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The discovery of the Higgs boson, with a mass known to be better than the percent level, enables
precision Higgs boson analyses for the first time. Toward this goal, we define an expansion formalism of
the Higgs boson partial widths and branching fractions that facilitates such studies. This expansion yields
the observables as a perturbative expansion around reference values of Standard Model input observables
(quark masses, QCD coupling constant, etc.). We compute the coefficients of the expansion using state-of-
the-art results. We also study the various sources of uncertainties in computing the partial widths and
branching fractions more precisely. We discuss the impact of these results with efforts to discern new
physics through precision Higgs boson studies.
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I. INTRODUCTION

With the discovery of the Higgs boson [1], particle
physics is entering a new era of precision studies of the
Higgs sector. The observables are many and include the
Higgs boson mass, its total decay width, its spin, its decay
branching fractions to Standard Model (SM) particles,
its possible decay branching fractions to other exotic
final states, and its various production rates at colliders.
All of these observables will be studied carefully in time.
The theory under primary consideration in this article is

the Standard Model. The subpercent-level determination of
the Higgs boson mass now enables a complete set of input
observables whereby any perturbative high-energy observ-
able involving the Higgs boson can be predicted.
In this article, our focus is on the careful exposition

of the decay partial widths and branching fractions of a
SM Higgs boson with mass near 126 GeV. Our goal is to
provide state-of-the-art formulas that can be used in any
precision electroweak analysis to investigate compatibility
of the data with the SM predictions in these most
fundamental and sensitive observables. Other calculations
exist in the literature,1 most notably from the computer
program HDECAY [2]; however, we wish to provide an
independent calculation that includes the latest advances
and allows us to vary the renormalization scale in all parts
of the computations. This flexibility will be useful in later
discussions regarding uncertainties. We also aim to detail
the errors that each input into the computation propagates

to the final answer for each observable [3]. In some cases,
these uncertainties are large, and constitute a limitation
to how sensitive experimental measurements can be in
determining the underlying theory parameters. Finally, we
discuss some implications for physics beyond the SM
sensitivities in precision Higgs studies.

II. INPUT OBSERVABLES

There are an infinite number of SM observables that
can be defined, yet any one of them, in principle, can be
computed precisely once a fixed, complete, independent,
and finite set of input observables is specified. A conven-
ient set of input observables is

fmH;MZ;Δα
ð5Þ
had; αSðMZÞ; mfg; (1)

where mf represents the list of fermion masses of the SM:
mt, mb, mc, mτ, mμ, etc. We are ignoring flavor angles
for the purposes of the present discussion. We can specify

αðMZÞ by Δαð5Þhad alone. The relation between the two is

αðMZÞ ¼
α

1 − Δαe;μ;τ − Δαt − Δαð5Þhad

; (2)

where α is the well-known 1=137:036 and Δαe;μ;τ and Δαt
are perturbatively calculable and known very accurately
[5]. The weak link to a more precise knowledge of αðMZÞ is
Δαð5Þhad, which is extracted mostly via dispersion relations
from eþe− → hadrons data at low energy. Since all the1For a basic review, see [4] and references therein.
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uncertainty of αðMZÞ originates in Δαð5Þhad, it is customary
to specify that value as the input, which by Eq. (2) then
dictates the value of αðMZÞ. The values of all the input
parameters are given in Table I.
The SUð2Þ ×Uð1Þ → Uð1ÞEM gauge structure and sym-

metry breaking make the prediction ofMW from other input
observables an important test of the theory. Nevertheless,
for us, MW shows up in the partial width calculations as a
kinematic mass in the propagator of a loop expression
(H → bb̄ loops, etc.) or as the final state mass in a phase
space computation (H → WW�). Since it very directly
appears in these computations, one might be tempted to
choose it as an input parameter to the calculations of
precision Higgs observables. This is legitimate and accept-
able in principle. One can exchange, for example, mt for
MW as an input. However, several complications arise.
The choice of MW as an input may simplify the compu-
tation in some ways but makes it more complicated in other
ways (e.g., in utilizing self-consistent top mass). More
importantly, there is a risk that by doing so, one can choose
incompatible sets of input parameters for predictions of
different sets of observables. For example, in computing
precision Z-decay and LEP2 observables, one might
choose the standard set of inputs that does not include
MW , whereas for Higgs sector observables, one might
choose a set of inputs that includes MW . Making a
comparison between BðZ → bb̄Þ and BðH → bb̄Þ, for
example, when testing the SM becomes impossible unless
an equivalence dictionary between the two sets is clearly
specified and self-consistent, equivalent sets of inputs are
chosen. For this reason, we specify one set of input
observables for all computations, and that set is the one
where MW is an output.
Now that we have established our convention thatMW is

an output observable, when theW mass appears in formulas
below, we should view it as a short-hand notation for the
full computation of the W mass within the theory in terms
of our agreed-upon inputs. In the SM this substitution is

MW →
SM ð80.368 GeVÞð1þ 1.42δMZ þ 0.21δGF − 0.43δα

þ 0.013δMt − 0.0011δαS − 0.00075δMHÞ. (3)

