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Abstract

We present results on novel analytic calculations to describe invariant mass distributions of
QCD jets with three substructure algorithms: trimming, pruning and the mass-drop taggers.
These results not only lead to considerable insight into the behaviour of these tools, but also
show how they can be improved. As an example, we discuss the remarkable properties of the
modified mass-drop tagger.

1 The boosted regime and substructure tools

The main aims of the research programme carried out at the the Large Hadron Collider (LHC) at
CERN are to understand the mechanism of electroweak symmetry breaking and to explore the TeV
scale for signs of new physics beyond the Standard Model of particle physics. In order to achieve
this, protons are collided at energies far above the electroweak scale, opening up the possibility of
producing electroweak-scale particles with a large boost. In these situations, their hadronic decay
products are collimated into a single jet. Consequently a vibrant research field has emerged in
recent years, investigating how best to identify the characteristic substructure that appears inside
“signal” jets in order to differentiate them from background (QCD) jets (for a review of the field
see Refs [1, 2, 3, 4]). Many “grooming” and “tagging” algorithms have been developed, successfully
tested and are already being used experimental analyses (in particular see Refs [5, 6, 7, 8] for studies
on QCD jets).

Until very recently, nearly all the theoretical studies of substructure tools have been done using
Monte Carlo parton showers. While these are powerful general purpose tools, their essentially nu-
merical nature offers little insight into the results produced or their detailed and precise dependence
on tagger parameters and the parameters of jet finding. Such a detailed level of understanding,
which can be achieved for example via analytical formulae, is in fact crucial in order for substruc-
ture studies to realise their full potential. However it has been far from obvious that, given their
inherent complexity, substructure taggers can be understood to any extent analytically.

∗Talk presented at various conferences including: ESI Program on Jets and QFT, Beyond the LHC Nordita
Workshop, Boost 2013, QCD@LHC 2013, LC 2013 and Radcor 2013.

1

http://arxiv.org/abs/1311.6514v1


In two recent papers [9, 10] we have developed the first comprehensive theoretical understanding
of three commonly used substructure tools: trimming [11], pruning [12, 13] and the mass drop
tagger [14]. In these proceedings we review the main results of those papers, focussing on the
perturbative properties of jet mass distributions of QCD jets with the application of substructure
algorithms, and compare the results to the plain jet mass distribution.

2 The perturbative structure of jet mass distributions

Jet mass distributions are affected by logarithmic corrections in the ratio of jet invariant mass
(m) over its transverse momentum (pt). When this ratio becomes small, as happens for highly
boosted configurations, these logarithms are large and fixed-order perturbation theory is not a
reliable way to organise the calculation . One then needs to resum these large corrections to all
orders in perturbation theory. Resummed results can be then matched to fixed-order ones, typically
obtained at next-to-leading order (NLO), in order to obtain a reliable estimate of jet masses over a
wide range of m/pt.

2.1 Plain jet mass

Resummed calculations are usually discussed in terms of the cumulative distributions, i.e. the
integral of the jet mass distribution up to a fixed value:

Σ(ρ) =
1

σ

∫ ρ dσ

dρ′
dρ′, ρ =

m2

p2tR
2
, (1)

where R is the jet radius. In our discussion, we will work in the small jet radius limit R ≪ 1.
This considerably simplifies our expressions because we only have to consider the radiation from
the parton that initiated the jet: large-angle radiation from other final-state partons and from the
initial-state partons result in contributions which are power suppressed in R. For brevity, we also
limit ourselves to the case of quark-initiated jets.

To next-to-leading logarithmic (NLL) accuracy, i.e. control of terms αn
sL

n+1 and αn
sL

n in lnΣ(ρ),
where L ≡ ln 1

ρ , the cumulative distribution can be computed using an independent-emission ap-
proximation, ignoring subsequent splittings of those emissions, other than in the treatment of the
running coupling (see for instance [15, 16]) and of non-global contributions [17]. The NLL result,
in the small-R limit, can be written as

Σ(ρ) = e−D(ρ) · e−γED′(ρ)

Γ(1 +D′(ρ))
· N (ρ) . (2)

The first factor, which is double logarithmic, accounts for the Sudakov suppression of emissions that
would induce a (squared, normalised) jet mass greater than ρ. In a fixed coupling approximation
the resummed exponent reduces to

D(ρ) ≃ αsCF

π

[

1

2
ln2

1

ρ
− 3

4
ln

1

ρ
+O (1)

]

, (3)

The second factor in Eq. (2), accounts for the fact that the effects of multiple emissions add together
to give the jet’s overall mass. The third factor, also single logarithmic, accounts for modifications
of the radiation pattern in the jet (non-global logarithms [17]) and boundaries of the jet (clustering
logarithms [18, 19, 20, 21]) induced by soft radiation near the jet’s edge.
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Non-global logarithms are the main obstacle to a full resummation of the standard jet mass
beyond NLL accuracy (for work towards higher accuracy, see Refs. [22, 23]) and why even the NLL
calculations have to neglect 1/N2

C suppressed terms, as done in Ref. [24, 25] 1.

