ ∞

−∞
dη τ (α)r(α)

[
dr

dα
mT cosh(η) − dτ

dα
pT cos(ϕ)

] ∞∑
j=0

(±1)j

× exp

(
− mT uτ

0

T0
(1 + j ) cosh(η) + pT ur

0

T0
(1 + j ) cos(ϕ) + μi0

T0

)
(1 + j )

{[
mT uτ

0

T0
cosh(η) − pT ur

0

T0
cos(ϕ)

− μi0

T0
+ dμi0

dT0

]
d ln(T0)

d ln(w0)
w̃(α) +

[
− mT ur

0

T0u
τ
0

√
2

cosh(η) + pT

T0

√
2
e−iϕ

]
ũ−(α)

+
[

− mT ur
0

T0u
τ
0

√
2

cosh(η) + pT

T0

√
2
eiϕ

]
ũ+(α) +

[
− mT

T0
sinh(η)

]
ũη(α)

+ [Terms proportional to π̃μν(α)]

}
eimϕ+ikηη. (32)

The contributions from fluctuations in the shear viscous tensor are not written out explicitly in this intermediary result (32), but
we present them for the final result (33) below. To arrive at this final result, we integrate analytically over the azimuthal angle ϕ
and rapidity η. The final result takes then the form

S̃(mT ,pT ) = 1

2π2

∫
dα τ (α)r(α)

∞∑
j=0

(±1)j (1 + j )
10∑
i=1

[
dr

dα
mT h̃i(α) Yi,a(m,kη; mT

T
, pT

T
,hBG(α),j )

− dτ

dα
pT h̃i(α) Yi,b(m,kη; mT

T
, pT

T
,hBG(α),j )

]
. (33)

Here and in what follows, we compose the background fields into the structure hBG, with ten independent field components,

hBG = (
w0,u

r
0,u

φ
0 ,u

η
0,π0 bulk,π

−−
0 ,π++

0 ,π
−η
0 ,π

+η
0 ,π

ηη
0

)
. (34)
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Analogously, we denote fluctuations around these background
fields by the shorthand h̃,

h̃ = (w̃,ũr ,ũφ,ũη,π̃bulk,π̃
−−,π̃++,π̃−η,π̃+η,π̃ηη), (35)

with ith component h̃i . As seen from the structure of Eq. (33),
the integral kernels Yi,a and Yi,b specify the response of the
single inclusive hadron spectrum to fluctuations on the freeze-
out surface in enthalpy, fluid velocity, bulk viscous pressure,
and shear stress tensor. These kernels are given explicitly in
Appendix A. They depend, in general, on the value hBG(α) of
the background field along the freeze-out hypersurface. They
also depend on the summation index j as specified in the
Appendix A.

In summary, the output of any fluid-dynamical simulation
can be written in terms of a set of azimuthally symmetric
background fields hBG(α) along the freeze-out hypersurface,
supplemented by a set of fluctuations h̃(α). Equation (33)
specifies the sensitivity of the single inclusive hadron spectrum
up to linear order in all fluctuations. It can be used to describe
the particle distribution for a particular event. Also, event
averages of (33) can be determined if the the probability
distribution of the fluctuations h̃ for an event class is
known.

IV. MODE-BY-MODE DECOMPOSITION

Mode-by-mode hydrodynamics [23] provides a more gen-
eral strategy for characterizing single fluctuating events, but
also event averages, correlations and probability distributions.
It is based on decomposing arbitrary fluctuating initial condi-
tions (in all scalar, vector, and tensor fields h̃(i)) in a complete
orthonormal set of basis functions. For each of these basis
functions (“modes”), the (linearized) hydrodynamic equations
can then be solved. Knowing the decomposition of initial
conditions in terms of orthonormal modes and the dynamical
propagation of each mode, one has then a direct bridge between
initial conditions and particle spectra for single events and
event averages.

Here we illustrate this strategy first for cases for which
the initial conditions do not show fluctuations in the fluid
velocity and shear stress, so that the contribution w̃ to the
enthalpy density is the only origin of fluctuations. This case
is most often assumed in the phenomenological literature. For
simplicity we also neglect first all dependence on rapidity
η so that the right-hand side of Eq. (30) has support for
kη = 0 only. Under these assumptions, we discuss the effect of
fluctuations on single inclusive hadron spectra in Sec. IV A
and on two-particle correlation functions in Sec. IV B. In

Sec. IV C, we discuss then shortly how these assumptions can
be relaxed.

