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ABSTRACT

In a large class of non-linear o-
models there arise at tree level
important thermal effects due to the
curvature of the field manifold. We
show how these can provide naturally
the initial conditions necessary for
inflation.
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Non—-linear sigma models may often arise as the low-energy effective theory
of a more fundamental theory. In sigma models the scalar fields zA can be
thought as co-ordinates on some manifold G/H with a field-dependent induced
metric g. A well-known example of such a situation is encountered in N = 1

1)

supergravity *, where the bosonic sector is simply a sigma model coupled to

Einstein gravity. In N = 1 supergravity G/H is a Kihler manifold which means
that locally one can express the metric as 845 = aAa EG’ where G(zA,EA) is a real

function [we use the notation ZA = (z'A)*]. In N = 1 supergravity G/H is not
fizxed, whereas in extended superxgravities one often finds non—compact symmetry
groups. The phenomenologically successful no—scale supergravity modelsz)’a) are
based on SU(n,1)/SU(nXU(l) Kihler manifolds, and they may also bea) the field-

theory limit of superstringsS).

The cosmological consei;uences of sigma models can be expected to be
interesting because of the non-trivial modifications caused by the curvature of
the scalar field manifolde'). In the present paper we will address the question
of initial conditions for inflation in the framework of sigma models.

7)

It has been argued by'Linde that in inflationary models based on super-
cooling the field responsible for inflation (the inflatomn) in fact cannot relax
into the local minimum created by high temperature effects before the inflation-
ary era is supposed to start. Elthe argument is shortly the following. The T = 0
potential has an overall scale H; fixed by the energy density perturbations to be
roughly 0(10_12) (in natural Planck units MP//§1?2= 1). The high temperature
thermal corrections are therefore of the order of HOTZ. Therefore, in a radia-—
tion dominatgd Universe the typical time gcale for an 0(1l) change iin the fleld
value 1s A ~ wt ~ Hy T-l. As inflation starts when prad ~T* < Hy, one finds
that wt ~ Hé << 1. As a natural initial value for the inflaton is presumably
0(Ll), one then concludesY) that it has not had time to relax to the local
ninimum.

A proposal for a solution that evades this problem is chaotic inflations)

which is not based on supercooling. There one assumes that at t = M;l the
initial field value can take any random value compatible with p = i&)z + V(p) £ 1.
If fluctuations in the kinetic energy Ek are much smallef: than V, the Universe
may then. inflate provided the initial value of the inflaton was large enough.
However, as a natural initial value for the fluctuation of the kinetic enexgy

density is Ek = 42 = 1 (in natural units), this would imply that the initial
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field value $,5 2 103 1f the potential is given by V = Hi@“ (the size of the
quartic self-coupling A 1s determined by the requirement of correct energy-
density fluctuations). The scalar potential should be smooth in order not to
produce unwanted perturbations in energy density, and moreover, there should not
exist global minima where the inflaton may be trapped. It is difficult to see
how these difficulties could be avoided if ¢ >> 1 because one expects the
potential to be subject to gravitational corrections which are of the general
form 8V =% an(¢)(¢/MP)n. For example, if ¢ >> 1 one expects A ~ 0(1l) rather
than A £ 10712 g required by energy .density perturbations.

Gravitational corrections can presumably be neglected if ¢ < 1. If this
situation is to be realized in chaotic inflation, one needs c.p {< 1 to satisfy
é; <¢{ V. We do not consider such a fine-tuning satisfactory: the problem of why
initially ¢, = O (the value of ¢ at the global metastable minimum) has merely
been traded with the problem of why initially <.P0 = Q.

In the present paper we will study inflation with supercooling in the
context of non-linear sigma models. We will show that in these models the
dominant thermal effects are present already at the tree level because of the
non-trivial curvature of the field manifold. These effects can easily confine
the fields to the local minimum and thus avoid the above problem. In what
follows we will assume the field manifold to be Kidhler. Generalizations to non-

Kihlerian situations are obvious.

Consider the following action

5= Sol“x {9 [‘ 3R~ OAB 3 QIPEA 9V1§E+ Vi2)|

In the Friedman-Robertson-Walker background the field equation for homogeneous
fields z (t) reads

2A & 5HéA+F§CéB§<C+ “EQEV= O (2)

where I‘gc = gAD'() is the comnnection and the Hubble parameter H = R/R, where R

BEcD
is the cosmic scale factor as usual. Of special interest are cases where one has

flat directions in the potential energy. Such situations arise, e.g., in no-
2),3)
3

2

logical comstant”’. In the following we will comcentrate on the case of a single

scale models where they may also be responsible for cancelling the cosmo-—
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field z having a potential with a flat direction, which we choose to be Im z (our
main arguments do not depend crucially on the assumption of a precisely flat

direction). Therefore we take

023 = 3= 3243 ; V= V(2+3) )