2.2 Trimmed mass distribution

Trimming [11] takes all the particles in a jet of radius R and reclusters them into subjets with a jet

definition with radius Rsub < R. All resulting subjets that satisfy the condition p
(subjet)
t > zcutp

(jet)
t

are kept and merged to form the trimmed jet. The other subjets are discarded.
We can get an idea of the trimmed jet mass behaviour by considering configurations in which

the jet is made of a hard quark and a bunch of soft gluons. It is then clear that the algorithm will
cut away soft radiation if emitted at angles larger than Rsub, while arbitrarily soft gluons radiated
at angles smaller than Rsub will contribute to the trimmed jet mass.

The full leading logarithmic (LL) calculation of the trimmed jet mass produces:

Σ(trim)(ρ) = exp

[

−D(max(zcut, ρ)) − S(zcut, ρ)Θ(zcut − ρ)

−Θ(zcutr
2 − ρ)

∫ zcutr2

ρ

dρ′

ρ′

∫ zcut

ρ′/r2

dz

z

CF

π
αs(ρ

′zp2tR
2)

]

. (4)

where r = Rsub

R and we have neglected finite zcut corrections. The resummed exponent D is the
same as in Eq. (3), while the function S is single-logarithmic and in a fixed-coupling approximation
is given by

S(a, b) ≃ αsCF

π

[

ln
1

zcut
− 3

4
+O (zcut)

]

ln
a

b
, (5)

We can now discuss differences and similarities of the trimmed mass distribution in Eq. (4) to
the plain jet mass Eq. (2). The main similarity from the point of view of resummed calculations
is that in both cases the analysis of the one loop case essentially captures the LL behaviour to all
orders (this is not the case for pruning or mass drop). However, the actual form of the one-gluon
exponentiation in the case of trimming has a non-trivial dependence on the jet’s kinematics. We
can identify three distinct kinematic regions: for ρ > zcut trimming is not active and the result is
the same as plain jet mass. For r2zcut < ρ < zcut, the parameter zcut provides a lower limit for
the emissions’ energy, resulting into a single-logarithmic distributions. The last region ρ < r2zcut
is again double logarithmic and it correspond to configurations in which soft gluons are emitted at
angles smaller than Rsub, as mentioned above.

Eq. (4) does not capture full NLL accuracy i.e. all terms αn
sL

n in lnΣ(ρ). The missing terms
include non-global logarithms, related clustering logarithms, and multiple-emission effects on the
observable. They should all be relatively straightforward to include, if desired, since they follow
the structure of corresponding terms for the plain jet-mass distribution.

In order to test that the approximations made in order to obtain the resummed result in Eq. (4)
capture the relevant physical effects, we compare our result to the one obtained with a Monte Carlo
parton shower. This comparison is shown in Fig. 1. Our calculations indeed reproduce the shape of
the distribution in all three distinct regions, as well as the position of the transition points between
these regions (indicated by vertical arrows), which confirms that we have analytically captured the
essence of trimming.

1Resummation of non-global logarithms with full NC dependence has been recently achieved in Ref. [26].
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Figure 1: Comparisons of the resummed calculations for the mass distributions (right-hand panels)
to a standard parton shower (left-hand plots). The arrows indicate the analytic prediction for the
position of the transition points. The results on the left-hand panels have been obtained from Monte
Carlo simulation with Pythia 6.425 [27] in the DW tune [28] (virtuality-ordered shower), with a
minimum pt cut in the generation of 3TeV, for 14TeV pp collisions, at parton level, including initial
and final-state showering, but without the underlying event (multiple interactions). Clustering was
performed with FastJet [29].
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2.3 Pruned mass distribution

Pruning [12, 13] takes an initial jet, and from its mass deduces a pruning radius Rprune = Rfact · 2mpt ,
with Rfact of order 1 (here we adopt the widespread choice Rfact = 0.5, but our main conclusions
do not depend on this choice). It then reclusters the jet and for every clustering step, involving
objects a and b, it checks whether ∆ab > Rprune and min(pta, ptb) < zcutpt,(a+b), where zcut is a
second parameter of the tagger. If so, then the softer of the a and b is discarded. Otherwise a
and b are recombined as usual. Clustering then proceeds with the remaining objects, applying the
pruning check at each stage.

