Available on CMS information server CMS CR -2013/367

m\s The Compact Muon Solenoid Experiment
N

~_ Conference Report ()

X \\
e
AN | Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

28 October 2013

Using ssh as portal - The CMS CRAB over
glideinWMS experience

Stefano Belforte , Igor Sfiligoi , James Letts , Federica Fanzago , M D Saiz Santos , T Martin

Abstract

The User Analysis of the CMS experiment is performed in distributed way usingboth Grid and dedi-
cated resources. In order to insulate the users from the details of computing fabric, CMS relies on the
CRAB (CMS Remote Analysis Builder) package as an abstraction layer. CMS has recently switched
from a client-server version of CRAB to a purely client-based solution, with ssh being used to interface
with HTCondor-based glideinWMS batch system. This switch has resulted in significant improvement
of user satisfaction, as well as in significant simplification of the CRAB code base and of the operation
support. This paper presents the architecture of the ssh-based CRAB package, the rationale behind
it, as well as the operational experience running both the client-server and the ssh-based versions in
parallel forseveral months.

Presented at CHEP2013 Computing in High Energy Physics 2013



Using ssh as portal - The CMS CRAB over
glideinWMS experience

S Belforte!, I Sfiligoi?, J Letts?, F Fanzago®, M D Saiz Santos?, T
Martin?
YINFN Sezione di Trieste, Via Valerio 2, 34127 Trieste, Italy

2University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
3INFN Sezione di Padova, Via Marzolo 8, 35131 Padova, Italy

E-mail: stefano.belforte@ts.infn.it

Abstract. The User Analysis of the CMS experiment is performed in distributed way using
both Grid and dedicated resources. In order to insulate the users from the details of computing
fabric, CMS relies on the CRAB (CMS Remote Analysis Builder) package as an abstraction
layer. CMS has recently switched from a client-server version of CRAB to a purely client-
based solution, with ssh being used to interface with HTCondor-based glideinWMS batch
system. This switch has resulted in significant improvement of user satisfaction, as well as
in significant simplification of the CRAB code base and of the operation support. This paper
presents the architecture of the ssh-based CRAB package, the rationale behind it, as well as the
operational experience running both the client-server and the ssh-based versions in parallel for
several months.

1. Introduction

The Compact Muon Solenoid experiment (CMS) [1] is a general purpose detector built and
operated at the CERN’s Large Hadron Collider (LHC) by a community of over four thousand
physicists to investigate fundamental particle physics in proton-proton collisions at the highest
energy available in laboratory. LHC accelerates two counter-circulating proton beams at 7 TeV
each and makes them intersect. When protons from the two beam undergo a nuclear interaction,
their energy in converted into hundreds of elementary particles of various mass and life time.
This process is called an event. Events happen inside CMS at a rate of about 500MHz and
are captured by the CMS detector in a digital representation. A small fraction of those events,
about 1KHz, is stored for offline reprocessing and analysis. Adding the original (raw) and the
reprocessed data and the data from simulated events, overall CMS physicists have almost 50
PetaBytes of data available for studying the physics of proton-proton interaction.

Analysis of those data proceeds via hierarchical selection. Data are naturally grouped from
the start in so called datasets. A dataset is a container of events collected (or simulated) under
similar conditions and expected to have similar physics content. Typical datasets have a size
of tens of TB’s. Users run an initial step of event analysis and selection using a distributed
computing system, such as the Open Science Grid (OSG)[2] and the European Grid Initiative
(EGI)[3], to process one dataset at a time and derive smaller samples in the O(1-1000)GB range,
which are eventually retrieved by the users (i.e. extracted from the CMS data management
system and not further tracked by common tools) for iterated detailed analysis at local facilities.



A typical use case for physics analysis may require for the user to go through a few datasets
from real data for event selections, a few others for efficiency and background studies, and up to
tens of simulated datasets to compare with various theoretical models. Those data processing
passes are called “workflows” and are usually performed at the CMS Tier2 sites on the WLCG,
there are currently 56 such sites world-wide.

Within CMS Computing project, the Analysis Operations responsibility is part of the Physics
Support office and has its focus on making it easy (ideally transparent) for users to run their
workflows on the WLCG. Since 2004 CMS users have interfaced with Grid using a tool called
CRAB (CMS Remote Analysis Builder) [4] which decomposes a workflow into a set of individual
jobs and allows users to submit them for execution, track their status, and finally retrieve locally
the output. Within CRAB the set of jobs used in one workflow is called a “task”

2. CRAB
CRAB was initially born as a pure client interface combining four main functionalities:

1) Look up CMS central databases for dataset details and location in order to do job splitting

2) Sandbox the user’s executable and environment in order to replay it on remote CMSSW
installations

3) Offer a convenience wrapper and an abstraction layer around Grid client
4) Keep track of which workflows (CRAB tasks) the user has ran.

