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ABSTRACT

We develop a simple method for dealing with perturba-
tion theory in the presence of twisted boundary condi-
tions. We compare in detail periodic and twisted SU(N)
gauge models and stress the importance of twisted
boundary conditions to suppress finite size effects.
As an application we study staggered fermlions in a

reduced model for large N and N The

colour flavour’

ratio N can be made variable by perform-

colour/Nflavour
ing only partial colour conversion.
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1. - INTRODUCTION

The original twisted Eguchi-Kawal (TEK) modell)’z) is

a very efficient tool
for studying the large N limit om the laﬁﬁicé- In this framework the string
tension and some information about the deconfining phaée transition at finite
temperature ‘have been obtained2)75). But if one wants te study the deconfining
phase transitiom in the scaling region, the glueball spectrum or staggered. ferm-
ions and the meson spectrum for large N, the one—point TEK model is insufficient.
S0 ‘one ig naturally led to the idea of comstructing models with twisted boundary

5)

conditions on a lattice which 1s larger than one hypercube .

Twist can be incorporated in two ways: one is to consider the potentials as
periodie and to change the action into a twisted one. This way is the best for
Monte Carlo (MC) simulations. The other way 1is to consider the potentials as
periodiclup to a gauge transformation which obeys a comstraint {the twist), and
to leave the action unchanged. The two descriptions are. related through a singu-
lar gauge transformation. The latter approach has definite advantages for theor-
etical purposes and we exhibit it in this paper. Sections 2 and 3 treat the pure
gauge model and Section 4 gauge models coupled -to Kogut—Sgsékind fermions.

Section 5 presents our conclusions.

2. - FEYNMAN RULES 'IN TWISTED AND PERIQDIC BOXES

We study SU(N) lattice models defined by the action
- ¢ +
S= 2 W, 6 U, Ga ) \_.L“LX_-W) U\, (") (2.1)

WiV

and the periodicity coudition
+ -
u\L (X'\ \_s‘.a.‘) ZTVuH (“\ C\f (2.2)

Here-:_v Ls‘poinpihg in the v-direction and lZ;‘ = a, where a is the lattice

spacing. The integers LS , v = 0,...,3 determine the extension of the lattice.

v
The unitary twist matrices obey the commutation relatioms

I‘r DV = expi (%g]“‘” fv T\* | (2.3)

We choose a twist n creating a rectangular volume L ~ x L . X L , *x L .. For
pv e el c2. ¢l
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more details, see Ref. 6). After the transformation U“(x) + Uu(x) or Up(x) +
Up.(x)I‘p depending on the link (x,p) as indicated in Fig. 1, the action becomes

S. 2 f:‘w a Ve U Wy wa)ut(m)utm (2.5)

R, w4y
The values of the twist factors are given in Fig. 1. The ground state, which is
unique up to gauge transformations, is also shown in Fig. 1. For MC simulations
of the model the action (2.5) is most convenient, but because of the irregular
distribution of twist factors and ground state matrices on the lattice, the des-
cription of the weak coupling limit of the model becomes cumbersome. It is much

more convenient to start directly with the action (2.1). Then the ground state

is given by

U\,lx]:ﬂ (2.6)

up to gauge transformatioms. In order to determine the propagator and vertices

we write

We find the propagator after adding the gauge breaking term

Sep= - Z_ Ve (Q,.\x!_(s‘,\x-“ﬂ(é\,m- Q,x-v) @8
S i
to the bilinear part of the actfon. Then

S Seet 2T (@ - QWLx..»))Q (2.9)

LS A
Now we expand the traceless matrices Qu(x) in terms of the unitary, traceless
matricesz)
fa™

T (q)

H]

_ . % =9 G2 MQ
“"(“i%%qu“*"%)n T,l CZ" [33

Then

i

~ &
) Q. (aqux) L' (
Dt N® adcssd T ) (2.10)

o<qr<L -\

- Q“
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From Eq. (2.2) we derive that the functions ab(q,x) are periodic up to a phase

factor
. (e ¥
Qplasxr Lov®) = ool B ovpa) @ lasx)

and so their Fourler representation reads

zla

Q (q,x) = i ‘U‘?( A Xp (Pc(‘l""' L ))Q (q)Q) (2.12)
P LSch_r ‘

with

-3 ;o WTOo,n,1,3%
and

P, lal 2 s Ore e/

We observe that the colour momenta 2n(Pp/ch) and the space—time momenta

(anp/Lsp) combine to the total momentum

T, ()= 2% (Ppl)r Lep &e) . (2.13)
Usp Vee
Then Eq. (2.12) becomes

o

Q“(o\;x) = iQ 'va(?X?.(O\,Q]) a?\,.(c\’Q) | (2.18)

