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Theories with dark forces and dark sectors are of interest for dark matter models. In this paper we find the
region in parameter space that is constrained by supernova cooling constraints when the models include
dark sector particles with masses around 100 MeVor less. We include only interactions with electrons and
positrons. The constraint is important for small mixing parameters. We do not include in this work
interactions with nucleons, which could give other important constraints.
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I. INTRODUCTION

Theories with dark forces [1] are well-motivated exten-
sions of the Standard Model (SM). Such extensions might
provide an explanation for dark matter (DM), if it is
assumed that new stable particles charged under the dark
gauge group exist. Gauge kinetic mixing then generates
interactions between the dark sector particles and SM
particles. To constrain such very weakly coupled models
with light dark sector particles, it is convenient to study the
dark sector particle production mechanisms in astrophysi-
cal bodies such as white dwarfs (WDs) and supernovae
(SN). Recently, some of us studied these constraints in
WDs and determined that interesting parts of the parameter
space which are or will be probed by experiments are
already mostly excluded when the dark sector particle
masses are ∼O (few tens of keV) [2]. Note that such light
particles might already be problematic for big bang
nucleosynthesis (BBN). However, BBN constraints suffer
from several caveats that do not apply to WD constraints
[3]. More importantly though, dark sector particles with
masses in the MeV range, inaccessible to WDs, are more
interesting because they could provide a viable DM
candidate [4] and explain the 511 keV line from the
galactic center observed by INTErnational Gamma-Ray
Astrophysics Laboratory (INTEGRAL) [5]. Since temper-
atures reach ∼O (few tens of MeV) inside SN, it is thus
natural to investigate SN constraints on such theories.
The idea behind the astrophysical bounds on new

particles is simple: if new particles are light enough to
be produced in astrophysical bodies, they can possibly
escape and generate excess cooling. This could contradict
the agreement between theoretical cooling models and

observations. Since SN contain electron-positron pairs
(e−=eþ) as well as nucleons (N), the possible dark sector
particle (Dirac fermion ψ and/or complex scalar ϕ)
production mechanisms are

eþ þ e− →

�
ψ̄ þ ψ
ϕ† þ ϕ;

N þ N →

�
N þ N þ ψ̄ þ ψ
N þ N þ ϕ† þ ϕ:

Once produced, the dark sector particles escape the SN if their
mean free path λψ ;ϕ is large enough, of the order of the SN
core. The scattering processes of interest in SN are given by

ðψ ;ϕÞ þ e → ðψ ;ϕÞ þ e; ðψ ;ϕÞ þ N → ðψ ;ϕÞ þ N:

To undertake a full treatment of the relevant physics
necessitates the implementation of dark photons and dark
sectors in SN simulation codes, an endeavor which is
beyond the scope of this work. In the following we instead
follow [6] and rely on two analytic criteria. The first
demands that the integrated emitted energy by the SN
through the dark sector channelED is less than about a tenth
of the emitted energy through neutrinos, i.e.

ED < Emax
D ¼ 1052 erg≃ 1

10
Eν: (1.1)

The second, the so-called Raffelt criterion, requires that the
emissivity in dark sector particles _ED does not alter the
neutrino signal observably, i.e.

_ED < _Emax
D ¼ 1019 erg × g−1 × s−1: (1.2)

This comes from the following reasoning [7]: at about 1 s
after the core bounce the neutrino luminosity is
Lν ∼ 3 × 1052 erg × s−1. The mass of the object is
M ≃ 3 × 1033 g. Thus, in order to affect the total cooling
time scale, a novel cooling agent would have to compete
with the energy-loss rate Lν=M ≃ 1019 erg × g−1 × s−1.
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For the case of an additional energy loss via extra
dimensions, the Raffelt criterion was demonstrated to be
reliable by a comparison with results from explicit SN
simulations followed by a statistical analysis in Ref. [8].
The integrated emitted energy criterion (1.1) is usually

more reliable than the Raffelt criterion (1.2). However the
latter is easier to implement since it does not require as many
integrals to be performed. In the followingwe show that both
criteria lead to approximately the same constraints, thus
increasing our confidence in the simpler Raffelt criterion.
This paper does not deal with the production of dark

sector particles from nucleon-nucleon collisions. The
results of this more involved study that will be based on
the formalism of Refs. [6,9,10] will be discussed elsewhere.
For related work involving only a dark photon, but no dark
sector, see Refs. [11].