This formula is obtained by expanding results in [8], which
we have independently checked. Numerical evaluation was
done using the reference values of the input parameters
given in Table I. The definition of δτ is δτ≡ ðτ − τrefÞ=τref .
One ultimate goal of this work is to survey state-of-the

art calculations in order to test the SM. The proper way to
test any theory is to compute all the observables and subject
them to a global χ2 likelihood test, where

χ2 ¼
X
i

�
Oth −Oexpt

ΔOexpt
i

�
2

: (4)

One should take all the correlations amongst observables
into account as well [9]. Upon computing the χ2 it is then
possible to ask statistical inference questions about the
value. For example, is the χ2 per degree of freedom
indicating that the theory is compatible with the data at
some confidence level? In such a procedure, it makes no
difference what independent input parameters one uses:
there is an infinite set of possibilities that are equally good
and the answer to any well-defined question is the same
regarding confidence in a theory or range of values
predicted for an observable given the data, etc. The results
that we present will also enable a very quick determination
of our present abilities to determine the measurement
couplings of SM particles to the Higgs boson. Each of
the input observables has a number of uncertainties
associated with it, and when these errors propagate, there
will be uncertainties for the predictions of the partial widths
and branching fraction observables. At the moment, the
predicted uncertainties (a few percent or less) are much
smaller than the current measured uncertainties (tens of
percent), but in the future this limiting theory precision
will become important as experiments improve. We note
that in the current experimental situation the prediction
uncertainties would be nearly the same had we chosenMW
rather than mt as an input. Indeed it is somewhat accidental
that the target observables have nearly the same small
prediction uncertainty for either choice.
In the following sections, we will present the computa-

tions for each of the important decay-mode partial widths
of the SM Higgs boson. The results are presented here in

TABLE I. Reference values for the input observables [see Eq. (1)] chosen for computation of the widths and
branching ratios of the Higgs boson. Units are in GeVs for the masses. All the reference values except formH [6]
and αðMZÞ (or Δαð5Þhad) are given by [7]. αSðMZÞ is taken to be the world average value. As explained in the text,
specifying αðMZÞ and Δαð5Þhad (from the Winter 2012 plots of the LEP Electroweak Working Group [5]) in this
table is redundant but it is done for the convenience of the reader.

mH 125.7(4) pole mass mt 173.5(10)
pole mass mc 1.67(7) pole mass mb 4.78(6)
pole mass MZ 91.1535(21) GF 1.1663787ð6Þ × 10−5
pole mass mτ 1.77682(16) αSðMZÞ 0.1184(7)
αðMZÞ 1=128:96ð2Þ Δαð5Þhad

0.0275(1)
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order to show the origin of our subsequently derived
expansions of these partial widths and branching fractions
in terms of small deviations away from measured reference
values of the input observables.

III. HIGGS BOSON PARTIAL WIDTHS

In this section, we describe the procedures by which we
compute the partial widths of the Higgs boson decays. In
each case they are taken from state-of-the-art computations
within the literature. It is intended that the reader can
reproduce all of our results by following the instructions we
give below.

A. Higgs boson decays to WW� and ZZ�

The interaction between the Higgs and the electroweak
vector bosons can be best probed through its direct decay
into vector bosons. The mass of the Higgs boson at 126
GeV excludes the decay into two on-shell electroweak
vector bosons, leaving the following decays: H → Vð�ÞV�.
The width for a Higgs boson decaying into V�V is given at
lowest order in [10].
The vector bosons further decay into fermions, and there

are interferences between the intermediate off-shell vector
bosons as a consequence. This result is known atOðαSÞ and
at OðαÞ and its calculation is described in [11]. The results
were implemented in a Monte Carlo generator, Prophecy4f
[12], which is what we use to compute the WW� and ZZ�
partial width values.

B. Higgs boson decays to γγ and Zγ

The higher-order contributions to ΓðH → γγÞ are known
to Next-to-next-to-leading order (NNLO) Oðα2SÞ in QCD
[13], and at Next-to-leading order (NLO) in purely electro-
weak (EW) corrections [14]. We parametrize the results as

ΓðH → γγÞ ¼ Γγγ
LO þ α

π
Γγγ
NLO−EW þ

�
αS
π

�
Γγγ
NLO–QCD

þ
�
αS
π

�
2

Γγγ
NNLO–QCD; (5)

where α ¼ αQEDðm2
HÞ at one loop, and αS ¼ αSðm2

HÞ at
three loops are as provided by RunDec [15]. The results for
ΓNNLO−QCD are obtained from [13], and for consistency, we
also use its results for ΓNLO−QCD. For both orders we use the
expansion in xt ¼ m2

H=ð4m2
t Þ to Oðx5t Þ. For ΓNLO−EW we

interpolate the results of [14] to the same order.
For the prediction of ΓðH → ZγÞ we use the results of

[16], which give the contributions to lowest order with
an additional contribution from QCD involving top quark
loops. The result is parametrized below:

ΓðH → ZγÞ ¼ ΓZγ
LO þ αS

π
ΓZγ
aprox–NLO: (6)

Here, ΓZγ
aprox–NLO is the additional contribution from QCD to

the top quark loop. This is achieved by shifting the top
amplitude in the lowest order contribution [16].