CRAB was interfaced to Grid submission via gLite and to local submission to a few batch
systems, notably HTCondor (mostly for use at the FNAL LPC farm) and LSF (mostly for use
at the CERN CMS CAF farm). Adoption of the CRAB tool in place of custom scripts for
functionalities 1), 2) and 4) above was very good, but submission to Grid has been exposing
users to all sort of site and middleware issues.

In order to overcame the “Grid problems” CMS introduced in 2004 a client-server tool for
CRAB, moving 1) and 3) above to the server side. Commands are sent to CRAB server over a
GSI-authenticated SOAP connection, while input and output files are moved via gsiftp.

The CRAB server gave to users fast submission, equal if not better to local batch system
and relieved users from the need to resubmit jobs failed due to random problems. CRAB server
featured a simple table allowing Analysis Operation team to decide the retry policy among any
combination of now or later, same site or different site, maximum number of retries, based on
the exit code of the user’s job. Also CRAB server was retrying three times aborted jobs in gLite,
i.e. jobs where the user’s application could not terminate.

Those automated resubmissions were extremely important in the first years, but as Grid
became mature and stable their usefulness to users decreased and other problems became the
focus of users and support attention.

CRAB server had been designed to be very powerful, flexible and general. But in time the
CRAB server implementation proved to be too complex and fragile and bookkeeping problems
inside the CRAB server itself surpassed those due to Grid failures. Development focused on
building a new server based on a different architecture, common with the CMS Production tool,
and effort on fixing the CRAB server shortcomings stopped in 2005. Analysis Operations kept
up supporting CMS using community with the exiting CRAB server adding also support for
submission to the glideinWMS [5] system.

3. glideinWMS and CRAB

glideinWMS is a pilot based job submission framework that presents the Grid to users as a single
HTCondor batch pool. There are many advantages to this approach, like moving completely
out of user’s worry list all problems due to interaction with the site CE’s. On the other hand



it requires a persistent service (HTCondor schedd process) on the submitting machines, so it
does not allow users to submit from a remote machine, disconnect, and check on jobs later,
as they could do with glLite. For this reason we introduced glideinWMS using the CRAB
server approach. CMS Analysis Operations group deployed two servers at CMS Tier2 center at
University of California, San Diego and operated those for four years. The HTCondor schedd’s
were running local to the servers and glexec [6] was used to do submissions in multi-user mode
inside CRAB sever code. glexec is then used by glideinWMS pilots to switch temporarily to
the user’s identity when running user payload, thus providing the same secure insulation among
users and between users and submission infrastructure as glite.

Once we had user jobs running on glideinWMS we got rid of the largest part of grid issues
and aborted jobs, the need for automatic resubmission decreased.

As of 2012, CMS analysis users and Analysis Operation were sort of cornered. Most
Grid infrastructure problems were solved thanks to mature Grid middleware and experienced
administrators at remote sites and to glideinWMS plus HTCondor, but we had introduced new
problems due to CRAB server internals. Users satisfaction was very low. Users were forced
to choose between large job resubmission effort to deal with gLite problems or suffer through
CRAB serve problems which often lead to whole tasks to be lost needing resubmission. Support
was having so many problems with the tool around glideinWMS that could not look at anything
else. We were ready for change.

4. Introducing ssh

When we heard of the RCondor [7] project, we realized that there could be a way out. So
we decided to adapt CRAB client to make use of it and try. The concept is strikingly simple:
execute condor commands via ssh on a remote machine where HTC schedd runs. Original
RCondor is using sshfs to make the local user file available to remote schedd and viceversa, but
during implementation we found a performance penalty, especially when many files are involved
and RTT between client and schedd is large, so we switched to moving tarballs with scp.

Given that CRAB already was build as client-server and already was submitting to local
condor, adapting to submission to HTCondor via ssh was very simple and went quick and
smoothly, user interface remained completely unchanged. A schematic view of the ssh-enabled
CRAB client is in figure 1.

Since in the end we need GSI authentication, we used gsissh[8] as communication protocol
between CRAB client and remote submission node where HTCondor schedd runs, remote grid
identities are mapped to local unix users via LCMAPS call backs to GUMS in the US and
ARGUS in Europe.

5. Implementation details
In order to put this into operations for our community we had to address a few technical issues.

5.1. Performance

We aimed to give users the same feel as working with a local batch manager, and largely
succeeded. It was an incremental process, we started very simple and added a few things for
faster reaction time along the way. Relevant actions for this where:

a) Avoid massive use of condor_q. We obtained from HTCondor team a new option for
condor_history where only the local condor log file for each user task was parsed, this made
for very fast crab -status. So user can now run it as often as they like, without excessively
loading the schedd host.