II. DARK FORCES AND DARK SECTORS

In this section we briefly review the formalism for
theories with dark forces and dark sectors. The reader
can find more details in the Appendix. We consider models
that include a spontaneously broken Uð1ÞD gauge group,
with the corresponding massive dark photon Aμ

D, and a dark
sector LD which communicates with the SM LSM only
through kinetic mixing LSM⊗D [1,12], i.e.

L ¼ LSM þ LD þ LSM⊗D; where LSM⊗D ¼ εY
2
BμνF

μν
D :

(2.1)

Here Fμν
D ≡ ∂μAν

D − ∂νAμ
D and Bμν ≡ ∂μBν − ∂νBμ, where

Bμ is the hypercharge gauge boson. The kinetic mixing can
be thought of as generated by loops of very heavy particles,
charged both under the hypercharge and the dark gauge
group, and is naturally small: εY ∼ 10−4 − 10−3. Below the
electroweak scale one can define the mixing to be between
the SM photon and the dark photon, with the corresponding
parameter ε ¼ εY cos θW. Here θW is the weak mixing
angle. In a basis where the gauge bosons have canonically
normalized kinetic terms, the kinetic mixing disappears and
is replaced by interactions between the electromagnetically
charged SM fields and the dark photon:

LSM⊗D ¼ −AD
μ ðgASM;LJ

μ
SM;L þ gASM;RJ

μ
SM;RÞ; (2.2)

where the subscripts L and R indicate currents of left-
handed and right-handed SM fields, respectively, and the
couplings are written explicitly in the Appendix. In other
words the SM fields become millicharged under the dark
gauge group [13]. If the dark sector contains particles
charged under Uð1ÞD with masses less than about
100 MeV, they can be produced via the process depicted
in Fig. 1 in a SN and contribute to its cooling, provided
they escape.
Equation (2.2) could be rewritten as −AD

μ ½ðgASM;R þ
gASM;LÞJμSM;vec þ ðgASM;R − gASM;LÞJμSM;ax�, where JμSM;vec is a

vector current and JμSM;ax an axial current. One can check
from the explicit expressions in the Appendix that the axial

coupling ðgASM;R − gASM;LÞ is suppressed by a factor of
m2

AD
m2

Z

compared to the vector coupling. Thus, for a dark photon
much lighter than the Z boson, as is the case of interest in
SN, one can safely neglect the axial coupling.
As already mentioned, in this paper we consider only

dark sector particle production mechanisms and scattering
processes with the electrons and positrons which are
present in a SN. A follow-up work will discuss the
inclusion of nucleons.

III. ELECTRON-POSITRON ANNIHILATION
TO DARK SECTOR PARTICLES

In this section we closely follow the analysis of Ref. [6].
We concentrate on the process with dark fermions in the
final states, eþðp1Þ þ e−ðp2Þ → ψ̄ðp3Þ þ ψðp4Þ. The one
with dark bosons, ϕ, yields numerically similar results.

A. Emissivity

The energy emitted per unit time and unit volume is the
emissivity

_EðmAD
; ε; Tc; ηÞ≡ dE

dt

¼
Z

d3p1d3p2

ð2πÞ6 f1f2ðE1 þ E2ÞjΔvjσ

× ðeþ þ e− → ψ̄ þ ψÞ; (3.1)

where E1 þ E2 is the energy of the electron positron pair.
The Fermi-Dirac distributions are

fi ¼
1

eðEi�μiÞ=Tc þ 1
; (3.2)

where μi is the chemical potential and Tc is the temperature
in the supernova. We define η≡ μ=Tc as the degeneracy
parameter for the electrons. We have neglected the Pauli
blocking of the final state fermions. jΔvj is the absolute
value of the relative Møller velocity

FIG. 1. Light dark sector particle production mechanism in SN.
The Feynman diagram represents the relevant production mecha-
nism for electron-positron pair annihilation into light dark sector
particles through a dark photon exchange. The couplings gAeL and
gAeR, whose definition is given in the Appendix, are proportional
to the small mixing parameter εY. PL;R ¼ 1

2
ð1∓γ5Þ are the left and

right projectors. Note that contrary to WDs, the dark photon
cannot be integrated out.
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vMol ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv1 − v2Þ2 − ðv1 × v2Þ2

q
→
vi→1ð1 − cos θÞ; (3.3)

where vi are the velocities of the incoming electron and positron and θ is the angle between them in SN frame. The cross
section is easily computed by applying the Feynman rules shown in Fig. 1:

