
C
ER

N
-A

C
C

-2
01

3-
02

41
05

/1
0/

20
13

CERN-ACC-2013-0241

Felix.Ehm@cern.ch

Report

CMX – A Generic Solution to Explore
Monitoring Metrics

F. Ehm, Y. Fischer, G.-M. Gorgogianni, S. Jensen, P. Jurcso
CERN, Geneva, Switzerland

Keywords: Electronics and Controls

Abstract

CERN’s Accelerator Control System is built upon a large number of C, C++ and Java services that are
required for daily operation of the accelerator complex. The knowledge of the internal state of these
processes is essential for problem diagnostic as well as for constant monitoring for pre-failure
recognition. The CMX library follows similar principles as JMX (Java Management Extensions) and
provides similar monitoring capabilities for C and C++ applications. It allows registering and exposing
runtime information as simple counters, floating point numbers or character data. This can be
subsequently used by external diagnostics tools for checking thresholds, sending alerts or trending.
CMX uses shared memory to ensure non-blocking read/update actions, which is an important
requirement in real-time processes. This paper introduces the topic of monitoring C/C++ applications
and presents CMX as a building block to achieve this goal.

Presented at:

14th International Conference on Accelerator and Large Experimental Physics Control Systems
S. Francisco, USA

Geneva, Switzerland
October, 2013

1

CMX - A GENERIC SOLUTION TO EXPOSE MONITORING METRICS

IN C AND C++ APPLICATIONS

Felix Ehm, Yves Fischer, Georgia-Maria Gorgogianni, Steen Jensen, Peter Jurcso,

CERN, Geneva, Switzerland

Abstract
CERN’s Accelerator Control System is built upon a

large number of C, C++ and Java services that are

required for daily operation of the accelerator complex.

The knowledge of the internal state of these processes is

essential for problem diagnostic as well as for constant

monitoring for pre-failure recognition. The CMX library

follows similar principles as JMX (Java Management

Extensions) and provides similar monitoring capabilities

for C and C++ applications. It allows registering and

exposing runtime information as simple counters, floating

point numbers or character data. This can be subsequently

used by external diagnostics tools for checking

thresholds, sending alerts or trending. CMX uses shared-

memory to ensure non-blocking read/update actions,

which is an important requirement in real-time processes.

This paper introduces the topic of monitoring C/C++

applications and presents CMX as a building block to

achieve this goal.

INTRODUCTION

CERN’s accelerator control system [1] is essential for

operating the accelerator complex; hence its availability,

performance and correct functioning are critical.

Consequently, a pro-active approach to problem

resolution is desirable, where anomalies are detected and

corrected even before operation is affected.

In terms of software, the control system is comprised of

some 3500 processes written in Java, C and C++. The

latter two are in comparison to Java rather “black boxes”

with very limited support for identification and diagnostic

of problems. Simple process existence checks, and

probing their functionality regularly (e.g. ”they do what

they supposed to do”) as well as a manual core dump

after a problem is suspected, are the usual ways.

However, blocked threads for example cannot be

automatically detected. Another example is a “delayed

problem”: software is updated during working hours

which introduces faulty code. Although working in the

beginning it eventually stops in the night, for example, as

an internal message queue has filled up. The

consequence: Experts have to be called in and the

resolution of the situation takes much longer than during

the day. Both problem types negatively impact running

costs and overall service availability.

To overcome such situations and to improve pro-

activeness, the detailed “health” (state) of each process

must be known at any time, which in turn requires two

mechanisms:

1) Each process exposes internal numeric values and

character data (metrics) indicative of its state.

2) A centralized system for monitoring, offering the

full range of features like history, trending, status

displays and notification in case of values

breaching pre-configured thresholds.

DIAMON [2] is such a centralized system at CERN and

currently monitors computers and the presence of

required processes. For Java services it additionally

accesses metrics exposed via the Java Management

Extensions (JMX) [3] and uses this information to further

determine the overall health state. For C/C++ programs in

contrary, we found no suitable equivalent to JMX or a

similar technology which fits the requirements for our

(real-time) processes.

Consequently, we set out to implement a light-weight

library, providing a sub-set of JMX’s extensive

functionality, and accordingly named the library CMX.

The current state of CMX is presented in this article.