C. Higgs boson decays to gluons

Similarly, the partial width of the Higgs boson decaying
into gluons is given at NNLO, Oðα2SÞ in the full SM
theory [17]. While the result is also known at NNNLO in
the effective theory [18,19], resulting from integrating
out the top quark, we use only the results from the full
SM computation.
For the electroweak corrections, we make use of the

numerical results of [20] and extrapolate them to Oðx4t Þ,
where xt ¼ m2

H=ð4m2
t Þ. We use the three-loop result for αS,

running to the proper scale choice. The scales are chosen to
be mH, with the exception of the electroweak corrections,
whose scale dependences are not provided, but were
indicated to be small in [20].

D. Higgs boson decays to quarks

The dominant decay for the Higgs boson is directly into
bb̄. For its partial width we use the results of [21], which
provide the nonpower-suppressed corrections to Oðα4SÞ.
We obtain OðGFm4

t Þ corrections from [22]. Higher-order
logarithmic corrections are absorbed into the running quark
masses. All masses are evolved using functions obtained
from RunDec [15] to the appropriate loop order. In the
case of the H → bb̄ partial width, we need to evolve the
M̄S mass, mb, to three loops, given the accuracy of
the calculation. In the case of cc̄, we make use of the
electroweak corrections found in [22], while keeping the
same order in QCD as bb̄. The scale dependence to order
Oðα3SÞ is given in [23,24] for the diagonal correlators. We
make use of the result atOðα4SÞ at s ¼ m2

h, and nf ¼ 5 from
[21], and, with the renormalization group equations, extend
the scale dependence to Oðα4SÞ. The one-loop pure electro-
weak contributions were obtained by [25,26]. We use the
full analytical result for its dependence on all on-shell quark
masses (with mu;d;s ¼ 0) and lepton masses (me ¼ 0). The
W mass is determined as described above, and we subtract
the leading contribution in GFm2

t to avoid double counting
from the contributions mentioned above.

E. Higgs boson to leptons

For the partial decay width into two leptons we make
use of the next-to-leading-order QCD corrections up
to Oðα2sGFm2

t Þ and two-loop electroweak corrections
in [22,27].

IV. EXPANSION OF PARTIAL WIDTHS
AND UNCERTAINTIES

Now that we have the full expressions for the partial
widths of Higgs boson decays we are in the position
to Taylor expand these equations around the input
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observables. This expansion is made possible by the fact
that with the discovery of the Higgs boson, and knowledge
of its mass, all input observables are now known to good
enough accuracy to render an expansion of this nature
useful and accurate.
We represent the partial width expansion by

ΓH→X ¼ ΓðrefÞ
X

�
1þ

X
i

aτi;X
¯δτi

�
; (7)

where

¯δτi ¼
τi − τi;ref
τi;ref

(8)

and τi are the input observables [Eq. (1)] for the calculation.
The total width is the sum of all the partial widths; for
convenience we present dedicated expansion parameters
for that as well:

Γtot ¼
X
X

ΓH→X ¼ ΓðrefÞ
tot

�
1þ

X
i

aτi;tot
¯δτi

�
: (9)

For many of our parameters and observables we would
like to know the relative uncertainty due to variations in
the input parameters or variations of scale. The “percent
relative uncertainty,” PQ, of a parameter or observable Q
from its central reference value Q0 is defined as

Q ¼ Q0ð1þ 0.01PQÞ: (10)

If the errors are asymmetric then Pþ
Q designates the positive

percent relative error that increases the absolute value of Q,
and P−

Q designates the negative percent relative error that
decreases the absolute value of Q. If the positive and
negative errors are symmetric then we can combine and
label it as P�

Q.
In the computation we need to know the quark masses at

the scale of the Higgs boson mass. The bottom and charm
quark masses are evolved to μ ¼ mH using renormalization
group techniques. For consistency, and to avoid confusion,
we use the program RunDec [15], which provides the M̄S
evolution up to Oðα4SÞ. The values at μ ¼ mH are provided
in Table II for easy comparisons.
The partial width expansions are given in Table III,

where the reference values ΓðrefÞ
0 and expansion coefficients

of Eq. (7) are computed using the central values of the input
observables of Table I. Table IV gives the estimated
parametric and scale-dependence uncertainties on the

TABLE II. Running M̄S masses for the heavy quarks at three
loops at the scale μ ¼ mH , mH=2 and 2mH from the program
RunDec [15], which is used for the Higgs boson decaying into
quarks. Pole-mass inputs are taken from Table I. The parametric
uncertainty on the running mass at μ ¼ mH from 1σ uncertainty
(σm) in the pole mass is defined to be PmðΔmÞ ¼ fmþðmHÞþ
m−ðmHÞg=f2mðmHÞg, where m�ðmHÞ is computed using
mpole ¼ mref � σm. The scale dependence of the running mass
is canceled in higher-order loop calculations, as can be seen later
for scale-dependence uncertainties.

Quark at μ ¼ mHðmH=2; 2mHÞ PmðΔmÞ
mcðμÞ 0.576 (0.612, 0.546) GeV 7.53%
mbðμÞ 2.68 (2.84, 2.54) GeV 1.62%
mtðμÞ 167 (177,158) GeV 0.63%

TABLE III. Reference values for the partial widths at the central values of the parameters given in Table I along with values for aτi ;X as
defined by Eq. (7). VV� partial decay widths are calculated by Prophecy4f.