Later we want to point out the close similarity of the Feynman graphs of the
twisted model defined by Egs. (2.1) and (2.2) on a lattice of volume H3=0Lsp and
the periddic Wilson model on a lattice of volume szn;=0Lsu defined by Eq. (2.1)

and
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U‘A()c + Lf_,, Loy 3:\,) = u“bo (2.15)

cu= N? is the twist volume.

For reasons of easy comparability of the models we use also in the periodic

the expansion (2.10). Then the periodic Bu(qjx) have the Fourier represen-

tation (2.14) too with

Here
alway

the t

3. -

(\3\,, (o, 1) = 48T (c\“ & LQ‘A Q“\ (2.16)
® ,

r—
n
¢

r—
v

Pu is a pure spdce-~time monmentun which, on a lattice of size II LsuLcu can
s be decomposed as in Eq. (2.16). The resulting propagators and vertices of

wisted and the periodic models are given in Table 1.

COMPARISON OF THE MODELS

We can now state the differences between the twisted and the periedic

model

a)

b)

c)

-Both havée the same range if the twisted model has space volume [I3

S

In the twisted model the colour momentz ¢ and the space—time momenta % form
new momenta Pp(q,i). The propagators and vertices depeind on these combined

colour—-space-time momenta.

In the pericdic model the colour momenta do not enter propagators and ver—
tices. Every Feynman diagram factorizes into a part depending only on the
space-time momenta P(q,R) appearing in propagators and vertices and a second
part depending only on colour momenta. The sum over the colour momenta can

be performed explicitly and gives a polynomial in N.

So the combined colour—space-time momenta Eq. (2.13) of the twisted model
are related to the pure space—time momenta Eq. (2.16) of the perioditc model.

=0L3p and
colour volume M3 L  and the periodic lattice has space volume II3 L L .
r=0"cp p=0"su cp

But in the twisted model all momenta with colour part q = (0,0,0,0) are

excluded; see Fig. 2. Therefore, in the twisted case the momentum sums of
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diagrams cover a slightly smaller set of points. This difference between
Feyonman graphs is balanced by different polynomials  of N? multiplying the

diagrams.

d) The vertices of the two models differ by a phase factor enp‘ia(ql,...,qn)

depending only on the colour momenta. This factor is only present in the

vertices of the twisted model.

e) There is an additional difference in the external vertices- Because we
consider only gauge invariant operators, the sum of the colour momenta

vanishes 1n every external vertex of the twisted model.

This is clearly not true for the extermal vertices of the perlodlc model, as
the quantities q, which are equivalent to the colour momenta of the twisted
model, are parts of real space momenta and their sum does not vanish. To obtain
comparable external operators, we have to guarautee that 22=1 1 = 0 also in the

periodic case. That means that we have to take, instead of Tr(Qp (xl),...,Qu(xn)),
. o Mgt s

expressions like

. -

\
ext N

‘2-\;—\—_\* Q\M (%, %Y .Q‘M (xﬂ *\,‘)

as observables.

Here

Then

N %8(2\'«.)1“:@(\:\.“»‘“),

exy T PR P

L2 8(3q)—r @ U‘ _ﬁg,_Qj)_\T}Q*?fxs_Pj(GuQ)

This is illustrated in Fig. 3.
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Now we can follow exactly the line of reasoning given in Refs. 2) and 1), to
*
show that the planmar diagrams of the two models coincide ). The non-planar diag-

rams differ by phase factors appearing only in the twisted model.

Some consequences:

For any N the Wilson loop in the twisted model on a lattice of volume V and
the Wilson loop in the periodic model on a lattice of volume N2V have equal
planar parts*). This is also true for the connected part of correlation
functions of two glueballs at rest pfovided there is no twist in time

direction. See Fig. 4.