A. Single inclusive hadron spectra

Following Ref. [33] we decompose the initial fluctuations
in an orthonormal basis,

w̃(τ0,r,ϕ) =
∞∑

m=−∞

∞∑
l=1

w̃
(m)
l eimϕ f

(m)
l (r), (36)

where f
(m)
l (r) is an appropriate set of basis functions. Evolving

the set of basis functions f
(m)
l (r) in (linearized) hydrodynamics

from initial time τ0 onwards gives rise to fluctuations h̃i in all
fluid-dynamic fields at later times. Inserting the fluctuations
h̃i(α) at freeze-out thus obtained in Eq. (33), one establishes
a linear dynamical mapping from modes f

(m)
l (r) in the initial

conditions to corresponding contributions S̃
(m)
l (mT ,pT ) in the

final hadronic spectrum,

f
(m)
l (r) −→ S̃

(m)
l (mT ,pT ) . (37)

The complete particle spectrum for the event in Eq. (36)
is then given to first order in the fluctuations by the linear
superposition of modes with wave numbers (m,l) on top of the
background spectrum S0(mT ,pT ),(

dN

pT dpT dφdηP

)
single event

= S0(mT ,pT ) +
∞∑

m=−∞

∞∑
l=1

w̃
(m)
l eimφ S̃

(m)
l (mT ,pT ). (38)

We note that in this expression, events are characterized by the
set of weights w̃

(m)
l with which the fluctuating modes f

(m)
l (r)

are present in the initial conditions. Therefore, once one has
determined the dynamical mapping (37) for the orthonormal
basis functions f

(m)
l (r), the hydrodynamic evolution of differ-

ent events is given without further fluid-dynamic simulation
simply by changing the set of weights w̃

(m)
l in the spectrum

above.
In a recent paper [33], we have shown how the initial

conditions can be characterized for event ensembles in terms of
probability distributions p [w̃] of the weights w̃

(m)
l in Eq. (36).

For the phenomenologically relevant case of determining the
particle spectrum as an average over many events, one can
write then up to linear order in the fluctuations

(
dN

pT dpT dφdηP

)
event average

= S0(mT ,pT ) +
∫

Dw̃ p[w̃]
∞∑

m=−∞

∞∑
l=1

w̃
(m)
l eimφ S̃

(m)
l (mT ,pT )

= S0(mT ,pT ) +
∞∑

m=−∞

∞∑
l=1

〈
w̃

(m)
l

〉
eimφ S̃

(m)
l (mT ,pT ), (39)

where the measure Dw̃ denotes integration over all modes
w̃

(m)
l , and 〈f 〉 = ∫

Dw̃ p[w̃]f . For an azimuthally symmetric
background, event averages 〈w̃(m)

l 〉 vanish for m �= 0 and
fluctuations lead to nonvanishing event averages only for
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correlations among the weights of modes, such as 〈w̃(m)
l w

(m′)
l′ 〉.

In this case, the particle spectrum (39) corresponds therefore
to the background contribution S0 plus a possible contributions
proportional to 〈w̃(0)

l 〉. When the background is taken to be the
event average of the fluid fields, the expectation values 〈w̃(0)

l 〉
vanish as well.

Instead of expanding the particle spectrum in the small
fluctuations as above, it may actually be advantageous to
expand its logarithm. The underlying observation is that the
contribution of a particular fluid cell to the particle spectrum
at freeze-out depends on the hydrodynamic fields in an
essentially exponential way. We write

ln

(
dN

pT dpT dφdη

)
single event

= ln S0(mT ,pT ) +
∞∑

m=−∞

∞∑
l=1

w̃
(m)
l eimφ θ

(m)
l (mT ,pT ), (40)

where the response of the logarithm of the spectrum to a single basis mode is now given by the dynamical map of f
(m)
l onto

θ
(m)
l (mT ,pT ) = S̃

(m)
l (mT ,pT )

S0(mT ,pT )
. (41)

Owing to the nonlinear structure, the event-averaged spectrum is now, in general, affected by fluctuations,(
dN

pT dpT dφdηP

)
event average

= S0(mT ,pT )
∫

Dw̃ p[w̃] exp

( ∞∑
m=−∞

∞∑
l=1

w̃
(m)
l eimφ θ

(m)
l (mT ,pT )

)
. (42)

For the particular case of a Gaussian probability distribution p [w̃] as discussed in Ref. [33], one can perform the averaging in
Eq. (42) and one finds

S(mT ,pT ) =
(

dN

pT dpT dφdηP

)
event average

= S0(mT ,pT ) × exp

( ∞∑
l=1

〈
w̃

(0)
l

〉
θ

(0)
l (mT ,pT )

)
exp

(
1

2

∞∑
l1,l2=1

θ
(0)
l1

(mT ,pT )θ (0)
l2

(mT ,pT )
(〈
w̃

(0)
l1

w̃
(0)
l2

〉 − 〈
w̃

(0)
l1

〉〈
w̃

(0)
l2

〉))

× exp

( ∞∑
m=1

∞∑
l1,l2=1

θ
(m)
l1

(mT ,pT )θ (m)
l2

(mT ,pT )
〈
w̃

(m)
l1

w̃
(m)∗
l2

〉)
. (43)

Taking into account that 〈w̃(m)
l 〉 ∝ δm0 for an azimuthally

symmetric background, one sees easily that the spectra (43)
and (39) agree up to linear order in the fluctuations w̃

(m)
l .

To quadratic order in w̃
(m)
l , neither Eq. (43) nor Eq. (39) is

complete. However, because linear fluctuations in the fluid
fields enter essentially in an exponential way, we expect that
Eq. (43) resums relevant contributions to higher order in the
fluctuating fields. Therefore, we typically calculate the single
inclusive hadron spectrum from Eq. (43).