ΓðRefÞ
X =GeV amt;X amH;X aαðMZÞ;X aαSðMZÞ;X amb;X aMZ;X amc;X amτ ;X aGF;X

Total 3.96 × 10−3 −3.48 × 10−2 4.53 4.53 × 10−1 −1.35 −3.49 9.05 × 10−2 1.3 × 10−1 8.43 × 10−1
gg 3.57 × 10−4 −1.62 × 10−1 2.89 0 2.49 −7.1 × 10−2 3.77 × 10−1 0 0 1
γγ 1.08 × 10−5 −2.73 × 10−2 4.32 2.28 1.8 × 10−2 9.01 × 10−3 −1.85 0 0 7.24 × 10−1
bb̄ 2.17 × 10−3 8.11 × 10−3 8.09 × 10−1 2.94 × 10−2 −2.46 2.57 −4.75 × 10−1 0 0 9.53 × 10−1
cc̄ 9.99 × 10−5 −4.55 × 10−2 7.99 × 10−1 7 × 10−3 −9.17 0 −1.141 3.59 0 9.7 × 10−1
τþτ− 2.58 × 10−4 2.74 × 10−2 9.95 × 10−1 −2.37 × 10−2 −2.15 × 10−3 0 −1.61 × 10−2 0 2.01 1.02
WW� 9.43 × 10−4 −1.13 × 10−1 1.37 × 101 1.82 9.04 × 10−3 0 −1.21 × 101 0 0 2.49 × 10−1
ZZ� 1.17 × 10−4 2.28 × 10−2 1.53 × 101 −3.67 × 10−1 −1.82 × 10−3 0 −1.12 × 101 0 0 2.53
Zγ 6.88 × 10−6 −1.54 × 10−2 1.11 × 101 3.81 × 10−1 0 −9.76 × 10−3 −4.82 0 0 2.62
μþμ− 8.93 × 10−7 4.84 × 10−2 9.92 × 10−1 −4.59 × 10−2 −2.2 × 10−3 0 −1.62 × 10−2 0 0 1.02

TABLE IV. The estimates for percent relative uncertainty on
the partial widths from parametric and scale-dependence
uncertainties. Parametric uncertainties arise from incomplete
knowledge of the input observables for the calculation (i.e.,
errors on mc, αs, etc.). For parametric uncertainties, we put an
additional number in parentheses, which is the value it would
have if the Higgs boson mass uncertainty were 0.1 GeV (instead
of 0.4 GeV). Scale-dependence uncertainties are indicative of not
knowing the higher-order terms in a perturbative expansion of the
observable. These uncertainties are estimated by varying μ from
mH=2 to 2mH . More details on the precise meaning of the entries
of this table are found in the text of Sec. IV. Errors below 0.01%
are represented in this table as 0.

P�
Γ ðpar:add:Þ P�

Γ ðpar:quad:Þ ðPþ
Γ ; P

−
Γ ÞðμÞ

Total 4.41 (3.33) 2.43 (2.00) (0.06,0.09)
gg 2.57 (1.88) 1.74 (1.50) (0.01,0.04)
γγ 1.45 (0.42) 1.38 (0.35) (1.31,0.60)
bb̄ 4.94 (4.75) 3.54 (3.53) (0.31,0.02)
cc̄ 20.75 (20.56) 15.99 (15.99) (0.43,0.32)
τþτ− 0.36 (0.13) 0.32 (0.09) (0.01,0.01)
WW� 4.41 (1.14) 4.97 (1.25) (0.25,0.31)
ZZ� 4.90 (1.25) 4.42 (1.11) (0.,0.)
Zγ 3.56 (0.92) 3.52 (0.88) (0.56,0.23)
μþμ− 0.34 (0.11) 0.32 (0.08) (0.03,0.03)
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partial width values of Table III. The uncertainties are
expressed as percent relative uncertainties according to
the definition in Eq. (10). The meaning of P�

Γ ðpar:add:Þ is
that all input parameters have been allowed to range over
their 1σ errors and the maximum percent relative errors
are recorded. The meaning of P�

Γ ðpar:quad:Þ is that the
uncertainties of each parameter are added in Gaussian
quadrature. In other words, P�

Γi
ðpar:quad:Þ ¼ 100ΔΓi=Γi,

where

ðΔΓiÞ2 ¼
�∂Γi

∂mt

�
2

ðΔmtÞ2 þ
�∂Γi

∂αs
�

2

ðΔαsÞ2 þ � � � : (11)

The uncertainties in varying the scale parameter μ in the
calculation attempt to capture the uncertainty regarding
higher-order corrections. A full calculation at all orders
would give a result that does not depend on μ, but a finite-
order calculation does, and the uncertainty of dropping the
higher-order calculations is assumed to be approximated
reasonably well by noting how much the result changes
by varying μ by a factor of 2 upward and downward:
mH=2 < μ < 2mH. The meaning of P�

Γ ðμÞ in Table IV
concerns the relative percent uncertainties associated with
this scale-dependence algorithm.