In general the correlation function in the twisted model has no simple equi-

valent in the periodic model as depicted in Fig. 5.

4. = REDUCED SYSTEMS WITH FERMIONS

Let us now apply what we learnt in the previous sections to colour gauge
fields coupled to quarks in the fundamental representation. This will enable us
to study the deconfining and chiral symmetry restoring transitions for a large
number Nc of colours, and a large number Nf of flavours if we want to see any
effect of dynamical fermionms. Let us note that it 1is impossible -to make the
reduction for a finite aumber of flavours. In that case the gluon field and the
fermion field would, after colour conversion, have different momentum gpaces and
no agreement with the unreduced Wilson model could be achieved. But it would

also be useless to study a model with finite N_ because the fermions would only

f
show up in the unphysical non-leading terms in l/Nc. The case of Wilson fermions
has been considered beforea)’g). It is the Kogut-Susskind type of fermionslo)

that necessitates the panoply we have developed in the previous sections.

a) Twisted boundary conditions for Kogut—-Susskind fermions

The fermions of this type have their spin and flavour components scattered
over a hypercube. This is why we need our generalized version of reduction. The
way the spin (s) and SU(4)(x) degrees of freedom of the spinor usa(x) are put on
the hypercube with centre X and with the 16 corners denoted by x [x =

(xl,xz,x3,xq);xu integer] is familliar from reduction. Take the Dirac

*)

Except the small difference in momentum space volume mentioned in 3c.



matrices yp with

{ 6\0-7\6V"]= 23y (4.1)

Then we denote by y(x) the matrix

Xg X X Xq
Eo \6\ 2 %3 : (4-2)
and convert the spin and flavour degrees of freedom of u(X) into space degrees of
11)

freedom by putting

(B = ¥ ) X6 (4.3)

x&- wait el
evounmd B

The anticommuting numbers x(x) are promoted to be the basic objects of the
theory; we give them a colour index ¢ and some flavour index f£. The colour
index is of course coupled to colour fields UM(X) living on the lattice links

{x, xtu). The action ngl is:

The phase au(x) is defined by

) (4.5)
Lelxl = % 0 Y X (xxw)
The point x ramges now through the entire lattice and au(x) has obviously, from

its definition (4.5) and (4.1), periodicity 2.

We now impose the boundary conditions

i
Uplxs Lo €)= QP W W Tf’ (4.6)

X (kv Lo ®) = Fe X %) Gt -7

The temporal-spatial extent of our lattice, L , 1s now necessarily even in all
directions, since it 13 built up not by unit cells, but by cells of size two in
all directions. The twist matrix Gp couples to the fiavour index of the ¥ field.
This matrix will be taken as equal to fp for the spatial directions; for the

Euclidean time direction we may take it to be such that



(4.8)
*)
is satisfied .

This admits the interpretation of Euclidean time as inverse temperature also

for the fermions.

b) Comparison between twisted and periodic models

Like in Section 3, we are going to compare the Feynman rules on the twisted
L: lattice and on the periodic (L(:L,s)"r lattice. For the pure gauge sector nothing
changes. For the fermion-gluon sector we have a few peculiarities that we wish
to exhibit now. The first peculiarity is the presence of the factor ap(x) in the
action (4.4). This factor, since it is periodic modulo 2 lattice spacings, does
hot spoll the colour momentum conservation in the propagator or in any vertex
deriving from (4.4). To see this, look at the propagator term we get from (4.4)
by setting Uu(x) = 1. Then we have to do the Fourier analysis of the previous

section on the fermions. We have

Ky = % ACpexY L (o) (4.9)

and from the twisted boundary condition (4.7) and (4.8):

- - N . 4,10

7( (X‘\ - z "X (Pc’ ?9.7 eXp e ?(pc’ VS)‘X ¢ )
Per Vs

The momentum P(pc,ps) combines_the colour and space momenta for the spacelike

components as before in Eq. (2.13). For the timelike components we have, due to

the - sign in (4.8):

Lso\-coPo (?c P ) = Voo ™ (?g°+ 9 \-co (4.11)
2™
Now we have for au(x) the Fourier representation:

L ()
oL Ax) = ax PQ“ " ”() (4.12)

*) In fact, one can multiply FM with any phase from the centre group Z(N/L,)-



)

where = is a four—vector with

A
“(\_L\ezn e <% 5 11"*"on e n (4.13)