REQUIREMENTS

The following high-level requirements were identified

for CMX:

- Exposure of numeric values and character data

outside the process context.

- Low latency operations for reading or updating

metrics, actions must deterministically finish

independently from their result within 10

milliseconds.

- Operable in a disk-less environment.

- Lightweight dependencies and minimal memory

footprint, < 200 Kilobytes.

- User-friendly C and C++ API, which allows

dynamic registration of metrics.

- Simple integration with existing monitoring

systems.

- Portable to Microsoft Windows, Linux and

LynxOS [4] operating systems.

Why Can’t We Use Existing Solutions?

The search for existing generic solutions showed that

this area is quite uncovered. The only promising

technology is the Simple Network Management Protocol

SNMP [5]. It is an IETF protocol for managing devices

on IP networks. Devices that typically support SNMP

include routers, switches, servers, workstations, printers,

modem racks and more. It is being widely used by many

hardware vendors to allow remote monitoring of their

network devices and supported by the majority of

monitoring solutions on the market (NAGIOS, ZABBIX,

MRTG, etc.).

For investigating SNMP we used the commonly known

net-snmp [6] package. Metrics are exposed via a build-in

Agent and a Management Information Base file (MIB) [7]

indicates what metrics can be read.

Apart from the fact that it is not directly designed to be

used within (complex) software, the result of the

evaluation showed that the management of MIB files is

not trivial. It requires thorough understanding of SNMP

concepts and the implementation of the agent calls is not

straight forward, e.g. metrics cannot be added/remove

easily at runtime. During tests, the memory footprint

exceeded our limits and update roundtrip times were too

slow for real-time processes.

CMX ARCHITECTURE

Enabling Inter-process Communication

The requirements in terms of low-latency and

availability on low-performance machines lead to the

decision to use Shared Memory (SHM) technology for

inter-process communication.

POSIX.1-2008 [8] defines the UNIX System V (SysV)

SHM Interface (part of X/Open System Interface) as well

as the user space utilities for managing SysV shared

memory. SysV SHM is supported on all target platforms

(Linux, LynxOS, Microsoft Windows).

SHM segments can be created and attached to the

program’s memory space using system calls and are

identified by system generated (and unique) numerical

Segment Identifiers (SIDs).

To access the very same segment across several

applications the user can define a static user key.

However, the usage of keys should be reduced to the

minimum to avoid key collisions between unrelated

applications. Therefore, CMX uses only one such user

key as explained in the following.

Shared Memory Structures in CMX

Within CMX, an internal look-up data structure

provides information on all registered processes. It is

stored in a SHM segment and called the Main Registry.

At initialization time, CMX will try to access the main

registry and in case it was not created before (SHM

segment with common key ‘100’ does not exist)

automatically instantiates it.

Metrics and other information of a process are stored

separately as Component data structures. For their SHM

segment only system generated SIDs are used instead of

keys because, as mentioned before, they may not be

unique. The SID is saved in the registry as illustrated in

Figure 1. In general, an executable can have more than

one Component. At program initialization, CMX creates

one by default (with empty c ompone nt _na me), to store a

standard set of process related information like owner,

start-up time and operating system, etc. (see Figure 1).

With each entry in the main registry, the Component’s

layout version is stored to allow backward compatibility

in case it changes. An example here is to be able to read

SHM segments from processes that use different

Component layouts from older (but not newer) versions

of CMX. This is of significant operational advantage, as it

is not necessary to upgrade all programs by a newer

version of CMX on one computer at the same time and

thus, supports the idea of “smooth upgrades” [7, 9].

A cleanup procedure executed with each Component

creation makes sure old entries (process is non-existent)

are properly deleted.

A Component can store two types of metrics: characters

(strings) and numbers. The allowed amount of each

metric has to be set at the creation time of the Component

and cannot be modified afterwards. In this range,

however, metrics can be added and removed as

demanded. The characteristics of the two types are:

• Numbers: 64-Bit floating point.

• Strings: “dynamic” length, predefined size (default

255) at Component creation applies to all strings

within.

Figure 1: CMX's data structures in System V Shared Memory.