To quantify the effect of event-by-event fluctuations on
the one-particle spectrum, we plot in Fig. 4 the ratio
S(mT ,pT )/S0(mT ,pT ) as defined by Eq. (43) for an ensemble
of central collisions with initial conditions taken from a
Glauber Monte Carlo model as discussed in Ref. [23]. The
deviation from 1 is relatively small, or, in other words, the
one-particle spectrum is given to good approximation by the
corresponding background part with only a small contribution
coming from fluctuation effects. This Fig. 4 can also be
viewed as indicating that the difference between the spectrum
(39) [that reduces to S0(mT ,pT ) for central collisions with
〈w̃(m)

l 〉 = 0] and the spectrum S(mT ,pT ) defined in Eq. (43)
is relatively small. We believe that this observation holds also
for other models of initial state fluctuations.

S pT

pT

S pT

FIG. 4. (Color online) Ratio of the full one-particle spectrum
S(pT ) to the background contribution S0(pT ). The deviation from
1 is attributable to event-by-event fluctuations [see Eq. (43)]. The
curves are for pion spectra calculated from ideal hydrodynamics, and
viscous hydrodynamics with η/s = 0.08 and η/s = 0.3, respectively.
The color coding is as in Fig. 1. The dashed lines correspond to the
result obtained when the shear viscous contributions at freeze-out
[“quadratic ansatz” in Eq. (18)] are neglected.
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B. Two-particle correlations and flow coefficients

Let us now discuss the two-particle spectrum. We use the standard definition for the ratio of the two-particle spectrum (with
both particles from the same event) to the product of two independently averaged one-particle spectra,

C2(mT 1,pT 1,φ1; mT 2,pT 2,φ2) =
(

dNpairs

pT 1dpT 1dφ1dηP pT 2dpT 2dφ2dηP

)
event average(

dN
pT 1dpT 1dφ1dηP

)
event average

(
dN

pT 2dpT 2dφ2dηP

)
event average

. (44)

Using an expansion similar to Eq. (42) for both the numerator and denominator, one finds

C2 =
∫

Dw̃ p[w̃] exp

( ∞∑
m=−∞

∞∑
l=1

w̃
(m)
l

[
eimφ1 θ

(m)
l (mT 1,pT 1) + eimφ2 θ

(m)
l (mT 2,pT 2)

])

×
[∫

Dw̃ p[w̃] exp

( ∞∑
m=−∞

∞∑
l=1

w̃
(m)
l eimφ1 θ

(m)
l (mT 1,pT 1)

)]−1

×
[∫

Dw̃ p[w̃] exp

( ∞∑
m=−∞

∞∑
l=1

w̃
(m)
l eimφ2 θ

(m)
l (mT 2,pT 2)

)]−1

. (45)

For a Gaussian probability distribution p[w̃], one can actually perform the functional integrals and one finds

C2 = exp

( ∞∑
l1,l2=1

θ
(0)
l1

(mT 1,pT 1)θ (0)
l2

(mT 2,pT 2)
(〈
w̃

(0)
l1

w̃
(0)
l2

〉 − 〈
w̃

(0)
l1

〉〈
w̃

(0)
l2

〉))

× exp

( ∞∑
m=1

2 cos[m(φ1 − φ2)]
∞∑

l1,l2=1

θ
(m)
l1

(mT 1,pT 1)θ (m)
l2

(mT 2,pT 2)
〈
w̃

(m)
l1

w̃
(m)∗
l2

〉)
. (46)

The double differential harmonic-flow coefficients vm{2}(mT 1,pT 1; mT 2,pT 2) are now defined by the expansion

C2(mT 1,pT 1,φ1; mT 2,pT 2,φ2) = v2
0{2}(mT 1,pT 1; mT 2,pT 2) +

∞∑
m=1

2 cos [m(φ1 − φ2)] v2
m{2}(mT 1,pT 1; mT 2,pT 2). (47)

We note that the experimental determination of C2 is usually made such that v2
0{2}(mT 1,pT 1; mT 2,pT 2) or a pT -integrated variant

thereof is normalized to 1. In contrast, in our definition v2
0{2} does not necessarily equal 1 even when integrated over pT . This

reflects a dispersion in event-by-event values of multiplicities; more specific, the pT -integrated v2
0{2} equals the ratio of 〈N2〉

and 〈N〉2. We could adapt our normalization of C2 to the experimental one by dropping the factor in the first line of Eq. (46).
Because the argument of the exponential is typically small, this leads to a small correction only.