σðeþ þ e− → ψ̄ þ ψÞ ¼ g2DQ
2
ψ

6πs½ðs −m2
AD
Þ2 þm2

AD
Γ2
tot�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

ψ

s − 4m2
e

s
ðsþ 2m2

ψ Þ½ðgA2eL þ gA2eRÞðs −m2
eÞ þ 6gAeLg

A
eRm

2
e�; (3.4)

where s ¼ ðp1 þ p2Þ2 is the center of mass energy squared,

gD is the Uð1ÞD coupling constant, such that αD ≡ g2D
4π,Qψ is

the charge of ψ under Uð1ÞD, which we take to be 1 in the
following calculations, mAD

is the dark photon mass, the
couplings gAeL and gAeR are defined in Eqs. (A27) and (A28),
and Γtot is the total decay width of the dark photon.
The main contribution to the integral (3.1) occurs when

the dark photon is on shell. It is instructive to re-derive the
cross section for the on-shell case, which leads to a simpler
result. The cross section factorizes

σðeþþe−→ ψ̄þψÞ¼σðeþþe−→ADÞ×BrAD→ψψ̄ : (3.5)

When the condition mAD
> 2mψ is satisfied, the dark

photon decays into ψ þ ψ̄ with an almost 100% branching

ratio, in which case BrAD→ψψ̄ ≡ ΓAD→ψψ̄

Γtot
≃ 1. This is because

the remaining decay channels are into SM particles and are
suppressed by the small mixing parameter ε2. Then we have
to compute

σðeþþe−→ADÞ¼
2πmAD

4j ~p1js
δðs−m2

AD
ÞjMeþe−→AD

j2: (3.6)

We find

σðeþ þ e− → ψ̄ þ ψÞ ¼ 2π

3m2
AD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

e
m2

AD

r ½ðgA2eL þ gA2eRÞðm2
AD

−m2
eÞ þ 6gAeLg

A
eRm

2
e�δðs −m2

AD
ÞθðmAD

− 2mψ Þ: (3.7)

Here θðmAD
− 2mψ Þ is the Heaviside step function, needed

to enforce the kinematical condition for the decay of the
dark photon into ψ̄ þ ψ . In this form the cross section does
not depend on mψ as long as the condition mAD

> 2mψ is
fulfilled, nor on αD as expected from unitarity. This is the
reason why we did not include any dependence on mψ and
on αD in the emissivity _E of Eq. (3.1). We use Eq. (3.7) in
the calculations of the next section.

B. Integrated emitted energy

The total energy emitted in the dark fermion channel is

EDðmAD
; εÞ ¼

Z
t0

0

dt
Z

d3r _EðmAD
; ε; Tcðr; tÞ; ηðr; tÞÞ:

(3.8)

We use the temperature and electron degeneracy distribu-
tions from Ref. [14], which are given as functions of the
enclosed baryon mass. Assuming a constant density, which
is an excellent approximation for t ≥ 250 ms [14], we can
convert the d3r integral to dM. We adopt a core radius of
Rc ¼ 13 km and a mass of MSN ¼ 1.4M⊙ and obtain a
density ρ≃ 3 × 1014 g=cm3.
The distributions are given at various times [14] from

t ¼ 0, corresponding to the time when the incoming
shock wave stops and bounces outwards again, up to
t ¼ 20 s. We use t0 ¼ 20 s as the upper limit of our

integral, even if we find that most of the energy is emitted
during the first second, as was the case in Ref. [6].
Using the constraint of Eq. (1.1), EDðmAD

; εÞ < Emax
D , we

find the lower bound shown in Fig. 2 as a blue line.

C. Raffelt criterion

The cooling bound can also be obtained in a computa-
tionally simpler way using Eq. (1.2), with _ED ¼ _ED=ρ.
Here the free parameter is the temperature at which _E is to
be computed. We use Tc ¼ 30 MeV (dashed green curve in
the plot on the right of Fig. 2), as suggested in previous
work [8,10,15], and for comparison the higher value Tc ¼
35 MeV (dashed green curve in the plot on the left of
Fig. 2). Both values result in good agreement with the
integrated energy constraint we derived in the previous
section. Thus we are confident that the Raffelt criterion is
quite accurate.
Note that the right-hand side of Eq. (1.1) could be

multiplied by a factor of order 1, which would result in
slightly shifting up or down the blue curve in Fig. 2.
Because of this arbitrariness one should not take the fact
that the dashed green curve (Raffelt criterion) is in better
agreement with the blue one as an indication that Tc ¼
35 MeV is preferred over Tc ¼ 30 MeV. The purpose of
the plot is simply to show that the simpler Raffelt criterion
is a good approximation when compared to the more
accurate and elaborate criterion of integrated energy.
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D. Including QED radiative corrections