V. EXPANSION OF BRANCHING FRACTIONS
AND UNCERTAINTIES

In the previous section we derived the expansion of the
partial widths in terms of small deviations of the input
observables from their reference values, and we determined
the uncertainties of the partial widths due to input observ-
able uncertainties (parameter uncertainties) and scale-
dependence uncertainties. The same type of expansion
can be done for branching fractions and ratios of branching
fractions. To begin with, the expansion for the branching
ratios is

BðH → XÞ ¼ BðXÞðrefÞ
�
1þ

X
i

bτi;X
¯δτi

�
; (12)

where τi represents the same parameters as Eq. (1).
Expansion parameters bτi;X are related to aτi;X by

bτi;X ¼ aτi;X − aτi;tot: (13)

Using the reference parameters from Table I, we display the
results of the reference branching ratios and their expansion
coefficients in Table V.
The table of expansion coefficients enables us to

compute the uncertainty in a final state branching ratio
due to each input parameter. The percent uncertainty ΔX

i on
branching fraction BðXÞ due to input parameter τi is

ΔX
i ¼ ð100%Þ × jbτi;Xj

Δτi
τrefi

; (14)

where Δτi are the current experimental uncertainties in
input parameter τi. For example, the percentage uncertainty
in the H → gg branching fraction is

Δgg
b ¼ ð100%Þð1.467Þ 0.06 GeV

4.78 GeV
¼ 1.84%: (15)

Each of these calculations have been done and are
presented in Table VI. We see most clearly in this table
that the uncertainty in the b-quark mass input observable
constitutes the largest uncertainty in the branching ratio
computations. The large uncertainty of the charm quark
mass is the decisive contributor to H → cc̄ uncertainty
as well.

A. Ratios of branching ratios

Experimental observables at colliders are a combination
of cross-section times branching fraction, σB. Although
this combination σB can often be measured to very high
accuracy, the extraction of the branching fractions is
fraught with experimental and computational complexity
in several ways. First, the parton distribution functions are
not known with high enough precision to perform a
calculation that would match the precision with which
the observable ultimately will be measured. Second, there
are additional theory uncertainties in the cross section and
the definition of the overall observable that make a clean
comparison between theory and experiment difficult.
For this reason, it is often useful [28] to measure the
ratio of observables ðσB1Þ=ðσB2Þ≃ B1=B2, where the

TABLE V. The reference value and expansion coefficients for Higgs boson decay branching fractions according to Eq. (12). The input
parameters for this computation are from Table I. VV� partial decay widths are calculated by Prophecy4f.

BðXÞðRefÞ bmt
bmH

bαðMZÞ bαSðMZÞ bmb
bMZ

bmc
bmτ

bGF

gg 9.03 × 10−2 −1.27 × 10−1 −1.64 −4.45 × 10−1 3.84 −1.47 3.87 −9.05 × 10−2 −1.30 × 10−1 1.57 × 10−1
γγ 2.73 × 10−3 7.46 × 10−3 −2.1 × 10−1 1.84 1.37 −1.39 1.64 −9.05 × 10−2 −1.30 × 10−1 −1.19 × 10−1
bb̄ 5.47 × 10−1 4.29 × 10−2 −3.72 −4.15 × 10−1 −1.11 1.17 3.02 −0.95 × 10−2 −1.30 × 10−1 1.10 × 10−1
cc̄ 2.25 × 10−2 −1.07 × 10−2 −3.73 −4.38 × 10−1 −7.82 −1.40 2.08 3.50 −1.30 × 10−1 1.26 × 10−1
τþτ− 6.51 × 10−2 8.22 × 10−2 −3.53 −4.68 × 10−1 1.35 −1.40 3.48 −0.95 × 10−2 1.87 1.72 × 10−1
WW� 2.38 × 10−1 −7.87 × 10−2 9.14 1.38 1.36 −1.40 −8.63 −0.95 × 10−2 −1.30 × 10−1 −5.94 × 10−1
ZZ� 2.96 × 10−2 5.76 × 10−2 1.08 × 101 −8.11 × 10−1 1.35 −1.40 −7.69 −0.95 × 10−2 −1.30 × 10−1 1.69
Zγ 1.74 × 10−3 1.94 × 10−2 6.53 −6.40 × 10−2 1.35 −1.41 −1.32 −0.95 × 10−2 −1.30 × 10−1 1.78
μþμ− 2.25 × 10−4 8.32 × 10−2 −3.53 −4.91 × 10−1 1.35 −1.40 3.48 −0.95 × 10−2 −1.30 × 10−1 1.73 × 10−1
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uncertainties in the production cross section largely drop
out. It is beyond the purpose and scope of this paper to
detail this process, but what we can do now is give accurate
computations of the uncertainties of the ratios of branching
fractions.
As with the partial widths and the branching fractions

themselves, it is useful to expand the ratio of the branching
fractions in the following form:

BðH → XÞ
BðH → YÞ ¼

BðXÞðrefÞ
BðYÞðrefÞ

�
1þ

X
i

rτi;X;Y
¯δτi

�
; (16)

where τi represent the same parameters as Eq. (1). The
expansion parameter rτi;X;Y is related to aτi;X by

rτi;X;Y ¼ aτi;X − aτi;Y : (17)

Using the reference parameters from Table I, we display
the results of the reference ratio of the branching ratios
and their deviations in Table VIII. Table IX presents the
uncertainties of the predictions for these observables. We
see that typically there is a few percent uncertainty in
predicting the ratios of branching ratios, and, as empha-
sized above, these may be the cleanest observables the LHC
experiment will present for some time.

