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Abstract

A search for three-jet hadronic resonance production in pp collisions at a centre-of-
mass energy of 8 TeV has been conducted by the CMS Collaboration at the LHC with
a data sample corresponding to an integrated luminosity of 19.4 fb−1. The search
method is model independent, and events are selected that have high jet multiplic-
ity and large values of jet transverse momenta. The signal models explored assume
R-parity-violating supersymmetric gluino pair production and have final states with
either only light-flavour jets or both light- and heavy-flavour jets. No significant devi-
ation is found between the selected events and the expected standard model multijet
and tt background. For a gluino decaying into light-flavour jets, a lower limit of
650 GeV on the gluino mass is set at a 95% confidence level, and for a gluino decaying
into one heavy- and two light-flavour jets, gluino masses between 200 and 835 GeV
are, for the first time, likewise excluded.
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1 Introduction
Hadronic multijet final states at hadron colliders offer a unique window on many possible
extensions of the standard model (SM), although with the view partly obscured by large back-
grounds due to SM processes. Many of these extensions predict resonances, such as heavy
coloured fermions transforming as octets under SU(3)c [1–4] or supersymmetric gluinos that
undergo R-parity-violating (RPV) decays to three quarks [5–7]. Recent studies from the Fermi-
lab Tevatron Collider and the CERN Large Hadron Collider (LHC) employed the jet-ensemble
technique. For this technique, jets are associated into unique combinations of three jets (triplets).
Additional selection requirements are imposed to suppress the large backgrounds due to SM
processes and to enhance sensitivity to strongly decaying resonances. These analyses set lower
mass limits based upon resonance fits for gluinos undergoing RPV decays. The CDF collabo-
ration at the Tevatron excluded gluino masses below 144 GeV [8] using data from pp̄ collisions
at 1.96 TeV, while the CMS collaboration at the LHC excluded masses below 460 GeV [9, 10]
with data from pp collisions at 7 TeV. An additional search at the LHC by the ATLAS collab-
oration, also based on data collected with pp collisions at 7 TeV, has extended these limits to
666 GeV [11].

Presented here are the results of dedicated searches for pair-produced three-jet resonances
in multijet events from pp collisions, with one search being inclusive with respect to parton
flavours and the second requiring at least one jet from the resonance decay to be identified as a
bottom-quark jet (b jet). This latter, heavy-flavour search is the first of its kind and probes ad-
ditional RPV couplings. The results are based on a data sample of pp collisions at

√
s = 8 TeV,

corresponding to an integrated luminosity of 19.4± 0.5 fb−1 [12] collected with the CMS detec-
tor [13] at the LHC in 2012. Events with at least six jets, each with high transverse momentum
(pT) with respect to the beam direction, are selected and investigated for evidence of three-
jet resonances consistent with strongly coupled supersymmetric particle decays. The event
selection criteria are optimised in the context of the gluino signal mentioned above [5–7], us-
ing a simplified model where the gluinos decay with a branching fraction of 100% to quark
jets. However, the generic features of the selection criteria provide a model-independent basis
that can be used when examining extensions of the SM, since any exotic three-jet resonance
with a narrow width, sufficient cross section, and high-pT jets would be expected to produce
a significant bump on the smoothly falling SM background of our search. Additionally, low
trigger thresholds and the application of b-jet identification make it possible to use SM top
quark-antiquark (tt) events to validate the analysis techniques.

2 The CMS experiment
The central feature of the CMS apparatus [13] is a superconducting solenoid of 6 m internal
diameter, providing a magnetic field of 3.8 T. Within the superconducting solenoid volume are
a silicon pixel and strip tracker, a lead tungstate electromagnetic calorimeter (ECAL), and a
hadron calorimeter (HCAL) that consists of brass layers and scintillator sampling calorimeters.
Muons are measured in gas ionisation detectors embedded in the steel return yoke outside the
solenoid. Extensive forward calorimetry complements the coverage provided by the barrel and
endcap detectors. CMS uses a right-handed coordinate system, with the origin at the nominal
interaction point, the x axis pointing to the centre of the LHC, the y axis pointing up (perpen-
dicular to the LHC plane), and the z axis along the anticlockwise-beam direction. The polar
angle θ is measured with respect to the positive z axis, the azimuthal angle φ is measured in
the x-y plane, and the pseudorapidity η is defined as η = − ln[tan(θ/2)]. Energy deposits from
hadronic jets are measured using the ECAL and HCAL. The energy resolution for photons with
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ET ≈ 60 GeV varies between 1.1% and 2.6% over the solid angle of the ECAL barrel, and from
2.2% to 5% in the endcaps. The HCAL, when combined with the ECAL, measures jets with a
resolution ∆E/E ≈ 100%/