It is important in principle to include radiative correc-
tions in the calculation of the cross section for the process
eþ þ e− → ψ þ ψ̄ . The main reason for this can be under-
stood by thinking about the lowest order correction in
which a single photon is radiated by either the electron or
the positron. The cross section is suppressed by α compared
to the one we computed above without the photon.
However now we have more phase space available in
the integral of Eq. (3.1) where the energy of the colliding
electron and positron matches the on-shell condition of the
dark photon, which enhances the cross section and the
emissivity. Therefore the process eþ þ e− → ψ þ ψ̄ þ γ,
despite the α suppression, could be as important as the
leading order process.
In order to deal properly with the infrared divergencies

that come with these radiative corrections, we compute the
cross section following the prescription by Fadin and
Kuraev [16]. The final result we find is shown by the
dashed purple lines in Fig. 2. At low dark photon masses
the bound computed with the inclusion of the QED
corrections is better than the one without. This is an
indication that the phase space enhancement overcomes
the suppression by powers of α. At higher dark photon
masses we enter the regime where the available phase space
is limited by the Fermi-Dirac distributions of the electrons
and positrons and the QED-corrected result is not dominant
anymore. Trapping considerations, which we discuss in the
next section, allow us to set bounds only in the high dark
photon mass region (below the red line in the figure); thus

the region we can exclude with the simple cooling argu-
ment is the one between the red and the purple lines.
Curiously the lines (red, green and purple) intersect exactly
at one point in our plot on the right of Fig. 2 when we use
Tc ¼ 30 MeV. This is just a numerical coincidence, which
does not occur in the left plot, where we use Tc ¼ 35 MeV.

IV. TRAPPING

A. Diffusive trapping

The cooling constraint derived in the previous section
applies only if the produced dark particles free stream out
of the supernova. To determine whether or not this is the
case we consider their mean free path

λψ ¼ 1

neσψe→ψe
;

where ne ¼ 8.7 × 1043 m−3 [14] is the number density of
target electrons in the supernova and σψe→ψe is the cross
section for the scattering of dark fermion on electron, which
is related via crossing symmetry to the one for the
production process eþ þ e− → ψ̄ þ ψ . We use the optical
depth criterion [14] Z

Rc

r0

dr
λψ

≤
2

3
(4.1)

to find if dark particles produced at r0 free stream out of the
supernova. Most of the ψ’s are produced in the outermost

T  = 35 MeVc

1 5 10 50 100 500 1000
10 18

10 17

10 16

10 15

10 14

10 13

10 12

m AD MeV

2

T  = 30 MeVc

1 5 10 50 100 500 1000
10 18

10 17

10 16

10 15

10 14

10 13

10 12

m AD MeV

2

FIG. 2 (color online). Left: The blue (solid lower) line is from the cooling constraint of Eq. (1.1), while the dashed lines are obtained
with the simpler Raffelt criterion of Eq. (1.2), setting Tc ¼ 35 MeV for the supernova temperature, using the leading order cross section
of Eq. (3.7) (green, lower curve) and including the QED radiative corrections (purple, higher curve). Here αD ¼ 10−2 but note that the
cooling constraint is mostly unaffected by the value of the dark fine structure constant. The dark sector particle mass has to satisfy
mψ < 1

2
mAD

as explained in the text. The excluded region is above the purple dashed line and below the red line (solid, from bottom-left
to top-right), which corresponds to the trapping constraint of Eq. (4.1). Right: We use the same color code but we set Tc ¼ 30 MeV and
as a result the curves from the cooling constraint are shifted slightly upward.

DREINER et al. PHYSICAL REVIEW D 89, 105015 (2014)

105015-4



10% of the star [6]; thus we set r0 ¼ 0.9Rc. The resulting
constraint is shown as a red line in Fig. 2 for αD ¼ 10−2. In
the region above such a line the dark particles are trapped
and the simple cooling argument cannot be applied. In
determining the mean free path it is necessary in principle
to include the effects of scattering off of nucleons. In the
case of protons, the cross section for ψp → ψp is obtained
from σψe→ψe by replacing the electron mass with the
proton mass. We have computed this contribution and
found that the effect on trapping is negligible compared to
ψe → ψe. Since the dark photon couples to neutrons even
more weakly than to protons we can safely neglect the
process ψn → ψn.