In general, for very large fluctuations, the relation between Eqs. (46) and (47) is nontrivial and the harmonic-flow coefficients
have to be calculated numerically by doing the appropriate Fourier transform. For not too large values of v2

m{2} one can expand
the exponential in Eq. (46), which yields

v2
0{2}(mT 1,pT 1; mT 2,pT 2) = 1 +

∞∑
l1,l2=1

θ
(0)
l1

(mT 1,pT 1)θ (0)
l2

(mT 2,pT 2)
(〈
w̃

(0)
l1

w̃
(0)
l2

〉 − 〈
w̃

(0)
l1

〉〈
w̃

(0)
l2

〉)
(48)

for m = 0 and

v2
m{2}(mT 1,pT 1; mT 2,pT 2) =

∞∑
l1,l2=1

θ
(m)
l1

(mT 1,pT 1)θ (m)
l2

(mT 2,pT 2)
〈
w̃

(m)
l1

w̃
(m)∗
l2

〉
(49)

for m � 0, respectively.
The pT -integrated harmonic-flow coefficients can be obtained by integrating the expression (49) over pT 1 and pT 2,

appropriately weighted by the one-particle spectrum. More specific,

v2
m{2} =

∫
dpT 1

∫
dpT 2 pT 1 pT 2 S(mT 1,pT 1)S(mT 2,pT 2) v2

m{2}(mT 1,pT 1; mT 2,pT 2)[∫
dpT pT S(mT ,pT )

]2 . (50)

The single-differential harmonic-flow coefficients can be defined as

vm{2}(mT ,pT ) = 1

vm{2}

∫
d pT 2 pT 2 S(mT 2,pT 2) v2

m{2}(mT 1,pT 1; mT 2,pT 2)∫
dpT pT S(mT ,pT )

(51)
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and by construction they are normalized such that

vm{2} =
∫

dpT pT S(mT ,pT ) vm{2}(mT ,pT )∫
dpT pT S(mT ,pT )

. (52)

We note that, in general, the flow coefficients
v2

m{2}(mT 1,pT 1; mT 2,pT 2) that enter the two-particle
spectrum (47) do not factorize into products
vm{2}(mT 1,pT 1) vm{2}(mT 2,pT 2). Therefore, testing the
breakdown of such a factorization experimentally as in
Ref. [37] should not be interpreted, in general, as indicating
the limited validity of a fluid-dynamic description.

We note that Eqs. (46), (48), and (49) constitute rather sim-
ple relations between the initial correlations in the expansion
coefficients w

(m)
l and the observable two-particle spectrum.

The relation is given by the functions θ
(m)
l which can be

calculated and tabulated in an appropriate way.

C. Generalizations

So far, we have concentrated our discussion on initial den-
sity fluctuations and vanishing rapidity dependence (Bjorken
boost invariance). In general, one might expect that a detailed
model of the initial state and early nonequilibrium dynamics
predicts also the size and shape of initial fluctuations in other
hydrodynamic fields, in particular, fluid velocity and shear.
Moreover, these fluctuations may have nontrivial rapidity de-
pendence. We now generalize the most important expressions

for the particle spectrum and harmonic-flow coefficients to this
case.

We chose the hydrodynamical background fields (34) such
that the event average over the fluctuating fields (35) vanish,
〈h̃i〉 = 0. The expansion of the hydrodynamical fields at the
initial time τ0, Eq. (36) can be generalized to

hi(τ0,r,ϕ,η) =
∫

dkη

2π

∞∑
m=−∞

h
(m)
i,l (kη) eimϕ+ikηη f

(m)
i,l (r),

(53)

where f
(m)
i,l (r) are appropriate basis functions; see, for ex-

ample, Ref. [33]. Equation (53) describes the most general
fluctuation around the azimuthal rotation and Bjorken boost
symmetric background in the hydrodynamical fields at the
initial time τ0.

The contribution of each individual mode to the particle
spectra at freeze-out can be determined in complete analogy to
the density modes discussed above. The functions θ

(m)
l defined

in Eq. (41) receive an additional index i as well as a dependence
on kη and become

θ
(m)
i,l (kη; mT ,pT ). (54)

Equation (43) which gives the one-particle spectrum for a
Gaussian probability distribution of initial fluctuations, gets
generalized to

S(mT ,pT ) =
(

dN

pT dpT dφdηP

)
event average

= S0(mT ,pT ) × exp

(
1

2

∞∑
m=−∞

∫
dkη

2π

∑
i1,i2,l1,l2

θ
(m)
i1,l1

(kη; mT ,pT )θ (m)
i2,l2

(kη; mT ,pT )
〈
h

(m)
i1,l1

(kη)h(m)∗
i2,l2

(kη)
〉)

. (55)

Note that this does not depend on φ or ηp, in agreement with the assumed statistical symmetries. In a similar way, Eq. (46) for
the two-particle correlation function generalizes for 〈h̃i〉 = 0 to

C2 = exp

( ∞∑
m=−∞

∫
dkη

2π
eim(φ1−φ2)eikη(η1−η2)

∑
i1,i2,l1,l2

θ
(m)
i1,l1

(kη; mT 1,pT 1)θ (m)
i2,l2

(kη; mT 2,pT 2)∗
〈
h

(m)
i1,l1

(kη)h(m)
i2,l2

(kη)∗
〉)

. (56)