VI. IMPLICATIONS FOR HIGGS BOSON STUDIES
IN THE STANDARD MODEL AND BEYOND

In this article we have done state-of-the art computations
to detail the partial widths and branching fractions of the
SM Higgs boson of 126 GeV. We have provided equations
that Taylor expand the result about a set of input observ-
ables to show the shift in the partial width and branching
fractions as a function of small deviations, including small
deviations of the Higgs boson around 126 GeV.
The purpose of computing Higgs boson properties is to

enable precision comparisons of data with theory. Up to
the present time, the experimental uncertainties for Higgs

boson physics are much larger than the uncertainties of the
theoretical computations. Furthermore, the SM predicted
rates for Higgs observables are well within the bands of
experimental measurements.
Over time, however, the situation will change. It is hoped

that experimental measurements will increase in precision
so as to test any new physics contributions that might be
influencing Higgs boson observables. The new physics
contributions may be rather small and on the percent level
[29], and so it behooves us to come to an understanding of
how precisely one can really test the SM Higgs boson
couplings. Our analysis can be used to address that question
as well.
For example, if the data at a later stage of the LHC, ILC,

or CLIC suggests that the branching fraction into b quarks
can be determined to better than 1%, this does not mean
that we are sensitive to new physics contributions of 1% to
H → bb̄. It can be seen in Tables VI and VII that the SM
uncertainty in computing BðH → bb̄Þ is presently 3.7%

TABLE VI. The percentage uncertainties of branching fractions due to uncertainties in each of the input observables, as calculated by
Eq. (14). The input parameters for this computation are from Table I. In addition, we also compute the branching ratio uncertainties due
to Δmh ¼ 0.1 GeV, the expected uncertainty after the LHC run. These values are in parentheses in the ΔmH

column. Percentages less
than 0.1% are listed as � � �.

Δmt
ΔmH

ΔαðMZÞ ΔαSðMZÞ Δmb
ΔMZ

Δmc
Δmτ

ΔGF

gg 0.07 0.52 (0.13) 0.01 2.27 1.84 0.01 0.38 � � � � � �
γγ � � � 0.07 (0.02) 0.03 0.81 1.74 � � � 0.33 � � � � � �
bb̄ 0.02 1.18 (0.30) 0.01 0.66 1.47 0.01 0.38 � � � � � �
cc̄ 0.01 1.19 (0.30) 0.01 4.62 1.75 � � � 14.66 � � � � � �
τþτ− 0.05 1.12 (0.28) 0.01 0.80 1.75 0.01 0.38 0.02 � � �
WW� 0.05 2.91 (0.73) 0.02 0.80 1.75 0.02 0.38 � � � � � �
ZZ� 0.03 3.43 (0.86) 0.01 0.80 1.75 0.02 0.38 � � � � � �
Zγ 0.01 2.08 (0.52) � � � 0.80 1.76 � � � 0.38 � � � � � �
μþμ− 0.05 1.12 (0.28) 0.01 0.80 1.75 0.01 0.38 � � � � � �

TABLE VII. The estimates for theory error (percent relative
uncertainty) of the branching fractions due to parametric
uncertainties and due to scale-dependent uncertainties from
varying mH=2 ≤ μ ≤ 2mH . Errors below 0.01% are reported in
the table as 0. For parametric uncertainties, we put an additional
number in parentheses, which is the value it would have if the
Higgs boson mass uncertainty were 0.1 GeV (instead of
0.4 GeV).

P�
BRðpar:-add:Þ P�

BRðpar:-quad:Þ ðPþ
BR; P

−
BRÞðμÞ

gg 5.10 (4.71) 2.99 (2.95) (0.01,1.22)
γγ 3.03 (2.98) 1.96 (1.96) (1.80,1.81)
bb̄ 3.73 (2.84) 2.03 (1.68) (0.24,0.00)
cc̄ 22.24 (21.35) 15.52 (15.48) (0.52,0.38)
τþτ− 4.13 (3.29) 2.26 (1.98) (0.08,0.05)
WW� 5.93 (3.75) 3.51 (2.10) (0.09,0.06)
ZZ� 6.42 (3.85) 3.95 (2.14) (0.09,0.06)
Zγ 5.04 (3.48) 2.87 (2.04) (0.83,0.78)
μþμ− 4.12 (3.27) 2.26 (1.98) (0.07,0.04)
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(sum of absolute values of all errors), and it is expected not
to get better than 2.8%, with most of that coming from
uncertainty of the bottom Yukawa coupling determination
stemming from the uncertainty of the measured bottom
quark pole mass, and the theory uncertainties encountered
when extracting and connecting the two. Thus, without
reducing this error, any new physics contribution to the bb̄
branching fraction that is not at least a factor of 2 or 3 larger
than 2% cannot be discerned. Thus, a deviation of at least
5% is required of detectable new physics.
Some new physics ideas shift the b-quark Yukawa

coupling away from the assumed SM value by virtue of
the added contributions from induced finite b-quark mass
corrections. An example of this is in high tan β super-
symmetric theories. A relative shift in the b quark Yukawa
coupling yb → ybð1þ δbÞ translates into a shift of the
branching fraction by δBb ¼ 2Bbð1 − BbÞδb ≃ δb=2. Thus,
one would have to shift the bottom Yukawa coupling by
more than 10% to have any hope of discerning a non-SM
signal.
In the left panel of Fig. 1, we show contours of BðH →