B. Gravitational trapping

Dark sector particles can also be gravitationally trapped
in SN. Again we follow [6] who showed that relativistic
particles almost always escape SN while nonrelativistic
particles are not gravitationally trapped if their mass is
smaller than about 285MeV. Since we are interested in dark
sector particles with masses between 0 and 100 MeV, the
trapping due to gravity is of no consequence.

V. RESULTS AND CONCLUSIONS

It is interesting to compare the SN constraints on the dark
sector parameter space with other constraints, as well as
experiments designed to probe such models. Figure 3
shows the SN constraints which are valid for dark sector
particles with masses less than 1=2mAD

, thus of the order of
Oð1–100 MeVÞ, as well as the WD constraints obtained in
[2] which are valid for masses of a few tens of keV. The SN
constraints coming from models where light dark sector
particles do not exist [17] are also shown in green and
labeled SN(w/o). Figure 3 also shows different excluded
regions (shaded) of the parameter space as well as regions
(curves) that will be explored by future experiments
[18,19]. The experiments include beam dump experiments
at SLAC: E137, E141 and E774 [20] as well as the beam
dump experiment U70 [21]. eþe− colliding experiments
like BABAR [18,22] and KLOE [23] are also shown.1

Several fixed-target experiments including APEX [26],
DarkLight [27], HPS [28], MAMI [29] and VEPP-3 [30]
are presented. Finally, Fig. 3 shows electron (ae) and muon
(aμ) anomalous magnetic moment measurements which
constrain the parameter space [31].
From Fig. 3 one can see that the SN constraints of [17]

and the SN constraints with dark sectors obtained here are
in good agreement and complementary. It is interesting to
see that the constraints on dark forces with dark sectors
coming from SN are not as strong as could have been

expected from the analogous constraint obtained with the
help of WDs. The main reason comes from trapping which
is significant in SN. However one should keep in mind that
even in the trapping regime there might be constraints when
considering the full SN simulation.
Thus, although the constraints on dark forces with dark

sectors obtained fromWDs are interesting, they suffer from
the lightness of the dark sector particles. On the other hand,
the SN constraints allow one to probe the dark sector
parameter space with masses of the order of a few hundreds
of MeV but are rather weak due to trapping.
The next step is to consider constraints from the nucleon

bremsstrahlung process N þ N → N þ N þ ψ̄ þ ψ , which

FIG. 3 (color online). The red shaded regions are excluded by
SN cooling for αD ¼ 10−1 (loosely dotted lines), αD ¼ 10−2

(dotted lines) and αD ¼ 10−3 (densely dotted lines) respectively.
SN trapping constraints forbid the exclusion of regions with
larger mixings. For experiments, which usually assume the dark
photon decay is predominantly into the SM, shaded regions
correspond to completed direct searches while curves show future
reach. For the electron and muon anomalous magnetic moments,
shaded regions are excluded by measurements. The blue shaded
regions (diagonal bands) are excluded by WD cooling arguments
in analogy to SN constraints. The reader is referred to the text for
more details.

1The KLOE-2 Collaboration presented updated results [24]
that represent a slight improvement compared to those in
Ref. [23]. Comparable bounds are also found by the WASA-
at-COSY Collaboration [25].
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could be as important as the ones found in this paper and
could possibly enlarge the region of parameter space
excluded for these models. A study of such constraints
will be discussed in a forthcoming publication.
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APPENDIX: KINETIC MIXING

1. From gauge to mass eigenstates

We add to the SM gauge group an extra Uð1ÞD, which
mixes with the hypercharge Uð1ÞY . The relevant terms in
the Lagrangian are

L ⊃ −
1

4
ðBμνÞ2 −

1

4
ðW3

μνÞ2 −
1

4
ðF0D

μνÞ2 −
sin εY
2

BμνF0μν
D þðDμHÞ†ðDμHÞ þ 1

2
m2

A0A02
DþiL̄γμDμLþ iēRγμDμeR

þ iQ̄γμDμQþ iūRγμDμuR þ id̄RγμDμdR þgDJDμA0μ
D; (A1)

where

W3
μν ¼ ∂μW3

ν − ∂νW3
μ; (A2)