The potential V we envisage to contain all radiative corrections and it may or

may not be of the usual supexgravity forml). Denoting u = Re z and v = Im z, one

then finds from (2)
i+ OHic + Pw) (@-v?) + 447 2%V = 0 (4a)

v + 2N w)uv+>Hv= 0
(4b)

Equation (4b) immediately yields
. 1 >=3
v = Rg7R (5)

where @ is a constant. We expect Q # 0 because of quantum fluctuations of the
field z. The value of Q can differ in causally disconnected regioms. Defining a

properly normalized field, which has canonical kinetic enrergy, by

. N A

b= wa’ /2 6
one obtains from (4a)

$+3H¢+®¢UQ=O (7)

where

Ug = Q97 R+ VI(4) 5

is the effective potential depeanding on R. The equation of motion for the flat
direction v has therefore influenced the field equation in the non-flat direction
in a drastic way. Note that we have not yet specified the metric g in any way.
1/4 :
Let us now assume that at high temperatures T >> V we are in a radiation

dominated Universe where R = Ryt . This assumption is consistent because Prad =
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n2NT* /30, where N is the number of light degrees of freedom, whereas UQ ~ T8,
Then the equation motiom (7) can be imtegrated to yield

ad \* 2 .~lp-6b
5,:(_-4’ + 86" R 9)
d¥
where § = t"é and € is a positive constant (this is because g must be positive in
order not to have ghosts). For any reasonably smooth metric g it then follows
. -3/2
that ¢ ~ t / , and thus one expects that ¢ will tend to a constant as t » =,

Let us call this constant 5 and expand the potential as
- - N2
V(¢): 3“: [‘l-a(tf)-cb)-l'éb(t‘,})—@))-}---- _J (10)

where Hy ~ 1076, The equation of motion (7) is dominated by Q-dependent part
until T < Ty, where

(1L

45
2, I
2 aH 2 - / 1T )/L
To = _10 Ro %(¢> (N%(¢)
Q
The transition to a de Sitter era takes place when T < Tc where

-1
T:' ~ 3N & Ho (12)
-3
If g(¢) is smooth enough and we can take it to be 0(1), then also QR; ~
0(1) at most. Otherwise the energy density of v would be too large so that the
homogeneous field z would collapse to form a black hole. Then from (l1) and (12}
we see that the Q-dependent part of the effective potential (8) will have died

10 will give

out before inflation. Hogever, because one—loop thermal corrections
terms of the order of HUT2, the Q-dependent part dominates over these until
T < Hy, i.e., until the onset of inflation [see(lz)]- Therefore, in sigma
models these one—loop thermal corrections will never be important for inflation,
in contrast to the theories with minimal kinetic terms. In fact, if the
potential has a flat direction, as we have assumed, the high-temperature behav-
jour of the theory is not related to the zero temperature potential at all, and

considerations of one—loop thermal corrections are irrelevant.

To implement inflation there should be a local minimum in the neighbourhood
of 5. Q-dependent corrections to the potential V will then carry the field
there. When inflation starts, these Q-dependent terms will become completely
negligible because of their R_s—dependence, and inflation can proceed in the

conventional way.
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Let us now address the crucial question of how long does it take the field ¢
to move from an initial value ¢P ~ 0(1) to the neighbourhood of $. Let us take

q'>(nP) = 0, Then € = (8Q2/R0)g‘1(¢P) and when T ~ T, ox & ~ 108, one finds that
- -6 - - - _3
$(T )= ¢ +8]7R, [%'(‘br)‘%’w)]"‘“) a3

Therefore, denoting by Py = 8(¢P)G(MP)2 the energy density of the initial fluc-
tuation (which we assume to be comstant in a causally coonected region), we can

write
| 4T )= F] ~ 6Wp, <07 a6

with Py ¢ 1. This is our main result. 1t is general and assumes no particular
form of the metric g. It now depends on the details of a particular model

whether all initial fluctuations of pv will produce inflation or only some.

In counclusion, we have considered the initial conditions for inflation in
models where the inflaton spans a curved Kihler manifold. Such models appear,
e.g., in non-minimal supergravities. We assumed that the inflaton moves In a
non-trivial Im z background as is the case in a large class of curved Kdhler
manifolds6). Instead of an empty classical vacuum, the inflaton sees the heat
bath of its imaginary part. In that case we found an effective temperature-
dependent potential for the inflaton field, which at high energies dominates over
all other (ome—loop) thermal cofrections and can naturally give rise to propex
initial conditions needed for inflation. The origin of such a term is due to the
non-trivial coupling between the real and imaginary parts of the inflaton caused
by the curvature. We expect that the mechanisa described in this paper will work

11)

algso in the existing models of primordial inflation which make use of non—

minimal kinetic terms for the fields.
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