√
E [GeV]⊕ 5% [14]. The ECAL provides coverage in pseudorapid-

ity |η| < 1.479 in a barrel region and 1.479 < |η| < 3.0 in two endcap regions. In the region
|η| < 1.74, the HCAL cells have widths of 0.087 in η and 0.087 in φ. In the η-φ plane, and for
|η| < 1.48, the HCAL cells map on to 5× 5 ECAL crystals arrays to form calorimeter towers
projecting radially outwards from close to the nominal interaction point. At larger values of |η|,
the size of the towers increases, and the matching ECAL arrays contain fewer crystals. Within
each tower, the energy deposits in ECAL and HCAL cells are summed to define the calorimeter
tower energies, subsequently used to provide the energies and directions of hadronic jets.

The CMS detector uses a two-tier trigger system to collect data. Events satisfying the require-
ments at the first level are passed to the high-level trigger (HLT), whose output is recorded and
limited to a total rate of ∼350 Hz. An HLT requirement based on at least six jets, reconstructed
with only calorimeter information, is used to select events. With the jets ordered in descending
pT values, the pT threshold at the HLT for the fourth jet is 60 GeV and, for the sixth jet, 20 GeV.
For events passing all offline requirements described in Section 4, the total trigger efficiency is
at least 99%.

The CMS particle-flow algorithm [15] combines calorimeter information with reconstructed
tracks to identify individual particles such as photons, leptons, and neutral and charged hadrons.
The photon energy is obtained directly from calibrated measurements in the ECAL. The en-
ergy of electrons is determined from a combination of the track momentum at the primary
interaction vertex [16], the corresponding ECAL cluster energy, and the energy sum of all
bremsstrahlung photons associated with the track in the offline reconstruction. The muon en-
ergy is obtained from the corresponding track momentum. The energy for a charged hadron is
determined from a combination of the track momentum and the corresponding ECAL and
HCAL energies, corrected for zero-suppression effects and calibrated for the nonlinear re-
sponse of the calorimeters. Finally, the energy of a neutral hadron is obtained from the cor-
responding calibrated ECAL and HCAL energies. The particle-flow objects serve as input for
jet reconstruction, performed using the anti-kT algorithm [17–19] with a distance parameter of
0.5. The jet transverse momentum resolution is typically 15% at pT = 10 GeV, 8% at 100 GeV,
and 4% at 1 TeV; when jet clustering is based only upon the calorimeter energies, the corre-
sponding resolutions are about 40%, 12%, and 5%.

Jet energy scale corrections [20] derived from data and Monte Carlo (MC) simulation are ap-
plied to account for the nonlinear and nonuniform response of the calorimeters. In data, a small
residual correction factor is included to correct for differences in jet response between data and
simulation. The combined corrections are approximately 5–10%, and their corresponding un-
certainties range from 1–5%, depending on the pseudorapidity and energy of the jet. Jet quality
criteria [21] are applied to remove misidentified jets, which arise primarily from calorimeter
noise. In both data and simulated signal events, more than 99.8% of all selected jets satisfy
these criteria.

3 Signal event simulation
Pair-produced gluinos are used to model the signal. Gluino production and decay are simu-
lated using the PYTHIA [22] event generator (v6.424), with each gluino decaying to three quarks
through the λ′′udd quark RPV coupling [23], where u and d refer to any up- or down-type quark,
respectively. Two different scenarios are considered for this coupling, resulting in both an in-
clusive search similar to previous analyses [8–11] and a new heavy-flavour search. For the first
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case, the coupling of λ′′112, where the three numerical subscripts of λ refer to the quark genera-
tions of the corresponding u-d-d quarks, is set to a non-zero value, giving a branching fraction
of 100% for the gluino decay to three light-flavour quarks. The second case, represented by
λ′′113 or λ′′223, covers gluino decays to one b quark and two light-flavour quarks. The mass of
the generated gluino signal ranges from 200 to 500 GeV in 50 GeV steps, with additional mass
points at 750, 1000, 1250, and 1500 GeV. For the generation of this signal, all superpartners
except the gluino are taken to be decoupled and heavy (i.e. beyond the reach of the LHC), the
natural width of the gluino resonance is taken to be much smaller than the mass resolution of
the detector of approximately 4–8% in the mass range investigated, and no intermediate parti-
cles are produced in the gluino decay. Simulation of the CMS detector response is performed
using the GEANT4 [24] package.