Bμν ¼ ∂μBν − ∂νBμ; (A3)

F0D
μν ¼ ∂μA0D

ν − ∂νA0D
μ ; (A4)

with Bμ the hypercharge gauge boson, W3
μ the third of the

Wa
μ’s SUð2ÞL gauge bosons (a ¼ 1, 2, 3), and A0D

μ the
Uð1ÞD gauge boson. The prime here denotes the gauge
eigenstate. Note thatUð1ÞD is broken and A0D

μ is massive.H
is the SM Higgs doublet,

DμH ⊃
�
∂μ þ ig2W3

μ
σ3

2
− i

1

2
g1Bμ

�
H: (A5)

In (A5) and (A2) we have dropped terms with W1
μ and W2

μ

that are irrelevant to the rest of the discussion here. When
the Higgs gets a vacuum expectation value (VEV) v, the
first term in Eq. (A1) gives us mass terms for Bμ and W3

μ.
After rotating to mass eigenstates we will read out the
currents from the terms in (A1). In (A1) the dark current
can include fermions and/or bosons

JDμ ¼ ½Qψ ψ̄γμψ þQϕiðϕ†ð∂μϕÞ − ð∂μϕ
†ÞϕÞ�: (A6)

In this sector, gD is the gauge coupling constant, with the
corresponding αD ≡ g2D

4π2
, ψ and ϕ are particles with no SM

quantum numbers, but charged under Uð1ÞD with charges
Qψ ;ϕ.

We perform two field rotations:

0
B@

Bμ

W3
μ

A0D
μ

1
CA →

0
B@

~Bμ

W3
μ

~AD
μ

1
CA →

0
B@

Aμ

ðAD
NCÞμ

ð ~ZNCÞμ

1
CA: (A7)

With the first one we go from the gauge eigenstates to the
fields ~Bμ and ~AD

μ that diagonalize the kinetic terms, and
with the second one we go to the mass eigenstates: Aμ is the
photon (massless), ð ~ZNCÞμ is almost the SM Z boson, and
ðAD

NCÞμ is what we call the dark photon. The subscript NC
stands for noncanonical, in the sense that these fields do not
have canonical kinetic terms, due to the nonunitarity of the
first rotation, Eq. (A8). We will have to rescale these fields
at the end in order to have them canonically normalized.
Let us begin with the first rotation

0
B@

Bμ

W3
μ

A0D
μ

1
CA ¼

0
B@

1 0 − tan εY
0 1 0

0 0 1
cos εY

1
CA
0
B@

~Bμ

W3
μ

~AD
μ

1
CA: (A8)

This gets rid of the kinetic mixing − sin εY
2

BμνF0μν
D ; the

kinetic terms are diagonal now. Equation (A1) in terms of
~Bμ and ~AD

μ reads

L ⊃ −
1

4
ð ~BμνÞ2 −

1

4
ðW3

μνÞ2 −
1

4
ð ~FD

μνÞ2: (A9)

Next we substitute Bμ ¼ ~Bμ − tan εY ~A
D
μ in Eq. (A5).

After the Higgs gets a VEV we can read off the following
mass matrix from (A1):
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ð ~Bμ W3
μ

~AD
μ Þ v

2

2

0
BBB@

1
4
g21 − 1

4
g1g2 − 1

4
g1 tan εY

− 1
4
g1g2

1
4
g22

1
4
g1g2 tan εY

− 1
4
g21 tan εY

1
4
g1g2 tan εY

1
4
g21tan

2εY þ m2

A0
v2cos2εY

1
CCCA
�

~Bμ Wμ
3

~Aμ
D

�
: (A10)

The mass matrix has determinant zero, as expected due to the residual Uð1ÞEM invariance, so the photon is massless. The
other two eigenvalues have a complicated form. With the definitions

g1
g2

≡ sW
cW

; (A11)

m2
Z ≡ 1

4
v2ðg21 þ g22Þ; (A12)

where sW and cW are the sine and cosine, respectively, of the weak mixing angle angle θW , they read

m2
~ZNC

¼ 1

4
sec2εYð2m2

A0 þ 2m2
Zðs2W þ c2Wcos

2εYÞ
þ

ffiffiffi
2

p
½2m4

A0 þm2
Zð2s2W cosð2εYÞðm2

Zc
2
W − 2m2

A0 Þ − 4m2
A0c2Wcos

2εY −m2
Zð1 − 2s2WÞ þ 2m2

Zc
4
Wcos

4εYÞ þm4
Z�1=2Þ;
(A13)

m2
AD
NC

¼ 1

4
sec2εYð2m2

A0 þ 2m2
Zðs2W þ c2Wcos

2εYÞ
−

ffiffiffi
2

p
½2m4

A0 þm2
Zð2s2W cosð2εYÞðm2

Zc
2
W − 2m2

A0 Þ − 4m2
A0c2Wcos

2εY −m2
Zð1 − 2s2WÞ þ 2m2

Zc
4
Wcos

4εYÞ þm4
Z�1=2Þ:
(A14)