V. CONCLUSIONS

We have discussed here the kinetic freeze-out for heavy-
ion collisions using a background-fluctuation splitting for
the hydrodynamical fields. To this end, we introduced in
Sec. II a version of the Cooper-Frye freeze-out prescription
according to which particles decouple instantaneously at
constant background temperature rather than at constant
temperature. We then discussed in Sec. III how fluctuations
in all fluid-dynamic fields can be treated as perturbations
on this freeze-out hypersurface. In general, one can adopt a
setting in which the background solution is invariant with
respect to azimuthal rotations and longitudinal boosts. The
background contribution of the particle spectrum has these
symmetries as well. Deviations from these symmetries come
then from event-by-event fluctuations in the hydrodynamical
fields. In Sec. IV, we have decomposed arbitrary fluctuations

in the initial conditions into an orthonormal set of basis
functions. To lowest (linear) order, these basis functions
can be propagated independently in hydrodynamics, and
they can then be hadronized independently at freeze-out.
The central results of the present paper are Eqs. (43) and
(46) that describe the single inclusive hadron spectrum and
two-hadron correlations functions in terms of the hadronic
response θ

(m)
l (mT ,pT ) of basis functions at freeze-out and the

weights that these basis functions carry in the initial conditions.
After having calculated the hadronic response θ

(m)
l (mT ,pT )

for the basis functions only one time, these equations allow
one to determine the spectra and two-particle correlations for
arbitrary events without further fluid-dynamic simulations.

The formalism presented here is accurate to lowest (linear)
order in fluctuating fields only, and we did not attempt to go to
quadratic and higher orders in the fluctuating hydrodynamical
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fields in this paper. We plan to study the numerical relevance
of nonlinear corrections in subsequent works, addressing
the question of nonlinear corrections in the fluid-dynamic
evolution of basis functions and the question of additional
nonlinearities at freeze-out. Within the present paper, we note
only that the Cooper-Frye freeze-out formula (2) contains
actually contributions from all orders in the velocity and
temperature fields, because the hydrodynamic fields enter in
the exponent of occupation numbers as in Eq. (17). Therefore,
although complete only to leading order in fluctuations,
the formalism presented here accounts at least for some of
the expected nonlinear corrections. We also note that the
azimuthal and boost invariance of the background that has
greatly simplified our discussion to linear order will have
important implications for higher order contributions as well.
For example, for a single event, the particle distribution
may contain a mode ∼eimφ , which at quadratic order has
contributions from modes eim1ϕ and eim2ϕ in the hydrodynamic

fields but these modes must fulfill m1 + m2 = m. The situation
is similar with respect to Bjorken boost invariance: A mode
eikηηP may have contributions at quadratic order from two
modes eikη1 and eikη2 but there is the constraint kη = kη1 + kη2.

Finally, we emphasize that our current study is based on
a sharp kinetic freeze-out and includes no phase of hadronic
scatterings and resonance decays between the hydrodynamic
regime and free streaming. In principle, this can be incor-
porated into the mode-by-mode formalism by solving the
corresponding kinetic equations for the background contribu-
tion and, in linearized form, for the fluctuations. In particular
the influence of resonance decays can be quite sizable for
certain observables, most prominent particle identified spectra,
and harmonic-flow coefficients. The formula presented in the
current paper could be used to initialize this hadronic scattering
and decay phase although a description based on occupation
numbers for interacting particles would be desirable.

APPENDIX A: RAPIDITY AND AZIMUTHAL INTEGRALS

In this appendix, we provide details on how to calculate from Eq. (18) the expressions for the spectrum of the background
field (24) and the contributions (33) to first order in the fluctuating fields. For the background contribution, we calculate from
Eq. (23) the shear viscous term at freeze-out,

pμpνπ
μν
0

ε0 + p0
= π̃ t

0

[
m2

T

(
ur

0

)2
cosh2(ηP − η) − 2mT pT uτ

0u
r
0 cosh(ηP − η) cos(φ − ϕ) + p2

T

(
uτ

0

)2
cos2(φ − ϕ) − p2

T sin2(φ − ϕ)

]

+ π̃
ηη
0

[
− 1

2
m2

T

(
ur

0

)2
cosh2(ηP − η) + mT pT uτ

0u
r
0 cosh(ηP − η) cos(φ − ϕ)

− 1

2
p2

T

(
uτ

0

)2
cos2(φ − ϕ) − 1

2
p2

T sin2(φ − ϕ) + m2
T sinh2(ηP − η)

]
. (A1)

The integrals over space rapidity that appear in the Cooper-Frye freeze-out of different terms of Eq. (18) are then of the form

R∗(k,z) = 1

2

∫ ∞

−∞
dη e−z cosh(η) eikηf∗(η), (A2)

where the integrand f∗(η) on the right-hand side is either unity (we write ∗ = 0) or involves up to three powers in cosh η and
sinh η. We denote each such power by a subscript “c” or “s”, respectively, so that for instance the integral Rccc is obtained for
the integrand f∗(η) = cosh3(η). All relevant integrals can then be expressed explicitly in terms of Bessel functions Kn(z) of the
second kind,

R0(k,z) = Kik(z),

Rc(k,z) = 1
2 [Kik−1(z) + Kik+1(z)],

Rs(k,z) = 1
2 [−Kik−1(z) + Kik+1(z)],

Rcc(k,z) = 1
4 [Kik−2(z) + 2Kik(z) + Kik+2(z)],

Rcs(k,z) = 1
4 [−Kik−2(z) + Kik+2(z)], (A3)

Rss(k,z) = 1
4 [Kik−2(z) − 2Kik(z) + Kik+2(z)],

Rccc(k,z) = 1
8 [Kik−3(z) + 3Kik−1(z) + 3Kik+1(z) + Kik+3(z)],

Rccs(k,z) = 1
8 [−Kik−3(z) − Kik−1(z) + Kik+1(z) + Kik+3(z)],

Rcss(k,z) = 1
8 [Kik−3(z) − Kik−1(z) − Kik+1(z) + Kik+3(z)].