4 Event selection
Events recorded with the six-jet trigger described above are required to contain at least one re-
constructed primary vertex [16]. Since this analysis targets pair-produced three-jet resonances
that naturally yield high jet multiplicity, we require events to contain at least six jets with
|η| < 2.5. To ensure that the trigger is fully efficient, we impose minimal requirements that
the pT thresholds of the fourth and sixth jets are at least 80 and 60 GeV, respectively, though we
impose higher thresholds for two of our three selections, as described below.

We use the jet-ensemble technique [8, 9] in this analysis to combine the six highest-pT jets in
each event into all possible unique triplets. Each event that satisfies all selection requirements
will yield 20 combinations of jet triplets. For signal events, no more than two of these triplets
can be correct reconstructions of the pair-produced gluinos, with the remaining 18 triplets being
incorrect combinations of jets. Thus, background triplets arising from SM multijet events are
supplemented by “incorrect” jet-triplet combinations from the signal events themselves. To
obtain sensitivity to the presence of a three-jet resonance, an additional requirement is placed
on each jet triplet to preferentially remove SM background and incorrectly combined signal
triplets. This selection criterion exploits the constant invariant mass of correctly reconstructed
signal triplets and the observed linear correlation between the invariant mass and scalar sum
of jet pT for background triplets and incorrectly combined signal triplets:

Mjjj <

(
3

∑
i=1

pi
T

)
− ∆ , (1)

where Mjjj is the triplet invariant mass, the pT sum is over the three jets in the triplet (triplet
scalar pT), and ∆ is an empirically determined parameter. Figure 1 shows a plot of the triplet
invariant mass versus triplet scalar pT for simulated events with 400 GeV gluinos decaying to
light-flavour jets.

The value of ∆ is chosen so that the analysis is sensitive to as broad a range of gluino masses
as possible given the restrictions imposed by the trigger. We find that the peak position of the
Mjjj distribution in data depends on the value of ∆. From a study of this peak position versus
∆, we find ∆ = 110 GeV to be the optimal choice, yielding the lowest value of the peak of Mjjj.
This simple ∆ requirement, rather than model-specific invariant mass requirements, maintains
the model-independent sensitivity of our analysis to any three-jet resonance, not just that of
our signal model.

Tightening the selection requirement on the pT value of the sixth jet can reduce background
stemming from SM multijet production. The optimisation of this requirement to maximise
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Figure 1: The triplet invariant mass versus the triplet scalar pT for all combinations of the six
jets from pair-produced gluinos of mass 400 GeV that decay to three light-flavour jets. The solid
coloured regions represent correctly reconstructed signal triplets, while the contour lines and
light grey scatter points represent incorrectly combined triplets. The red dashed line is based
on Eq. (1) with ∆ = 110 GeV, and the triplets to the right of the line satisfy this requirement,
while those to the left do not.

signal significance is performed as follows.

As illustrated in Fig. 2 for a gluino mass of 400 GeV, the triplet invariant mass distribution for
signal events has the shape of a Gaussian peak on top of a broad base of incorrect three-jet
combinations. We define the Gaussian peak to be the signal. Following Ref. [25], we use a
four-parameter function (Eq. (2)) that is representative of the estimated background in the data
(see Section 5) and characterised by a steeply and monotonically decreasing shape:

dN
dx

= P0

(
1− x√

s

)P1

(
x√
s

)P2+P3 log x√
s

, (2)

where N is the number of triplets and x is the triplet invariant mass. The parametrised signal
and background estimates used in the optimisation procedure can be seen in the inset of Fig. 2.

