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Abstract
We give an introduction to massive spin-2 theories (including massive gravity)
and the problem of their non-linear completion. We review the Boulware-
Deser ghost problem and two ways to circumvent classic no-go theorems. In
turn, massive spin-2 theories are not uniquely defined. In the case of truncated
theories, we show that the Boulware-Deser ghost may only be avoided if the
derivative structure of the theory is not tuned to be Einsteinian.

1 Introduction
If low energy physics is described by the language of effective field theory (EFT), an important question
to ask is what (interacting) degrees of freedom can in principle be used on four-dimensional Minkowski
space.

In a Poincaré invariant theory, such as an EFT constructed on a four-dimensional flat space, differ-
ent degrees of freedom as well as their corresponding one-particle states may be labelled by their mass
and spin, which are Casimir operators of the Poincaré group.

This classification is of course most useful when the one-particle states under consideration are
eigenstates of the full Hamiltonian. However, in almost all cases diagonalization of the interacting Hamil-
tonian is extremely involved. Therefore, one introduces the concept of asymptotic states, eigenstates of
the quadratic part of the Hamiltonian. This is due to the fact that a typical measurement involves a
scattering experiment where the experimental apparatus may only monitor the in and out states far away
from the scattering interactions. This brings about the concept of the S-matrix

P (in, out) = �in|S|out� , (1)

where P ≤ 1 is the probability that the in asymptotic (far away from the scattering process) state scatters
into the out asymptotic state where, importantly, in and out states are eigenstates of the free Hamiltonian.
In almost all cases, these states are also eigenstates of the Casimir operators of the Poincaré group, thus
allowing the above classification on the asymptotic states. Here, we will follow this trend.

Fundamental theories must have that for all processes P ≤ 1. This condition is what is commonly
called the unitarity bound. In an EFT instead, the considered action is only an approximation to the full
quantum effective action; it corresponds to the first terms of a perturbative expansion in terms of the
dimensionless parameters E/Λs and φ/Λs, where E is the energy, φ represents any field content and Λs

is the so-called cut-off or strong coupling scale. Of course, if Λs → ∞, the theory is valid up to any
energy scale and it is called renormalizable.

Whenever the perturbative expansion breaks down, for sufficiently high transfer-energies E > Λs,
one obtains P > 1. In this case, if one insists on this theory still being described in terms of a perturbative
expansion, it must be rewritten in terms of new degrees of freedom materializing at an energy scale
E > Λs. This is what is commonly called a Wilsonian UV completion.
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Massive spin-2 theories

Theories with massive and massless spin 0 and spin 1/2 fields together with massless spin 1 fields
can be constructed without violation of unitary. This is, in fact, the content of the Standard Model of
particle physics.

Any other degrees of freedom will inexorably violate unitarity at some energy scale (non-renormalizable
theories). If it was not for gravity, a massless spin 2 particle, we could just ignore these other degrees of
freedom. However, as gravitational interactions do exist, one may ask whether other non-renormalizable
degrees of freedom also exist up to energy scales that are not experimentally probed yet.

A self-interacting massive vector field with mass m has a typical strong coupling scale Λ ∼ m.
The violation of unitarity is due to the fact that the longitudinal mode of the vector, which is non-physical
in the massless case, has a polarization �� ∝ �k

m . Thus, the larger is the mass, the later we need to postpone
the completion necessary to restore unitarity.

This can be understood by (schematically) considering the interaction in Fourier space

�
d4xAµJ

µ ∼
�

dt d3kJµ;(k)

3�

λ=1

�µk,λAk , (2)

where the sum extends over the three polarizations defined by the conditions

kµ�
µ
k,λ = 0 ,

�µ;k,λ�
µ
k,λ = 1 . (3)

The spatial part of the longitudinal polarization is defined to be parallel to the three-momentum, i.e.
�ik,3 ∝ ki. Explicitly, it takes on the form

�µk,3 =

� |k|
m

,
k

|k|
Ek

m

�
, (4)

thus giving rise to a vertex
Jµ;(k)�

µ
k,3Ak (5)

which becomes strong at energies of order m.

Note that for large |k|,

�µk,3 ≈
1

m
kµ . (6)

This signals a straightforward way to avoid the violation of unitarity. If the source Jµ is conserved,
∂µJ

µ = 0, in the large momentum limit Jµ;(k)�
µ
k,3 → 0.