We define also the abbreviations

R∗(z) = R∗(0,z), (A4)
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to be used below. Similarly, one can perform the integrals over the azimuthal angle ϕ. Introducing the shorthand

A∗(m,z) = 1

2π

∫ 2π

0
dϕ ez cos(ϕ) eimϕg∗(ϕ), (A5)

and considering for the integrand g∗(ϕ) up to three powers in cos ϕ and sin ϕ such that, for instance, Accs is the integral for
g∗(ϕ) = cos2 ϕ sin ϕ, we find

A0(m,z) = Im(z),

Ac(m,z) = 1
2 [Im−1(z) + Im+1(z)],

As(m,z) = 1
2 [iIm−1(z) − iIm+1(z)],

Acc(m,z) = 1
4 [Im−2(z) + 2Im(z) + Im+2(z)],

Acs(m,z) = 1
4 [iIm−2(z) − iIm+2(z)], (A6)

Ass(m,z) = 1
4 [−Im−2(z) + 2Im(z) − Im+2(z)],

Accc(m,z) = 1
8 [Im−3(z) + 3Im−1(z) + 3Im+1(z) + Im+3(z)],

Accs(m,z) = 1
8 [iIm−3(z) + iIm−1(z) − iIm+1(z) − iIm+3(z)],

Acss(m,z) = 1
8 [−Im−3(z) + Im−1(z) + Im+1(z) − Im+3(z)].

Below we also use the abbreviation

A∗(z) = A∗(0,z) . (A7)

The expressions above can be used to do the ϕ and η integrations of the background contribution to the single inclusive hadron
spectrum (18). The final result Eq. (24) can then be expressed in terms of the integration kernels Z1, Z2, Z3, and Z4,

Z1
(
m̃T ,p̃T ,uτ

0,u
r
0,j

)
= 1 + j

2

[
m̃2

T

(
ur

0

)2
Rccc

(
m̃T uτ

0(1 + j )
)

A0
(
p̃T ur

0(1 + j )
) − 2m̃T p̃T uτ

0u
r
0 Rcc

(
m̃T uτ

0(1 + j )
)

Ac

(
p̃T ur

0(1 + j )
)

+ p̃2
T

(
uτ

0

)2
Rc

(
m̃T uτ

0(1 + j )
)

Acc

(
p̃T ur

0(1 + j )
) − p̃2

T Rc

(
m̃T uτ

0(1 + j )
)

Ass

(
p̃T ur

0(1 + j )
)]

,

Z2
(
m̃T ,p̃T ,uτ

0,u
r
0,j

)
= 1 + j

2

[
m̃2

T

(
ur

0

)2
Rcc

(
m̃T uτ

0(1 + j )
)

Ac

(
p̃T ur

0(1 + j )
) − 2m̃T p̃T uτ

0u
r
0 Rc

(
m̃T uτ

0(1 + j )
)

Acc

(
p̃T ur

0(1 + j )
)

+ p̃2
T

(
uτ

0

)2
R0

(
m̃T uτ

0(1 + j )
)

Accc

(
p̃T ur

0(1 + j )
) − p̃2

T R0
(
m̃T uτ

0(1 + j )
)

Acss

(
p̃T ur

0(1 + j )
)]

,

Z3
(
m̃T ,p̃T ,uτ

0,u
r
0,j

)
= 1 + j

2

[
−1

2
m̃2

T

(
ur

0

)2
Rccc

(
m̃T uτ

0(1 + j )
)

A0
(
p̃T ur

0(1 + j )
) + m̃T p̃T uτ

0u
r
0 Rcc

(
m̃T uτ

0(1 + j )
)

Ac

(
p̃T ur

0(1 + j )
)

− 1

2
p̃2

T

(
uτ

0

)2
Rc

(
m̃T uτ

0(1 + j )
)

Acc

(
p̃T ur

0(1 + j )
) − 1

2
p̃2

T Rc

(
m̃T uτ

0(1 + j )
)

Ass

(
p̃T ur

0(1 + j )
)

+ m̃2
T Rcss

(
m̃T uτ

0(1 + j )
)

A0
(
p̃T ur

0(1 + j )
)]

,

Z4
(
m̃T ,p̃T ,uτ

0,u
r
0,j

)
= 1 + j

2

[
−1

2
m̃2

T

(
ur

0

)2
Rcc

(
m̃T uτ

0(1 + j )
)