Using these two components, signal triplets from the Gaussian peak and background triplets
from the background estimate, we define the signal significance as the ratio of the number of
signal triplets to the square root of the number of signal triplets plus the number of background
triplets obtained from data. The number of signal and background triplets is calculated within
a window around the mass peak with a width corresponding to twice the expected gluino-
mass resolution. This procedure is repeated for different thresholds on the sixth-jet pT in steps
of 10 GeV, for a given gluino mass. For the inclusive search, the focus is on masses that are
higher than those previously excluded by the jet-ensemble technique [10], so the mass range of
the search starts around 400 GeV. We find that a requirement of pT ≥ 110 GeV on the sixth jet
maximises the signal significance in this mass range.

The use of b-jet identification enables us to perform a heavy-flavour search in addition to our
inclusive search for three-jet resonances. The combined secondary vertex (CSV) algorithm [26]
uses variables from reconstructed secondary vertices along with track-based lifetime informa-
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Figure 2: The Mjjj distribution for pair-produced 400 GeV gluinos with light-flavour RPV de-
cay into three jets is shown in the main plot. Triplets are selected that pass the ∆ = 110 GeV
requirement from Eq. (1). The Gaussian signal peak of correctly reconstructed gluino triplets is
represented by the gold shaded area, with its Gaussian fit shown by the blue dot-dashed line
below it. The distribution of incorrectly combined triplets, shown in black, is described by a
similar functional form as that used to estimate the background in data. The inset shows the
signal and background estimates used in the optimisation procedure, with the expected back-
ground from SM multijet processes in red, and the signal-plus-background indicated by a blue
dashed line.

tion to identify b jets. The tagging efficiency for b jets changes with the pT of the jet, ranging
from 70% for jets with 100 ≤ pT ≤ 200 GeV to 55% for jets with pT ≥ 500 GeV. We study differ-
ent b-tagging requirements for signal events with simulated gluinos that have heavy-flavour
decays and use the same definition of the signal significance as for the sixth-jet pT optimisa-
tion to determine the best choice. The CSV medium operating point, with a mistagging rate
of about 1% for light-flavour jets, is found to be the optimal choice for detecting a potential
signal in this analysis. The requirement that each event contain at least one b-tagged jet (b tag)
increases the signal significance, and the additional requirement that all selected triplets have
a b tag removes a large portion of the incorrectly combined signal triplets.

For the heavy-flavour analysis, we distinguish between a low-mass region covering gluino
masses between 200 and 600 GeV and a high-mass region covering larger gluino masses. For
the low-mass region, we maximise signal acceptance by using jet-pT requirements of ≥80 GeV
for the fourth jet and≥60 GeV for the sixth jet. For the high-mass region, the sixth jet is required
to have pT ≥110 GeV. For both the low- and high-mass regions, the value ∆ = 110 GeV is used.
All-hadronic tt event production is a significant background in the low-mass region. We use tt
events that produce triplets with masses in this region to help validate our analysis technique,
as described below.

High-mass signal events, for both the light- and heavy-flavour signal models, have a more
spherical shape than background events, which typically contain back-to-back jets and thus
have a more linear shape. To significantly reduce the background in the high-mass searches,
we use a sphericity variable, S = 3

2 (λ2 + λ3), where the λi variables are eigenvalues of the
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following tensor [22]:

Sαβ =

∑
i

pα
i pβ

i

∑
i
|pi|2

, (3)

where α and β label separate jets, and the sphericity S is calculated using all jets in each event. A
comparison of the sphericity variable for data, simulated SM multijet events, and three different
simulated gluino masses can be seen in Fig. 3. For the inclusive search and the high-mass,
heavy-flavour search, selected events are required to have S ≥ 0.4, which is based on the
optimisation of the number of expected signal events divided by the square root of the number
of signal-plus-background events. No sphericity requirement is used for the low-mass, heavy-
flavour selection because low-mass signal events do not have a significant shape difference
from background events.
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Figure 3: The sphericity variable for events from data, simulated background from SM multi-
jet processes (shaded area), and simulated gluino signal masses of 300 (open diamonds), 750
(open triangles), and 1250 GeV (open squares), where the gluinos decay to light-flavour jets.
Event-level selection requirements for the inclusive, low-mass search are applied, except for
the triplet-level diagonal selection (Eq. (1)). All distributions are normalised to unit area. The
simulated SM multijet events are generated by MADGRAPH [27] with showering performed by
PYTHIA.