We can start our analysis by considering the O (αs) contribution. At this perturbative order the
jet is made of two partons, a and b with m = mab and ∆ab > Rprune =

mab

pt
. Thus, the two partons

are kept only if they pass the energy condition, irrespectively of their angular distance. This has a
remarkable consequence: the LO pruned mass distribution receives no contributions from the soft
region and it has only a single logarithm, which is of pure collinear origin.

This behavior certainly appears desirable from the viewpoint of taming the background jet mass
distribution as it rids us of double logarithms. Thus we may wonder if the above feature holds to
all orders. However an analysis of the NLO contributions reveal that this is not the case and the
pruned mass distribution receives contributions from soft emissions beyond LO and consequent
double logarithmic enhancements appear.

In particular, we consider NLO configurations (which involve three partons), where there is a
soft parton (p3) that dominates the total jet mass thus setting the pruning radius, but is soft enough
that it fails the zcut threshold and therefore it does not contribute to the pruned mass; meanwhile
there is another parton (p2), within the pruning radius, that contributes to the pruned jet mass
independently of how soft it is. We call this “I-pruning”, because at the angular scale Rprune (set
by the soft parton p3), the final pruned jet consists of a single hard prong. On the other hand, we
call “Y-pruning” those configurations that contributed to the leading order result for which at an
angular scale Rprune, the pruned jet always consisted of two prongs.

The above analysis can be generalised to all orders and a resummed result for pruning and
its Y-pruning and I-pruning components can be found. Here we report only simplified (double
logarithmic) versions of the results, valid at fixed coupling, and we refer the reader to Ref. [9] for
more complete expressions. We have

dσ(prune)

dρ
=

dσ(Y-prune)

dρ
+

dσ(I-prune)

dρ
, (6)

with

ρ

σ

dσ(Y-prune)

dρ
≃ e−D(ρ) αsCF

π

[

ln
1

zcut
− 3

4

]

,

ρ

σ

dσ(I-prune)

dρ
≃

(

αsCF

π

)2 ∫ 1

ρ

dρfat
ρfat

ln ρfate
−

1

2

αsCF
π

ln2 1

ρfat ln
ρ

ρfat
e−

1

2

αsCF
π

ln2
ρ
fat

ρ . (7)

Several comments can be made about the perturbative structure of the above results. First
of all we note that the I-pruning distribution contains a convolution between two exponentials.
The resulting distribution is double logarithmic, i.e. Σ(I-prune)(ρ) contains αn

sL
2n contributions and

hence it is as singular as plain jet mass. On the other hand, Y-pruning is essentially a Sudakov
suppression of the leading order result and, therefore, Σ(Y-prune)(ρ) is as singular as αn

sL
2n−1.

Interestingly, when considering full pruning, i.e. the sum of the two components, a cancellation
occurs in the z2cut < ρ < zcut region and one obtains a distribution which is only single-logarithmic.
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As for trimming, to reach full NLL accuracy would require the treatment of several additional
effects: non-global logarithms and related clustering logarithms and multiple-emission effects on
the observable. Non-global logarithms enter in a number of ways: in particular, from the boundary
at θ ∼ R, they affect the fat-jet mass, and through it the distribution of the pruning radius. They
will affect both the Y and I components starting, in the small-zcut limit, from order α3

s.
The comparison between the analytic calculation and the Pythia shower is shown in Fig. 1 in

the middle panel. There one observes excellent agreement between the shapes of the analytical and
MC distributions, indiacting once again a successful analytical description of pruning.

2.4 MDT and mMDT mass distribution

The mass-drop tagger (MDT) [14] is a declustering algorithm to be used with Cambridge/Aachen
jets [30, 31]. In its original incarnation, the algorithm starts from a jet j, then undoes the last step
of the clustering finding two subjets j1 and j2, with mj1 > mj2 If there was a significant mass drop,
mj1 < µmj , and the splitting is not too asymmetric, y = min(p2tj1 , p

2
tj2

)∆R2
j1j2

/m2
j > ycut, then

the jet j is tagged. Otherwise j is redefined to be equal to j1 and the algorithm iterates (unless j
consists of just a single particle, in which case the original jet is deemed untagged).