Ac

(
p̃T ur

0(1 + j )
) + m̃T p̃T uτ

0u
r
0 Rc

(
m̃T uτ

0(1 + j )
)

Acc

(
p̃T ur

0(1 + j )
)

− 1

2
p̃2

T

(
uτ

0

)2
R0

(
m̃T uτ

0(1 + j )
)

Accc

(
p̃T ur

0(1 + j )
) − 1

2
p̃2

T R0
(
m̃T uτ

0(1 + j )
)

Acss

(
p̃T ur

0(1 + j )
)

+ m̃2
T Rss

(
m̃T uτ

0(1 + j )
)

Ac

(
p̃T ur

0(1 + j )
)]

. (A8)

To determine the contribution of fluctuation fields to the particle spectra, we use the following integral kernels which are
functions of the azimuthal wave number m, the rapidity wave number k, the transverse mass m̃T = mT /T , transverse momentum
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p̃T = pT /T , the chemical potential μ̃ = μ/T , the temporal and radial components of the background fluid velocity uτ
0 and ur

0,
respectively, as well as the two independent components of the background shear stress tensor π̃ t

0 and π̃
ηη
0 and the integer j ,

Y... = Y...

(
m,k; m̃T ,p̃T ,μ̃; uτ

0,u
r
0,π̃

t
0,π̃

ηη
0 ; j

)
. (A9)

The functions Y1a and Y1b are also linear in the thermodynamic quantity d ln(T0)/d ln(w0). Explicit expressions are given by

Y1a = d ln(T0)

d ln(w0)

[
m̃T uτ

0 Rcc

(
k,m̃T uτ

0(1 + j )
)

A0
(
m,p̃T ur

0(1 + j )
) − p̃T ur

0 Rc

(
k,m̃T uτ

0(1 + j )
)

Ac

(
m,p̃T ur

0(1 + j )
)

− μ̃Rc

(
k,m̃T uτ

0(1 + j )
)

A0
(
m,p̃T ur

0(1 + j )
)]

,

Y1b = d ln(T0)

d ln(w0)

[
m̃T uτ

0 Rc

(
k,m̃T uτ

0(1 + j )
)

Ac

(
m,p̃T ur

0(1 + j )
) − p̃T ur

0 R0
(
k,m̃T uτ

0(1 + j )
)

Acc

(
m,p̃T ur

0(1 + j )
)

− μ̃R0
(
k,m̃T uτ

0(1 + j )
)

Ac

(
m,p̃T ur

0(1 + j )
)]

,

Y2a = −m̃T

ur
0

uτ
0

√
2

Rcc

(
k,m̃T uτ

0(1 + j )
)

A0
(
m,p̃T ur

0(1 + j )
) + p̃T

1√
2

Rc

(
k,m̃T uτ

0(1 + j )
)

A0
(
m − 1,p̃T ur

0(1 + j )
)

+ m̃2
T

1√
2
ur

0

(
π̃ t

0 − 1

2
π̃

ηη
0

)
Rccc

(
k,m̃T uτ

0(1 + j )
)

A0
(
m,p̃T ur

0(1 + j )
)

− m̃T p̃T

1√
2

(
uτ

0 +
(
ur

0

)2

uτ
0

) (
π̃ t

0 − 1

2
π̃

ηη
0

)
Rcc

(
k,m̃T uτ

0(1 + j )
)

Ac

(
m,p̃T ur

0(1 + j )
)

+ p̃2
T

1√
2
ur

0

(
π̃ t

0 − 1

2
π̃

ηη
0

)
Rc

(
k,m̃T uτ

0(1 + j )
)

Acc

(
m,p̃T ur

0(1 + j )
)

− i m̃T p̃T

1√
2

1

uτ
0

(
π̃ t

0 + 1

2
π̃

ηη
0

)
Rcc

(
k,m̃T uτ

0(1 + j )
)

As

(
m,p̃T ur

0(1 + j )
)
,

Y2b = −m̃T

ur
0

uτ
0

√
2

Rc

(
k,m̃T uτ

0(1 + j )
)

Ac

(
m,p̃T ur

0(1 + j )
) + p̃T

1√
2

R0
(
k,m̃T uτ

0(1 + j )
)

Ac

(
m − 1,p̃T ur

0(1 + j )
)

+ m̃2
T

1√
2
ur

0

(
π̃ t

0 − 1

2
π̃

ηη
0

)
Rcc

(
k,m̃T uτ

0(1 + j )
)

Ac

(
m,p̃T ur

0(1 + j )
)

− m̃T p̃T

1√
2

(
uτ

0 +
(
ur

0

)2

uτ
0

) (
π̃ t

0 − 1

2
π̃

ηη
0

)
Rc

(
k,m̃T uτ

0(1 + j )
)

Acc

(
m,p̃T ur

0(1 + j )
)

+ p̃2
T

1√
2
ur

0

(
π̃ t

0 − 1

2
π̃

ηη
0

)
R0

(
k,m̃T uτ

0(1 + j )
)

Accc

(
m,p̃T ur

0(1 + j )
)