To conclude, we define three different search regions for this analysis with specific selection
criteria applied as previously discussed and summarised in Table 1.

Table 1: Selection requirements for the three search regions in the analysis.

Selection Inclusive Heavy-flavour search
criteria search low mass high mass

Mass range 400–1500 GeV 200–600 GeV 600–1500 GeV
∆ 110 GeV 110 GeV 110 GeV

Min. fourth-jet pT 110 GeV 80 GeV 110 GeV
Min. sixth-jet pT 110 GeV 60 GeV 110 GeV
Min. sphericity 0.4 — 0.4



7

5 Background estimation and signal extraction
The dominant background for this search comes from SM multijet events, which arise from per-
turbative QCD processes of order O(α3

s ) and higher. The invariant mass shape of incorrectly
combined signal triplets is found to be similar to that of the background from SM multijet pro-
cesses, such that the combined distribution is consistent with that of SM multijets alone. More-
over, because the normalisation of the background component (P0 in Eq. (2)) is unconstrained,
any incorrectly combined signal triplets, if present, would be absorbed into the background
estimate. The triplet invariant mass distribution for the background decreases smoothly with
increasing mass, and we model this background using a four-parameter function (Eq. (2)) fit
directly to the data, except in the case of the low-mass, heavy-flavour search.

For the low-mass, heavy-flavour search, there is an additional background contribution from
all-hadronic tt events. These events are modelled using the MADGRAPH [27] generator, and
the expected number of tt events is determined from the next-to-next-to-leading-order (NNLO)
cross section of 245.8 +8.7

−10.5 pb [28]. The shape of the contribution from SM multijet processes is
modelled with a statistically independent data sample, constructed by imposing a veto on b-
tagged jets while retaining all other selection requirements. This sample is referred to as the
b-jet control region, and the combination of simulated tt events and the background from SM
multijet processes, modelled by this control region, gives the total SM background estimate for
the low-mass, heavy-flavour analysis.

A comparison of the background estimate to the data is performed, in which the data are fit us-
ing a binned maximum likelihood method with either the four-parameter function of Eq. (2) for
the inclusive analysis and the high-mass, heavy-flavour analysis, or the background shape de-
scribed above for the low-mass, heavy-flavour analysis. Figure 4 shows a comparison between
the three-jet invariant mass distribution in data and the background estimate for the inclusive
analysis. Figure 5 shows the comparisons between data and background estimates for the low-
and high-mass heavy-flavour analyses. In all three cases, no statistically significant deviations
from the data are observed.

As a validation of the analysis technique, we consider the tt triplets as a signal with the back-
ground solely composed of triplets from SM multijet processes, whose shape is modelled by
the b-jet control region, with the small amount of simulated tt events without b tags subtracted.
The tt cross section is extracted based on the contribution of its signal triplets and is compared
with the theoretical prediction for the cross section of 245.8 pb. The measurement yields a result
of 205± 28 pb (combined statistical and systematic uncertainties), which is within less than two
standard deviations from the theoretical value, thereby showing our technique can successfully
reconstruct hadronically decaying tt events.

To obtain an estimate of the number of signal triplets expected after all selection criteria are
applied, the sum of a Gaussian function that represents the signal and a four-parameter func-
tion (Eq. (2)) that models the incorrectly combined signal triplets is fit to the simulated Mjjj
distribution for each gluino mass. The Gaussian component of the fit provides the estimate
for the expected number of signal triplets. The factors in this overall triplet signal efficiency
are the event acceptance, governed by the kinematic and b-tagging selections, and the triplet
rate, which represents the number of selected triplets per selected event. This triplet rate is the
product of the average number of triplets per event times the proportion of triplets contained
in the Gaussian signal peak compared with the full distribution. Width and acceptance-times-
efficiency (A× ε) are both parametrised as functions of gluino mass, as shown in Fig. 6. The
width of the Gaussian function modelling the signal varies according to the detector resolu-
tion, ranging from 17 to 70 GeV for gluino masses from 200 to 1500 GeV. The A× ε ranges from
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Figure 4: Comparison of the three-jet invariant mass distribution in data with the background
estimate for the inclusive analysis (red solid curve) obtained from a maximum likelihood fit to
the data. The error bars on the black data points display the statistical uncertainties. The bin
widths increase with mass to match the expected resolution. The bottom plot shows, for each
bin, the difference of the data and fit values divided by the statistical uncertainty in the data.
No statistically significant deviations from the data are observed. The light magenta dotted line
and hatched area show the distribution and pulls for a simulated 500 GeV gluino that decays
into light-flavour jets. Similarly, the expectation for a 750 GeV gluino is shown by a dark blue
dashed line and shaded area.