Expanding the result for εY ≪ 1 we find

m2
~ZNC

¼ m2
Z

�
1þ ε2Y

m2
Zs

2
W

m2
Z −m2

A0

�
; (A15)

m2
AD
NC

¼ m2
A0

�
1þ ε2Y

m2
Zc

2
W −m2

A0

m2
Z −m2

A0

�
: (A16)

From now on all the expressions will be given as expansions up to order ε2Y. The rotation matrix between mass and gauge
eigenstates reads

0
B@

~Bμ

W3
μ

~AD
μ

1
CA ¼ R

0
B@

Aμ

ðAD
NCÞμ

ð ~ZNCÞμ

1
CA; R ¼

0
BBBBB@

cW εY
m2

Zs
2
W

m2
Z−m

2

A0
m2

ZsW
m4

A0 ðε
2
Y−1Þ−ε2Ym2

A0m
2
Zc

2
Wþ2m2

A0m
2
Zþε2Ym

4
Zs

2
W−m4

Z

ðm2
Z−m

2

A0 Þ
3

sW −εY
m2

ZsWcW
m2

Z−m
2

A0
−m2

ZcW
m4

A0 ðε
2
Y−1Þ−ε2Ym2

A0m
2
Zc

2
Wþ2m2

A0m
2
Zþε2Ym

4
Zs

2
W−m

4
Z

ðm2
Z−m

2

A0 Þ
3

0 1 − ε2Y
m4

Zs
2
W

ðm2
Z−m

2

A0 Þ
2 εY

m4
ZsW

ðm2
Z−m

2

A0 Þ
2

1
CCCCCA: (A17)

The mass eigenstates, Aμ; ðAD
NCÞμ; ð ~ZNCÞμ, have diagonal kinetic terms, but they are not canonically normalized, due to the

nonunitarity of the first field transformation (A8). Thus, we perform the following rescalings:

ðAD
NCÞμ ¼

�
1 −

ε2Ym
4
Z

2ðm2
Z −m2

A0 Þ2 þ
ε2Ym

4
Zð2c2W − 1Þ

2ðm2
Z −m2

A0 Þ2
�−1=2

AD
μ ;

ð ~ZNCÞμ ¼
�

m4
Z

ðm2
Z −m2

A0 Þ2 −
ε2Ym

4
Zð4m4

A0 − 2m2
A0m2

Z þm4
ZÞ

2ðm2
Z −m2

A0 Þ4 þ ε2Ym
6
Zð2c2W − 1Þð2m2

A0 þm2
ZÞ

2ðm2
Z −m2

A0 Þ4
�−1=2

~Zμ; (A18)
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that to order ε2Y do not affect the mass eigenvalues. For the
canonical fields, AD

μ and ~Zμ, we thus have m ~Z ¼ m ~ZNC
and

mAD
¼ mAD

NC
. Note that at lowest order the mass eigenval-

ues correspond to the parameters mA0 and mZ.

2. Couplings of the gauge fields to the currents

Now we are ready to look at the currents. The covariant
derivatives in (A1) can be written explicitly as

DμL ¼
�
∂μ þ ig2W3

μ
σ3

2
− ig1

1

2
Bμ

�
L; (A19)

DμeR ¼ ð∂μ − ig1BμÞeR; (A20)

DμQ ¼
�
∂μ þ ig2W3

μ
σ3

2
þ ig1

1

6
Bμ

�
Q; (A21)

DμuR ¼
�
∂μ þ i

2

3
g1Bμ

�
uR; (A22)

DμdR ¼
�
∂μ − i

1

3
g1Bμ

�
dR: (A23)

We have to express W3
μ and Bμ in terms of the mass

eigenstates Aμ, ~Zμ and AD
μ , using the results derived above.