Client node

- ssh-condor_q
crab_mcr)‘nitor A

‘,_/’/J:;cp output_logs

scp input_slmdox
dor_submit

ssh con

glideinWMS

Figure 1. CRAB submission to glideinWMS using ssh

b) Avoid long delays due to gsi authentication. For this we reuse ssh sockets for command
issued close in time by the same user, i.e. the ssh ControlPath feature. Proper handling
of ControlPath including ControlPersist option is only available in OpenSsh 5.6 or later,
not for the version distributed with gsissh in our grid clients. We emulated ControlPersist
behaviour by submitting a remote sleep lasting lhour and renewed when close to expire.
This worked very well, initial connection can take up to ten seconds to establish e.g. between
CERN and US West Coast, but after the first time all other crab commands are executed
immediately. At times ssh connection terminates badly and leaves a corrupted socket (only
fixed in OpenSsh 5.8 or later). This was cured by detecting the tell-tale error message in
stdout, removing the socket and recreating the ControlPath automatically.

¢) As a final performance boost, instead of using scp to copy back output files and logs from
remote submission host to local Ul one by one, we used rsynch over the existing ssh socket.

5.2. Security

Using ssh as a portal means that every CMS user can login interactively on the machines where
HTCondor schedd’s run. This is not an ideal situation but we decided to accept the associated
risk and monitor how things go. The main concern was not hostile attack, there is nothing on
the submission hosts that requires more security then any login node of the many multiuser
interactive facilities CMS uses already world wide. Rather we feared well meaning users who
could decide to log on the submission hosts to short cut the CRAB interface and directly
submit/monitor or even look at output files, thus adding uncontrolled load on the machine.
Here the work on the performance of the ssh connection payed off, users have been happy with
the functionality provided. and we never saw any sign of abuse of the system.

As a minor note, ControlPath functionality in OpenSsh does not work if the user’s .ssh
directory is on AFS. Since this is the situation at CERN, i.e. for majority of our users, we had
to created an ad-hoc directory in /tmp to host the socket and took special care in making sure
the directory and the socket have the correct ownership and only owner can access them.



5.8. Scalability

CMS Analysis load is about 200k job submission daily from roughly 200 different users, with 40k
jobs running at any time. To sustain this and provide some resiliency, we setup submission nodes
(schedd’s) at different locations worldwide (CMS Tier2’s at UCSD and Nebraska and CERN).
While those schedd’s submit to the same condor pool, each job is only tracked by the schedd
which submitted it, so CRAB client need to remember whom to ask for status and output. For
this we re-used same mechanism that existed in CRAB already to deal with multiple servers:

a) A list of available submission hosts is maintained centrally by Analysis Operations and looked
up via http by CRAB client at the time of the first submission in each task. A remote server
is then chosen at random from that list.

b) Once a submission host has been picked like that, its name is stored in the local SqlLite
database that CRAB client uses to keep track of the task progress and that name is then
reused for any further CRAB command.

This is a very primitive form of load sharing, submission servers are chosen regardless of
current load, hardware capability and size of the current task. Anyhow on average load is fairly
well distributed given that we have servers of similar hardware strength. Main drawback of this
approach is the fact that each user task is married to one particular server for life, so performing
any disruptive or lengthy maintenance on a machine can only be done after a couple of weeks
of draining.

5.4. Reliability
As expected gsissh is a very solid tool and we had almost no problem. One thing we never got
around to solve is that at times gsissh user@host "command” returns a non zero exit code
even if the command actually succeeded. We worked around this by replacing ”command” with
"command; echo'EXIT STATUS IS’ \$?" and parsing stdout returned by gsissh. We also
benefited from the simple trick of leaving users output files on the submission server even after
successful copy to the local Ul, so that the copy could be safely repeated if CRAB client fails
later even for trivial reasons like full local disk. We assumed HTCondor to be fully reliable and
took no particular care there, and have not found any reason to think otherwise.

Currently almost all problem reports from users about communication with the submission
servers are due to actual lack of network connection.

6. Operational experience
Deployment in production of the new, gsissh based, submission method went very smoothly. It
was presented to users as an additional option scheduler = remoteglidein in the CRAB client
submission file, everything else being unchanged. We let users free to choose if to use the new
or the old methods, simply encouraging them to try the new one. Since CRAB with ssh was not
providing any new functionality, only less problems and easier support, we took user’s adoption
as metric for success. Response was very good, as shown in figure 2. In a few months we found
ourselves able to start decommissioning old CRAB servers and to stop active support for gLite
scheduler.