γγÞ=BðH → γγÞSM (solid lines) and BðH → ZZÞ=BðH →
ZZÞSM (dashed lines) in the yt − yb plane, assuming that
new physics only shifts the Yukawa couplings of the third
generation fermions t and b. The SM value for each is
determined at the x position in the center of the figures
where yf=ySMf ¼ 1. At this point, the values are BðH →
ZZ�Þ ¼ 0.030 and BðH → γγÞ ¼ 0.0027. The 1σ relative
uncertainty of the SM calculation for ΔBðZZ�Þ is about

4.0% and for ΔBðγγÞ about 2.0% (see Table VII). These
uncertainties cut large yet finite-width constraining areas
in the plane of the left panel of Fig. 1. Furthermore, for
correlated values of δyb and δyt shifts, there is no shift at
all in these branching ratios. Nevertheless, the contours of
constant BðH → γγÞ have different slope than the contours
of BðH → ZZÞ, enabling determinations of yt and yb from
a combination of precise measurements of these two
observables alone.
In the right panel of Fig. 1, we demonstrate limits on yt

and yb more directly from LHC data. The red shaded region
is the 1σ allowed region for yt=ysmt and yb=ysmb given
current data limits on σðHÞ × BðH → ZZ�Þ. The blue
shaded region is the current 1σ allowed region from current
data limits on σðHÞ × BðH → γγÞ. The overlap region of
these two shaded regions is the first estimate of where a
global fit to the data suggests yt and yb must be. The γγ and
ZZ observables are the most powerful ones at present, and
so it is appropriate to use them as illustration.
As we can see, the data allow increasing yb as long as yt

is increasing. This can be understood as the cancellation of
two effects. When yb increases, the branching ratio to bb
increases, and therefore the branching fraction to γγ and
ZZ� diminishes. However, if yt increases, then the pro-
duction cross section σðgg → HÞ increases, due to its
primary contribution from a top quark loop diagram. It
is these considerations that yield the shape of the allowed
shaded regions in the right panel of Fig. 1. In the case of γγ,
an ever increasing positive yb and positive yt is not without
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FIG. 1 (color online). Left Panel: Contours of BðH → γγÞ=BðH → γγÞSM (solid lines) and BðH → ZZÞ=BðH → ZZÞSM (dashed lines)
in the yt-yb plane. The SM position at (1, 1) is marked with an x. Right Panel: The red shaded region is the 1σ allowed region for yt=ysmt
and yb=ysmb given current data limits on σðHÞ × BðH → ZZ�Þ. The blue shaded region is the current 1σ allowed region from current
data limits on σðHÞ × BðH → γγÞ.
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bound because the production cross section and branching
fraction both increase. However, for positive yb and
negative yt, and vice versa, there can be no bound since
the production cross-section gains can be countered by the
branching fraction losses, due to destructive interference,
and vice versa. In all cases, there is still room for quite
sizable shifts in the top and bottom quark couplings to the
Higgs boson while remaining consistent with the data.
In conclusion, inspection of Tables VII and IX suggests

that among most branching ratios, and among most ratios
of branching ratios, the SM value cannot be determined
theoretically to within better than a few percent. When
considering a future precision Higgs boson program at the
LHC or another collider experiment beyond it, with hopes
of getting measurements at the percent level or better to test
new physics ideas, it will become necessary to confront
the theory and input observable uncertainties that plague

further improvement. We believe that the expansion tech-
nique presented in this paper is the most up-to-date
presentation of partial width and branching ratio observable
calculations in the SM, that it is ideal for investigating
consequences of physics beyond the SM, and that it most
clearly shows the precise areas of improvement needed for
SM calculations.
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APPENDIX A

In this appendix, we give the scale dependence to scalar
correlator, RSðμ2; m2

hÞ at Oðα4SÞ. This contributes to the
decay of the Higgs boson into heavy quarks in the
following form:

ΓH→QQ̄ðμ2Þ ¼ σ̄0m2
Qðμ2ÞRS

�
μ2

m2
h

�
; (A1)

where σ̄0 is the lowest-order cross section without the
outgoing quark masses. The scale invariance of
ΓH→QQ̄ðμ2Þ; together with the results for RS at μ ¼ mh

to Oðα4SÞ given in [21], leads to the following additional α4S
contributions to RSðμ2; m2

hÞ previously not found in the
literature.

TABLE IX. The estimates for theory error (percent relative
uncertainty) of the ratio of branching fractions due to parametric
uncertainties and due to scale-dependent uncertainties from
varying mH=2 ≤ μ ≤ 2mH . Errors below 0.01% are reported in
the table as 0. For parametric uncertainties, we put an additional
number in parentheses, which is the value it would have if
the Higgs boson mass uncertainty were 0.1 GeV (instead of
0.4 GeV).