− i m̃T p̃T

1√
2

1

uτ
0

(
π̃ t

0 + 1

2
π̃

ηη
0

)
Rc

(
k,m̃T uτ

0(1 + j )
)

Acs

(
m,p̃T ur

0(1 + j )
)
,

Y3a = −m̃T

ur
0

uτ
0

√
2

Rcc

(
k,m̃T uτ

0(1 + j )
)

A0
(
m,p̃T ur

0(1 + j )
) + p̃T

1√
2

Rc

(
k,m̃T uτ

0(1 + j )
)

A0
(
m + 1,p̃T ur

0(1 + j )
)

+ m̃2
T

1√
2
ur

0

(
π̃ t

0 − 1

2
π̃

ηη
0

)
Rccc

(
k,m̃T uτ

0(1 + j )
)

A0
(
m,p̃T ur

0(1 + j )
)

− m̃T p̃T

1√
2

(
uτ

0 +
(
ur

0

)2

uτ
0

) (
π̃ t

0 − 1

2
π̃

ηη
0

)
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(
k,m̃T uτ

0(1 + j )
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(
m,p̃T ur

0(1 + j )
)

+ p̃2
T

1√
2
ur

0

(
π̃ t

0 − 1

2
π̃

ηη
0

)
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(
k,m̃T uτ

0(1 + j )
)
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(
m,p̃T ur

0(1 + j )
)

+ i m̃T p̃T

1√
2

1

uτ
0

(
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2
π̃

ηη
0
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(
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(
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0(1 + j )
)
,
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Y3b = −m̃T
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uτ
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2
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. (A10)

The integral kernels Y5a and Y5b are reserved for the contribution from bulk viscous terms. In the present work we neglect
these. The kernels determining the contribution from fluctuations in the shear stress are
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With the help of the analytic expressions compiled in this appendix one can reduce the three-dimensional integration over the
freeze-out surface to a one-dimensional integral along a curve in the τ -r plane that can be easily done numerically.

APPENDIX B: FREEZE-OUT AT CONSTANT TEMPERATURE VERSUS FREEZE-OUT AT CONSTANT BACKGROUND
TEMPERATURE

In this appendix we compare the freeze-out condition used throughout the paper, which is based on a kinetic freeze-out at
constant background temperature, to the freeze-out at constant total temperature. We prove that to linear order in the perturbations
of the fluid-dynamic fields around the background, the difference between the two prescriptions vanishes.

We start from Eq. (2). For a freeze-out at constant background temperature the surface �f is independent of the perturbation in
fluid fields T1(x), uμ

1 (x), etc., but the distribution function depends on them. In contrast, for a freeze-out at fixed total temperature,
the position of the surface (which we denote as �̃f ) does depend on T1. The T1 dependence of the distribution function fi drops
out.

The difference in between the two descriptions can be written as

E

(
dN

d3p

∣∣∣∣
T =const

− dN

d3p

∣∣∣∣
T0=const

)
= − 1

(2π )3
pμ

[∫
d�̃

μ
f fi(pμ; Tfo,u

μ(x), . . . ) −
∫

d�
μ
f fi(pμ; T (x),uμ(x), . . . )

]

= − 1

(2π )3
pμ

∫
d4x ∂μfi(pμ; T (x),uμ(x), . . . ). (B1)

In the last equation we have used Gauss’ law and the integral in the last line goes over the four-dimensional volume between the
two three-dimensional freeze-out surfaces �̃f and �f . It is clear that this volume vanishes when T1 → 0 and, in fact, one can
write to linear order in fluctuation fields

E

(
dN

d3p

∣∣∣∣
T =const

− dN

d3p

∣∣∣∣
T0=const

)
= − 1

(2π)3 p
μ

∫
d�̃ν

f �xν ∂μfi(pμ; T (x),uμ(x), . . . ), (B2)
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where �xν is the difference between a point on the surface �f

and one on �̃f . Now one can use the expression for energy
current within kinetic theory,

T μ0(x) =
∑

i

∫
d3p

(2π )3
pμ fi(pμ; T (x), . . . ). (B3)

At kinetic freeze-out, by definition, this is conserved not only
as a whole, ∂μT μ0(x) = 0, but actually for each particle species
and momentum mode,

pμ∂μfi(pμ; T (x), . . . ) = 0. (B4)

Using this in Eq. (B2) shows that the difference between
the freeze-out at constant temperature and the freeze-out at

constant background temperature indeed vanishes to linear
order in the fluctuating hydrodynamical fields.

More generally, to higher orders in fluctuating fields,
one can still write the particle spectrum as an integral
over the freeze-out curve determined for the background
solution although there might be small correction terms
accounting for the fact that freeze-out happens at fixed
fluctuating temperature. However, in the absence of a precise
theory where and how freeze-out really happens, we do not
see a physics argument to prefer one of the prescriptions.
Therefore, one may simply work with the freeze-out at strictly
constant background temperature to all orders in fluctuations.
This should be fine also if the hydrodynamic description is
supplemented by an additional phase of hadronic scatterings
and decays described by kinetic theory.
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