about 0.003 to 0.033 for the inclusive search for gluino masses from 400–1500 GeV, and, for the
heavy-flavour search, from 0.005 to 0.04 for masses from 200–600 GeV, and from 0.008 to 0.015
for masses from 600–1500 GeV. For high-mass gluinos, the A× ε flattens slightly because of the
decreased efficiency to reconstruct triplets in the Gaussian signal peak.

6 Systematic uncertainties
Systematic uncertainties in the signal acceptance are assigned in the following manner. For un-
certainties related to the jet energy scale (JES) [20], the jet energy corrections are varied within
their uncertainties for each signal mass, and then the entire selection procedure is repeated to
determine the parametrised values of the A× ε. The largest difference from the nominal val-
ues is taken as a systematic uncertainty. To evaluate the systematic uncertainty associated with
the level of simulated ISR and FSR for signal events, i.e. the spontaneous emission of gluons
from incoming or outgoing participants of the hard interaction, dedicated signal samples are
generated where the relative amounts of ISR and FSR are coherently increased or decreased
with respect to the nominal setting of the PYTHIA event generator [29]. The parameter con-
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Figure 5: Comparison of the three-jet invariant mass distribution in data with the background
estimate for the heavy-flavour analysis. The left plot shows the results from the low-mass
selection. The background contribution from the b-jet control region is shown as the light blue
shaded area, while that from simulated tt events is shown as the dark red shaded area. The
right plot shows the high-mass sample with resolution-based binning. The error bars on the
black data points display the statistical uncertainties. The bottom plots show the difference
of the data and the background estimate divided by the statistical uncertainty in the data in
each bin. The light magenta dashed line and hatched area show the distribution and pulls for
a simulated 500 GeV gluino that decays into heavy-flavour jets.
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trolling the amount of ISR (PARP(67)) is varied around its central value of 2.5 by ±0.5 and
that for the FSR (PARP(71)) is varied from 2.5 to 8, with a nominal value of 4.0. For each sam-
ple, the rederived A× ε is compared to the nominal value, and the difference is taken as the
systematic uncertainty. Analogously, an uncertainty is assigned to account for the effects of
multiple pp collisions in an event (pileup) by reweighting all MC signal samples such that the
distribution of the number of interactions per bunch crossing is shifted, high and low, by one
standard deviation compared with that found in data [30]. For the analyses using b tagging,
an uncertainty is assigned based on the scale factor that comprises the differences in b-tagging
efficiencies in data compared with simulation [26]. The same procedure as outlined above is
repeated, where the b-tagging scale factors are varied within their uncertainties, and the effect
on A × ε is evaluated. Uncertainties in the fit parameters of the Gaussian signal are used as
an additional systematic uncertainty for each mass point. Finally, an overall systematic uncer-
tainty of 2.6% is assigned to the integrated luminosity measurement [12]. The ranges in the
values of these uncertainties are summarised in Table 2. Systematic uncertainties related to the
signal and background shapes are discussed in Section 7.

Table 2: Systematic uncertainties on the signal A× ε included in limit setting.

Source of systematic uncertainty Value
JES 3–16%

ISR/FSR 5–11%
Pileup 1–5%

b tagging 1–7%
Signal fit 4–12%

Luminosity 2.6%

7 Results and limits
The three-jet invariant mass distributions are examined for a Gaussian signal peak on top of the
smoothly falling background distribution. As has been described, this analysis uses different
selection criteria to search for resonances coupling to light-flavour and to heavy-flavour quarks,
with the latter search done separately in low-mass and high-mass regions. In the analysis of
each of the three selections, the background normalisation parameter is unconstrained and
is therefore determined by the SM multijet component of the combined fit. For the function
describing the background, the initial values of its parameters are taken from the background-
only hypothesis fit to the data, while they are allowed to float in the background-plus-signal
hypothesis fits for the limit calculation. The signal is modelled with Gaussians defined by
the width and A × ε curves shown in Fig. 6. The uncertainties in the expected number of
signal triplets are included as log-normal constraints, where the uncertainty for the width of
the Gaussian includes a 10% systematic uncertainty to account for jet resolution effects [20]. For
the tt background estimate, uncertainties in both the shape and normalisation are included. In
addition to those already discussed in the previous section, uncertainties due to ambiguities in
the parton shower matching procedure between the MADGRAPH and PYTHIA event generators,
as well as those due to the dependence on the renormalisation and factorisation scale, are taken
into account.