Locking and Data Integrity

While CMX is virtually non-blocking and has a very

low execution overhead, it is required to protect internal

data structures against race conditions. This is

implemented using POSIX semaphores and timed

operations (s e mt i me dop()). The timeout can be configured

by the user via the API and hence, can be optimized to the

characteristics of the local environment. CMX uses 100

milliseconds as default semaphore timeout.

There are three mechanisms in CMX to ensure data

integrity:

1. Only one process at a time is able to modify the

main registry. This is independent from a process

updating a metric as Components can be

referenced directly (see 2).

2. Each Component is protected against concurrent

access (read and write) using locks: only one

process can update or read data from a Component

at a time (see Performance Analysis section for

more details on the consequences).

3. CMX ensures that changes to a Component are

restricted to the owner process only. This is

achieved through the update function which checks

if the caller has the same process id as the one

stated in the Component field.

Code Example

Figure 2 shows an example of how a metric is exposed

using the CMX API (for better readability the error

handling has been removed).

Figure 2: Code example for enabling CMX in C.

Operating System Implications

The use of SysV SHM segments and semaphores in

CMX is regulated by the operating system limits.

The most interesting setting is SHMSEG, which is the

number of maximum allowed shared memory segments

per process and defaults to 4096 on Linux. This is

sufficient for our environment, but should be known as a

limitation if more Components have to be created. It is

still possible to raise it by changing the system

configuration.

Figure : Latency effects on updating metrics at high 3
frequency.

PERFORMANCE ANALYSIS

Figure 3 shows the latency effect of concurrent access

on one component for a raising number of threads. For

this test
*
, 100 numerical metrics are registered in one

Component and each thread tries to update each of them

with an arbitrary value as fast as possible. One update can

either end successfully or return with a lock timeout error.

In this scenario the locking timeout is set to the very

low value of 4 milliseconds (dashed line in Figure 3).

When running, each thread tries to acquire the shared lock

of the Component and measures the time after the lock

was acquired, to update all 100 numbers and to release the

lock. Each failed lock is recorded. The percentage of

successful updates per test is shown with the solid line in

Figure 3. Up to six threads, the latency raises, but all

*
 Test machine used: HP G7 with 2 x Intel X5660 (12 physical cores),

running Scientific Linux CERN 6.4 with Linux 2.6.32-358

locks are acquired in-time. With more threads, the update

success rate decreases as the line indicates.

A call resulting in locking error takes 4 to 6

milliseconds before returning with an error code. The

additional 1-2 milliseconds overhead is considered as a

consequence of the operating system thread-scheduler.

The tests have shown that CMX provides very low

latency for updating metrics and shows deterministic and

real-time behaviour and therefore satisfies the

corresponding requirements.

USAGE AND NEW POSSIBILITIES

Meaningful Information

The fact that CMX enables exposure of process

metrics, has little value unless the data provides useful

information e.g. indications that problems are building up.

Developers possess detailed knowledge about the

processes they support. However,

as C/C++ process metrics is an as

of yet relatively unexplored

domain for them, they will need

to learn in an iterative process

what constitutes meaningful

metrics for the particular process

they’re responsible for.

Simplified Root Cause Identification

As CMX enables establishing a more detailed state of

individual C/C++ processes, it becomes easier to identify

the root cause of problems in cases where multiple

services are involved – which in turn will help decrease

downtime.

Exposure of Runtime and Build Information

CMX is able to provide runtime (see Figure 4) and

compile time information of the executable. The latter is

possible via its built-in Manifest file, which is

automatically inserted into the final binary during build

time and which includes information like code version,

compiler version, platform and more. The very same is

also available for all statically linked libraries.

This new feature enables dependency tracking and

enriches the diagnostic tools for developers.

Figure 4: CMX command line tool showing information

on the program.

/ / Re gi s t e r pr oc e s s
f b_pr oc e s s _r e gi s t e r () ;
/ / a dd a ne w c ompone nt
c omp_uui d = f b_c omp_r e g i s t e r (" c ompone n t ") ;
/ / a dd a ne w me t r i c i n t he c ompone nt
f b_me t r i c _a dd(c omp_uui d , " c ount e r 1") ;
/ / s e t t he ne w me t r i c
f b_me t r i c _s e t (c omp_uui d , " c ount e r 1" ,) ;
/ / f r e e c mx r e s our c e s
f b_pr oc e s s _unr e g i s t e r () ;

Us e r a bc de f gh
Pr oc e s s na me c m xc t l
PI D 32772
Hos t na me c om put e r . c e r n . c h
OS Li nux
OS Ke r ne l 2 . 6 . 32 - 358. 14. 1 . e l 6 . x86_64
Ve r s i on Le ve l #1 SMP W e d J ul 17 08: 30: 19 CEST 2013
Ha r dwa r e t ype x86_64

Expose

Monitor

Verify

Modify

Figure 5: Integration of CMX into the DIAMON

 monitoring

system.