After some algebra, using g2 ¼ e
sW

and g1 ¼ e
cW
, with e the

electric charge, we find the following couplings of the
fields to the currents:

AD
μ ðgAν ν̄LγμνL þ gAeLēLγ

μeL þ gAeRēRγ
μeR þ gAuLūLγ

μuL

þ gAuRūRγ
μuR þ gAdLd̄Lγ

μdL þ gAdRd̄Rγ
μdRþgADJ

DμÞ;
(A24)

~ZμðgZν ν̄LγμνL þ gZeLēLγ
μeL þ gZeRēRγ

μeRþgZuLūLγ
μuL

þ gZuRūRγ
μuR þ gZdLd̄Lγ

μdL þ gZdRd̄Rγ
μdR þgZDJ

DμÞ;
(A25)

with

gAν ¼ eεY
m2

A0

2cWðm2
A0 −m2

ZÞ
; (A26)

gAeL ¼ eεY
m2

A0 − 2m2
Zc

2
W

2ðm2
A0 −m2

ZÞ
; (A27)

gAeR ¼ eεY
1

cW

�
1 −

m2
Zs

2
W

m2
Z −m2

A0

�
; (A28)

gAuL ¼ −eεY
m2

A0 − 4m2
Zc

2
W

6ðm2
A0 −m2

ZÞ
; (A29)

gAuR ¼ −
2

3
eεY

1

cW

�
1 −

m2
Zs

2
W

m2
Z −m2

A0

�
; (A30)

gAdL ¼ −eεY
m2

A0 þ 2m2
Zc

2
W

6ðm2
A0 −m2

ZÞ
; (A31)

gAuR ¼ 1

3
eεY

1

cW

�
1 −

m2
Zs

2
W

m2
Z −m2

A0

�
; (A32)

gAD ¼ −
ffiffiffiffiffiffiffiffiffiffiffi
4παD

p �
1þ ε2Y

m4
A0 − 2m2

A0m2
Z þm4

Zc
2
W

2ðm2
A0 −m2

ZÞ2
�

(A33)

and

gZν ¼ e
cWsW

1

8ðm2
A0 −m2

ZÞ2
½4m4

A0 − ε2Ym
2
Zðm2

Z − 2m2
A0 Þ

× cosð2θWÞ−2m2
A0m2

Zð4þ ε2YÞ þm4
Zð4þ ε2YÞ�; (A34)

gZeL¼
−e

cWsW

1

16ðm2
A0 −m2

ZÞ2
× ½ε2Ym2

Zð4m2
A0 þm2

Z cosð4θWÞ−3m2
ZÞ

þ2cosð2θWÞð4m4
A0 −2m2

A0m2
Zð4þϵ2YÞþm4

Zð4þε2YÞÞ�;
(A35)

gZeR ¼ esW
cW

�
1þ ε2Ym

2
Zð3m2

Z þm2
Z cosð2θWÞ − 4m2

A0 Þ
4ðm2

A0 −m2
ZÞ2

�
;

(A36)

gZuL ¼ e
1

12ðm2
A0 −m2

ZÞ2
½6 cotθWðm2

A0 −m2
ZÞ2

− tanθWð2m4
A0 − 2m2

A0m2
Zðε2Y þ 2Þ þ 2m4

Zε
2
Y cosð2θWÞ

þm4
Zð3ε2Y þ 2ÞÞ�; (A37)

gZuR ¼ −
1

6
e tan θW

×

�
4þ ε2Ym

2
Zð3m2

Z þm2
Z cosð2θWÞ − 4m2

A0 Þ
ðm2

A0 −m2
ZÞ2

�
;

(A38)

gZdL ¼ −e
1

12ðm2
A0 −m2

ZÞ2
½6 cot θWðm2

A0 −m2
Z Þ2

− tan θWðε2Ym4
Z cosð2θWÞ

− 2ðm4
A0 −m2

A0m2
Zðε2Y þ 2Þ þm4

ZÞÞ�; (A39)

DREINER et al. PHYSICAL REVIEW D 89, 105015 (2014)

105015-8



gZdR ¼ 1

12
e tan θW

×

�
4þ ε2Ym

2
Zð3m2

Z þm2
Z cosð2θWÞ − 4m2

A0 Þ
ðm2

A0 −m2
ZÞ2

�
;

(A40)

gZD ¼ εY
ffiffiffiffiffiffiffiffiffiffiffi
4παD

p m2
ZsW

m2
A0 −m2

Z
: (A41)

We have not written the couplings of the SM photon,
since they are unchanged.
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