Upper limits are placed on the cross section times branching fraction for the production of
three-jet resonances. A modified-frequentist approach, using the CLs [31, 32] technique and a
profile likelihood as the test statistic, is employed. Limits are calculated with the frequentist
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asymptotic calculator implemented in the ROOSTATS [33, 34] package. The full CLs calcula-
tions give similar limits within a few percent, and closure tests where a fixed signal is injected,
yield consistent coverage. The observed and expected 95% confidence level (CL) upper limits
on the gluino pair-production cross section times branching fraction as a function of gluino
mass are presented in Fig. 7. The solid red lines in the figure show the next-to-leading-order
(NLO) plus next-to-leading-logarithm (NLL) cross sections for gluino pair production [35–39],
and the dashed red lines indicate the corresponding one-standard-deviation (σ) uncertainties,
which range between 15% and 43%. To quote final results, we use the points where the −1σ-
uncertainty curve for the NLO+NLL cross section crosses the expected- and observed-limit
curves. We additionally quote the result where the central theoretical curve intersects the limit
curves.

The production of gluinos undergoing RPV decays into light-flavour jets is excluded at 95%
CL for gluino masses below 650 GeV, with a less conservative exclusion of 670 GeV based upon
the theory value at the central scale. The respective expected limits are 755 and 795 GeV. These
results extend the limit of 460 GeV [10] obtained with the 7 TeV CMS dataset. Gluinos whose
decay includes a heavy-flavour jet are excluded for masses between 200 and 835 GeV, which
is the most stringent mass limit to date for this model of RPV gluino decay, with the less con-
servative exclusion up to 855 GeV from the central theoretical value. The respective expected
limits are 825 and 860 GeV. While a smaller phase space is probed in the heavy-flavour search,
the limits extend to higher masses because of the reduction of the background.
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Figure 7: Observed and expected 95% CL cross section limits as a function of mass for the
inclusive (left) and heavy-flavour searches (right). The limits for the heavy-flavour search cover
two mass ranges, one for low-mass gluinos ranging from 200 to 600 GeV, and one for high-mass
gluinos covering the remainder of the mass range up to 1500 GeV. The solid red lines show the
NLO+NLL predictions [35–39], and the dashed red lines give the corresponding one-standard-
deviation uncertainty bands [40].

8 Summary
A search for hadronic resonance production in pp collisions at a centre-of-mass energy of 8 TeV
has been conducted by the CMS experiment at the LHC with a data sample corresponding to
an integrated luminosity of 19.4 fb−1. The approach is model independent, with event selection
criteria optimised using the RPV supersymmetric model for gluino pair production in a six-jet
final state. Two different scenarios for this RPV decay have been considered: gluinos decaying
exclusively to light-flavour jets, and gluinos decaying to one b-quark jet and two light-flavour
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jets, with the assumption in both cases of a 100% branching fraction for gluinos decaying to
quark jets. Methods based on data have been used to derive estimates of background from
SM multijet processes. Events with high jet multiplicity and a large scalar sum of jet pT have
been analysed for the presence of signal events, and no deviation has been found between the
standard model background expectations and the measured mass distributions. The produc-
tion of gluinos undergoing RPV decay into light-flavour jets has been excluded at the 95% CL
for masses below 650 GeV. Gluinos that include a heavy-flavour jet in their decay have been
excluded at 95% CL for masses between 200 and 835 GeV, which is the most stringent limit to
date for this model of gluino decay.
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Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique
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M.Ö. Sahin, J. Salfeld-Nebgen, R. Schmidt19, T. Schoerner-Sadenius, M. Schröder, N. Sen,
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M. Gabusia ,b, S.P. Rattia,b, C. Riccardia ,b, P. Vituloa,b

INFN Sezione di Perugia a, Università di Perugia b, Perugia, Italy
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