Integration with Monitoring Systems

With programs exposing internal information via CMX

library it is now possible to utilize this data further on.

The CLIC monitoring agent is part of the DIAMON

service and can obtain metric information via its CMX

plugin and subsequently provide them on its network

interface to external services. Due to its very low memory

footprint of less than 2 Megabytes it also runs on

hardware with small resources and the limited

dependencies allows porting it to various platforms. In

fact, it is installed on all real-time computers, high end

servers, operational consoles and around 500 virtual

machines. In total more than 2000 machines are

monitored through the CLIC agent.

From this point on service managers of C/C++services

can profit from the full range of features, like value

history trending, status displays and notification in case of

values breaching pre-configured thresholds.

Planning and Preventive Maintenance

By following the history of metric values over time it is

possible to make statements about their future

development. Software and hardware can be better tuned

or earlier upgraded to changed requirements, e.g. more

clients start to demand data from a server.

Discover Service Dependencies

With CMX’s support for exposing strings, it is possible

to capture patterns of how processes connect to each other

by exposing host/process names of clients. This can, for

example, being used to inform if the service will be

modified or taken down for maintenance.

FUTURE

For our domain we have identified the following plans

for the future:

• Collect more experience in production

environment.

• Integrate CMX into the majority of CERN’s

control system components.

• Development of a alternative read-out tool to the

CLIC agent, e.g. based on HTTP.

• Make the project public: e.g. open source project.

• Elaborate usage for other domains, and continue

to improve CMX in respect to new requirements.

CONCLUSIONS

With the new CMX library, a software developer has a

simple and intuitive API which offers a time-saving way

to expose internal information on (real-time) C/C++

processes. For the first time, it is possible to inspect these

programs – without using debugging tools – during their

execution.

CMX is fully integrated into DIAMON, and thus,

allows inspecting information remotely in the same way

as it is now for Java processes using one central interface.

Pre-failure recognition and detailed diagnostics, which

are essential for running complex infrastructures, are now

possible and the first experiences within CERN’s

accelerator controls group show that it enhances the

monitoring and diagnostic capabilities of C/C++

programs.

The challenge of providing minimal latency operations

with guaranteed data integrity was an important aspect in

the design. Hence, its careful implementation as well as

thorough testing resulted in a major part of the

development. Although the name is derived from JMX,

CMX provides only a subset of the functionality in JMX.

A built-in agent acting to incoming network requests, for

example, was not in scope of the CMX as this implied

adding complexity for proper handling and ensuring

security aspects.

A main factor in this chain, however, is the quality of

the metrics which has to be ensured by the developer of

the application.

REFERENCES

[1] CERN's Accelerator Control Group, http://cern.ch/be-

dep-co.

[2] W. Buczak, M. Buttner, F. Ehm, P. Jurcso and M.

Mitev, "DIAMON - Improved Monitoring of CERN's

Accelerator Controls Infrastructure," 2013.

[3] Oracle, "JMX Interface Technology,"

http://www.oracle.com/

[4] LynxWorks, "LynxOS, Real-Time Operating

System," http://www.lynuxworks.com/

[5] IETF, "SNMP Protocol,"

http://www.ietf.org/rfc/rfc1157.txt

[6] "Net-SNMP," http://net-snmp.sourceforge.net/

[7] IETF, "Management Information Base, RFC-1156,"

http://www.ietf.org/rfc/rfc1156.txt, 1990.

[8] Posix.1 2008, IEEE Std 1003.1™, 2013.

[9] V.Baggiolini, D.Csikos, P.Tarasenko, Z.Zaharieva,

M.Arruat and R.Gorbonosov, Backward Compatibility

As A Key Measure For Smooth Upgrades To The LHC

Control System, CERN, 2011.