P�ðpar:-add:Þ P�ðpar:-quad:Þ ðPþ; P−ÞðμÞ
γγ=WW� 3.34 (1.11) 2.99 (0.79) (1.71,1.75)
bb̄=cc̄ 22.27 (22.26) 15.89 (15.89) (0.62,0.41)
τþτ−=μþμ− 0.02 (0.02) 0.02 (0.02) (0.02,0.02)
cc̄=μþμ− 20.58 (20.54) 15.99 (15.99) (0.46,0.34)
WW�=ZZ� 0.64 (0.25) 0.52 (0.16) (0.,0.)
γγ=ZZ� 3.61 (0.99) 3.49 (0.88) (1.71,1.75)
bb̄=ZZ� 9.32 (5.87) 5.81 (3.72) (0.31,0.02)
τþτ−=ZZ� 4.61 (1.20) 4.55 (1.14) (0.01,0.01)
Zγ=ZZ� 1.41 (0.40) 1.35 (0.34) (0.73,0.71)
bb̄=τþτ− 4.76 (4.71) 3.53 (3.53) (0.30,0.01)
τþτ−=cc̄ 20.60 (20.55) 15.99 (15.99) (0.33,0.44)
γγ=Zγ 2.22 (0.61) 2.15 (0.54) (0.97,1.04)
gg=Zγ 4.25 (2.30) 2.99 (1.61) (0.79,2.94)

TABLE VIII. The reference values and expansion coefficients for ratios of Higgs boson decay branching fractions according to
Eq. (16). The input parameters for this computation are from Table I. VV� partial decay widths are calculated by Prophecy4f.

BðXÞ=BðYÞRef rmt
rmH

rαðMZÞ rαSðMZÞ rmb
rMZ

rmc
rmτ

rGF

γγ=WW� 1.15 × 10−2 8.62 × 10−2 −9.35 4.60 × 10−1 4.60 × 10−1 9.01 × 10−3 1.03 × 101 0 0 4.75 × 10−1
bb̄=cc̄ 2.17 × 101 5.36 × 10−2 9.6 × 10−3 2.24 × 10−2 6.71 2.57 9.34 × 10−1 −3.59 0 1.66 × 10−2
τþτ−=μþμ− 2.89 × 102 −1.03 × 10−3 2.55 × 10−3 2.22 × 10−2 4.65 × 10−5 0 1.09 × 10−4 0 2.01 −3.39 × 10−4
cc̄=μþμ− 1.12 × 102 −9.39 × 10−2 −1.93 × 10−1 5.29 × 10−2 −9.17 0 −1.39 3.59 0 −4.64 × 10−2
WW�=ZZ� 8.05 −1.36 × 10−1 −1.63 2.19 1.09 × 10−2 0 −9.38 × 10−1 0 0 −2.28
γγ=ZZ� 9.22 × 10−2 −5.02 × 10−2 −1.1 × 101 2.65 1.98 × 10−2 9.01 × 10−3 9.33 0 0 −1.81
bb̄=ZZ� 1.85 × 101 −1.47 × 10−2 −1.45 × 101 3.96 × 10−1 −2.46 2.57 1.07 × 101 0 0 −1.58
τþτ−=ZZ� 2.2 2.46 × 10−2 −1.43 × 101 3.43 × 10−1 −3.29 × 10−4 0 1.12 × 101 0 2.01 −1.52
Zγ=ZZ� 5.87 × 10−2 −3.82 × 10−2 −4.23 7.47 × 10−1 1.82 × 10−3 −9.76 × 10−3 6.37 0 0 8.96 × 10−2
bb̄=τþτ− 8.41 −3.93 × 10−2 −1.86 × 10−1 5.31 × 10−2 −2.46 2.57 −4.59 × 10−1 0 0 −6.26 × 10−2
τþτ−=cc 2.58 9.29 × 10−2 1.96 × 10−1 −3.07 × 10−2 9.17 0 1.39 −3.59 2.01 4.61 × 10−2
γγ=Zγ 1.57 −1.19 × 10−2 −6.74 1.90 1.80 × 10−2 1.88 × 10−2 2.96 0 0 −1.90
gg=Zγ 3.31 × 101 −1.47 × 10−1 −8.17 −3.81 × 10−1 2.49 −6.12 × 10−2 5.19 0 0 −1.62
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RSðμ2;m2
hÞ¼ 3

�
1þ

�
αSðμÞ
π

��
5.666þ2 log

�
μ2

m2
h

��
þ
�
αSðμÞ
π

�
2
�
29:1467þ29:222 log

�
μ2

m2
h

�
þ3.917log2

�
μ2

m2
h

��

þ
�
αSðμÞ
π

�
3

ð41:758þ185:295 log

�
μ2

m2
h

�
þ90:545log2

�
μ2

m2
h

�
þ7.616log3

�
μ2

m2
h

�
3
�

þ
�
αSðμÞ
π

�
4

ð−825:7þ443:937 log

�
μ2

m2
h

�
þ721:581log2

�
μ2

m2
h

�
þ238:608log3

�
μ2

m2
h

�
þ14:755log4

�
μ2

m2
h

���

(A2)

The coefficients are given at Nc ¼ 3, nf ¼ 5 since these are where the Standard Model contributes and where the values
at μ ¼ mh are reported. These contribute to an Oð0.01%Þ scale uncertainty to the width results.
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