At O (αs) the mass-drop condition is always satisfied, so we only need to check for the ycut
condition, which is essentially a cut on the energy sharing between the two prongs. This situation
is completely analogous to what we have encountered for pruning at LO and the resulting mass
distribution has only a single logarithm. However, starting from NLO the behaviour of MDT is
far from straightforward. Complications arise because MDT recurses on the more massive branch,
which in principle can be the softer of a given subjet pair. This was not what was intended in the
original design, intended to tag hard substructure, and is to be considered a flaw. We have in fact
explicitly computed this wrong-branch contribution at NLO [9, 10] and found that it generates a
contribution to Σ as singular as α2

sL
3. The “wrong branch” contribution turns out to be numerically

small but nevertheless calls for a modification.
The modified mass drop tagger (mMDT) is instead defined in such a way that it recurses on the

subjet with the largest m2+p2t . Not only does the mMDT eliminate the wrong-branch issue, but it
also turns out to greatly facilitate the resummation of the tagged mass distribution. We find that
the all-order mMDT mass distribution is simply given by the exponential of the one-loop result:

Σ(mMDT)(ρ) = exp [−D(max(ycut, ρ))− S(ycut, ρ)Θ(ycut − ρ)] . (8)

The mass distribution above has remarkable properties: it only contains single-logarithmic (αn
sL

n)
contributions. All contributions from soft emissions have been successfully removed. It is to our
knowledge the first time that a jet-mass type observable is found with this property. We will analyse
the salient properties of mMDT in more detail in the next section.

The comparison between our analytic calculation and the Pythia shower is shown in Fig. 1 in
the bottom panel and yet again we note that our resummation perfectly captures the behaviour of
the mMDT.

3 Significant features of the modified mass drop tagger (mMDT)

Given its remarkable properties it is worth summarising the main features of the mMDT.

• Background shapes. mMDT mass distributions are free of Sudakov peaks and their shape
is fairly insensitive to changes in pt. Moreover, the value of ycut can be adjusted in order
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to obtain a flat distribution for the background, which is potentially advantageous for data
driven background studies. 2

• Calculability.

1. Fixed order An interesting consequence of the presence of only single logarithms relates
to the validity of fixed-order perturbation theory, which is is expected to be valid down
to L ∼ 1/αs, rather than only down to L ∼ 1/

√
αs. This is shown in Fig. 2, on the left,

where the resummed result is plotted together with fixed-order predictions.

2. Resummed level. We have seen that mMDT completely removes contributions from soft
emissions: soft-collinear ones, or pure soft ones. The absence of pure soft divergences has
an important consequence, namely the absence of non-global logarithms. This makes the
mMDT particularly interesting and it suggests that the mMDT should be given priority
in calculations aiming for accuracy beyond single logarithms.

3. Non-perturbative corrections. So far we have concentrated on perturbative predictions.
Clearly in the context of calculability we also need to take into account non perturbative
effects. These include hadronisation, for which analytic estimates are perhaps possible,
and underlying event contributions. A Monte Carlo study of hadronisation effects and
underlying event is summarised in Fig. 3. One may expect groomers and taggers to have
reduced sensitivity to non-perturbative physics. This is particularly striking for mMDT
which for these values of pt has very small hadronisation corrections (not the case for
pruning or trimming) and effectively no sensitivity to the underlying event.

Therefore, we can conclude that mMDT not only provides a very useful tool for new physics searches
(for which it was originally designed) but also appears to have special theoretical properties, which
make it potentially of value for QCD measurements and studies including accurate αs extraction.
Additionally we can use it to probe and, perhaps, tune different Monte Carlo parton showers. A
study in this direction is shown on the right-hand side of Fig. 2 where the resummed result is plotted
together with different versions of the Pythia shower. The plot shows that nearly all the Monte
Carlo generators are in reasonable agreement with each other and with our resummation. The
one exception is the pt-ordered shower in Pythia 6.245, which predicts a noticeably different shape
for the distribution, both at small and large masses. Following our calculations this discrepancy
was looked into by the Pythia authors, who after identifying an issue in their shower, released a
modified version, labelled v6.428pre, which is in much better agreement with our analytics. This
example illustrates the value of analytical understanding in situations such as this where Monte
Carlo results from various generators differ noticeably.
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