From the operations point of view we had to ramp up our competence and expertise on
HTCondor, but in the meanwhile we collected many benefits from the new submission method:

e Since submission is via gsissh, there is no need for full UI grid on client, no dependencies
on swig wrapped C+-+ libraries, no problem of compatibility of environment with CMSSW
and so on. CRAB for gissh works on SLC6 out of the box.



Fractlion of executlion slots used with each submission method

100%
90%
80%

T70%

W ssh to glideinWMSs
server to glideinWms

M direct to gLite

W server to glite

60%

50%

40%

30%

20%

10%

0%
Oct 01 Dec 01 Feb 01 Apr 01 Jun 01 Aug 01

Figure 2. Steady shift to the use of the ssh-based CRAB over the period October 2012 to
October 2013. It is clearly visible how ssh-based submission host at UCSD became unavailable
during Christmas 2012, before we introduced multiple hosts in different regions

e No CMS software needed on submission server, only standard gsisshd and HTCondor.
Simple installation, no problem ever with gsisshd. All problems with HTCondor routed to
experts outside CMS core development team.

e The only work Analysis Operations needed to do on submission server was some simple
crontab to cleanup old user files and basic system monitoring.

In practice operations load has been continuously decreasing over last year and it is now at
an all time low, in spite of overall amount of analysis work having kept doubling every year, as
can be seen in Figure 3.

Having moved users to the ssh portal gave us the possibility to work in the testing and
commissioning of the prototypes of the new tool, called CRAB3, and to address long standing
problems like user jobs running out of resources (time, memory, disk) on remote WN’s; glitches in
CMS software deployment at sites, problems with failing glexec. The better understanding that
we have achieved of those problems and of the possible solutions will be directly incorporated
in CRAB3 by the time it will be released for production.

We never had any major difficulty with the new system, occasional gsissh failures have been
addressed and largely solved as indicated above. The fact that HT Condor automatically restarts
any job that fails in case of a software or hardware glitch on the schedd nodes was also extremely
useful. As of July 2013 we turned off the last CRAB server. In a way all its functionalities, but
automatic resubmission of failed jobs, are reproduced in the current system.

7. Conclusions

Using (gsi)ssh as a portal has proven to be very effective in giving transparent, efficient access
to remote submission servers. We could simplify enormously the software stack that we need
to maintain both on the client and the server side and focus on more interesting problems like
overall scalability, site’s reliability and global policies. In a sentence: it is never too late for



Analysis Job Slots Used per Week at Tier-2 Sites

100,000

10,000

1,000
Sep-09 Apr-10 Oct-10 May-11 Dec-11 Jul-12 Jan-13 Aug-13

Figure 3. Amount of work for Analysis

throwing away software and simplifying the system.

Looking forward, we note two areas were improvement is still highly desirable, in spite of

the success of the ssh portal approach. We hope that the next version of the CMS analysis
submission tool will address those as well:

e Flexible automatic resubmission policies based on the failure kind (not all job failures benefit

from the same resubmission policy).

e Current CRAB client sorts of “does too many things”. It would be good to move some

8.
Th

functionalities to the server side were it is possible to deploy changes faster and more
frequently and thus better address the changing needs of our environment.

Acknowledgments
is work was partially sponsored by the US National Science Foundation under Grants No.

PHY-1148698 and PHY-1120138.

References

[1] Chatrchyan S et al. 2008 J. of Instr. 3 S08004 doi:10.1088/1748-0221/3/08/S08004

[2] Pordes R et al. 2007 J. Phys.: Conf. Ser. 78 012057 doi:10.1088/1742-6596/78/1/012057

[3] Kranzlmiiller D, Marco de Lucas J and Oster P 2010 Remote Instr. and Virt. Lab. 61-66 doi:10.1007/978-1-
4419-5597-5_6

[4] Spiga D et al. 2007 The CMS Remote Analysis Builder (CRAB) Lect. Notes in Comp. Sci. 4873 580-586
doi:10.1007/978-3-540-77220-0_52

[5] Sfiligoi I, Bradley D C, Holzman B, Mhashilkar P, Padhi S and Wiirthwein F 2009 The pilot way to
grid resources using glideinWMS Comp. Sci. and Info. Eng., 2009 WRI World Cong. on 2 428-432
doi:10.1109/CSIE.2009.950

[6] Groep D, Koeroo O and Venekamp G 2008 gLExec: gluing grid computing to the Unix world J. Phys.: Conf.
Ser. 119 062032 doi:10.1088/1742-6596/119/6,/062032

[7] Sfiligoi I and Dost J M TBD Using ssh and sshfs to virtualize Grid job submission with rcondor Proc. CHEP
2013 (Amsterdam, NL)

[8] Butler R et al. 2000 A national-scale authentication infrastructure Computer 33 12 60-66

doi:10.1109/2.889094