Thus, the bilinear term becomes, after Fourler transforming:

A 2 XW Ay lx) (FX(_JL*-\».) - (X b«-\,x)) =
PN TN
. J— ; (4.14)
=2 Ale,es) Sp”m, p! St° P (P20 X (92005)
?c’?g'\"
The propagator is only seemingly not diagonal in‘pc.and.pé; -in fact:
\_SLQLE+“c“1)= ver plerdlbole (4.15)

2w
Since Ls is even, we see that only Py is affected by adding n(p)

, which means
only the space—time momentum 1s non-diagonal. The same holds for any vertex in
the twisted model. In the untwisted, periodic model of size (LCLS)“ we have
exactly the same structure, provided we take antiperiodic boundary conditions in
the time direction. The discussion in Section 2 is therefore wvalid for the
fermionic vertices and propagators as well. In the continuum limit, we get in

this way an SU(NC) X SU(ANC) theory.

¢) Introducing partial colour reduction

In the previous subsection, the ratio of colour over flavour degrees of
freedom was 1/4. For reasons of phenomenologylz), one might like a variable
ratio. This can be obtained by only partially reducing the colour degrees of
freedoml3)’*). This will be briefly described now.

The basic observation is that the flavour index on the yx{x) variables are
varying in an SU(L) group, whereas the colour variables are varying in the
SU(Nc = ML) group where M is some integer that we choose at our convenlence. Now

Nf = 4L and Nc = ML and the ratio is variable. Therefore x will be rectangular

*)Of course, we can use the S5U(2) version of the staggered fermionsll).
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and in index notation:
-~ 2
?(L\\- \..cu‘ > by Pe (_X*\(?"') j\-\o‘(\o?‘:)

The LxL matrices A(q) are twist matrices in SU(L), with

Ao Nz exp{al mu) A LA

The RxN twist matrices Tu are defined as

T, -5 @A,

w

where 4L is the MxM unit matrix. The boundary conditions on the quark fields

arel

X (x*'\-se?c) = I'\(° IX(’QA.*g

and for the gluon fields Q:

[~

AN

In the limit that L + o, this theory is equivalent, what regards the planar

(a) I\
2

'Qb‘i-Lq‘,bi#\_Qq_ \a‘bq_(Q)

graphs, to an SUC(ML) X SUf(éL) theory, as can be shown by the same arguments as

for the case M = 1.

5. = CONCLUSIONS

In this paper we have shown how to do large N simulations of glueball corre—
lations in a box of small spatial size, but where the finite size effects are
suppressed by introducing a suitable twisted boundary condition. We did the same
for systems containing in addition fermlons with a large number of flavours and
showed how, by partial reduction, one can achieve a variable ratio of colour to
flavour. Our methods can also be used for estimating the reduction of finite
size effectsla) by repla%igg the now—-popular periodic boundary conditiomns by

twisted bouﬁdary conditions 7.
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FIGURE CAPTIONS

Fig.

Fig.

Fig.

Fig.

Fig.

1:

a) Uu-> U“ on all links of type -——— ;
Uu'> Uurp on all links of type ~~~.

b) In every plane {(p,v) the twist is tﬁv = zuv for the upper right

plaquette and tpv = 1 for all other plaquettes.

c) ground state: Uu = 1 on all links of type —— ;
Up = Pp on all links of type n~mr.

Momentum space of a) the twisted and b) the periodic model. o marks an

excluded point.
a) Lattice with twisted boundary conditioms and Wilson loop L.

b) Lattice of the related periodic model. The Wilson loop W(lg) of
Fig. 3a is equivalent to (1/N2)EW(L1).

a) Lattice with twisted boundary conditions and no twist in time

direction.

b) Equivalent lattice with periodic boundary conditions. The lattices
have equal extensions in time direction, but V, = sza' Correlation

functions <Q(t; )Q(t,)> ™™ and <Q(t;)Q(t,)> "™ of glueballs Q(t,)
1 2774 1 _ 27y i

summed over space at t = ti have equal planar parts.

a) Lattice with twisted boundary conditions.

b) Lattice with pericdic boundary conditions. Then <Ql(x)Q2(y)>tWiSt'

r.
~ Iy PP
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