We can understand this effect in a different way. We can construct one particle states by defining
creation and annihilation operators aλk, generating the eigenstates of the non-interacting Hamiltonian.
We write

Aλ
µ =

�
d3k√
2Ek

�λµ(k)
�
aλke

ik·x + a†λk e−ik·x
�

. (7)

At the same time we can define a new scalar field φ as

φ =

�
d3k√
2Ek

��
ia

(3)
k

�
eik·x +

�
ia

(3)
k

�†
e−ik·x

�
. (8)

On an asymptotic state |k� of four-momentum kµ one has

∂µφ|k� =
1√
2Ek

kµ

�
a
(3)
k eik·x + a

†(3)
k e−ik·x

�
|k� . (9)
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Henceforth
�
A(3)

µ − 1

m
∂µφ

�
|k� ∼

k�m

m

|k| k̂µa
(3)
k |k� →

k→∞
0 . (10)

Here, k̂µ is the unit vector pointing in the direction of k. We thus see that the longitudinal polarization
in the high energy limit is well described by a scalar field up to corrections O

�
m
k

�
. This is the essence

of the Stückelberg decomposition of the massive vector. There, the field is decomposed into a massless
vector and a scalar where the scalar is nothing else than the re-incarnation of the gauge direction of the
massless case.

To be precise, in the massless case the action is invariant under the gauge transformation

Aµ → Aµ +
∂µφ

m
, (11)

for any φ and some mass scale m. In the massive case however φ represents the extra polarization at
high energies as in (10). In this case, we can decompose

Aµ = Ãµ +
∂µφ

m
. (12)

As a consequence, Aµ, and hence any action constructed from it, is invariant under transformations of Ãµ

of the type (11) (U(1)) if the change is absorbed by a shift in the scalar φ. We see that that the interaction
of the scalar degrees of freedom to external conserved sources Jµ is absent:

�
d4xAµJ

µ =

�
d4xÃµJ

µ +
1

m
boundary . (13)

Thus a massive linearly interacting vector can exist without unitarity problems. The would be strong
coupling scale appears in fact only in the boundary term.

The question is now whether interacting higher spins s ≥ 3/2 can be consistently constructed.
First of all, one notes that, because of the non-trivial tensorial structure of s ≥ 3/2 fields, all interactions
must be unitarity violating [1]. Furthermore, in the case of massive fields, the extra longitudinal polar-
ization does not decouple in the massless limit even if the field interacts with a conserved source. This is
simply due to the fact that these extra polarizations always carry contributions which are not proportional
to the four-momentum even in the high-energy limit.

Let us take as an example a massive spin 2 field hαβ . Similar to the massive vector field discussed
above, the properties of this theory can also be investigated through a helicity or linear Stückelberg
decomposition.

The decomposition of the field into helicity eigenmodes is in complete analogy to the massive
vector. For high energies the helicity-1 component (or vectorial polarization) can be described by the
derivative of a Lorentz vector (Aµ), whereas the helicity-0 component (or longitudinal polarization) can
be described by a scalar field χ [2,3]. The helicity-2 component (the transverse polarization) is described
by a tensor h̃µν .

One then decomposes the massive spin-2 field as

hµν = h̃µν +
∂(µAν)

m
+

1

3

�
∂µ∂νχ

m2
+

1

2
ηµνχ

�
. (14)

Here we used the symmetrization convention a(µbν) =
1
2(aµbν + aνbµ).

Similar to the massive vector, interactions of the longitudinal polarization violate unitarity. The
coupling to the energy momentum tensor is of the form (recall that the energy momentum tensor must
be of dimension 4)

1

Λs

�
d4xhαβT

αβ =
1

6Λs

�
d4xχT + . . . , (15)
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Massive spin-2 theories

and violates unitarity at the scale Λs.

If we were instead considering a non-conserved source Jµν of mass dimension d ≥ 2 1 we would
have in addition the interaction

�
d4xhαβJ

αβ =
Λ3−d

3m2

�
d4x∂µνχJ̃

µν + . . . , (16)

where Λ is the mass scale of the source J and J̃ = J/Λ3−d is the dimensionless source. This interaction
creates a strong coupling scale Λs ≡ ( 3m2

Λ3−d )
1

d−1 proportional to the mass m.

What we thus see is that theories describing interactions of fields of spin s ≥ 3/2, as EFTs
on a Minkowski background, cannot be fundamental (unless free) and must be UV completed in the
Wilsonian sense if they are to be described in perturbation theory. For a different route to UV completion
see, e.g, [4–6].

A Poincaré invariant consistent theory of massless spin-2, at least at the lowest momentum expan-
sion, must be Einstein’s theory [7, 8]. Therefore, at least in the low momentum limit, a massless spin-2
theory is unique up to a strong coupling scale Λs. The question we would like to address is whether a
similar "uniqueness" theorem holds for a massive spin 2 at least up to a generic strong coupling scale Λs.
As we shall demonstrate, this is not the case.

2 Massive spin-2 without self-interactions
The action of a free massive spin-2 particle is given by what is commonly called the Fierz-Pauli action
and is unique [9].

Its construction can be understood most easily by considering the aforementioned helicity or
Stückelberg decomposition. Demanding the absence of higher derivatives, which signal the appearance
of new degrees of freedom, removes all arbitrariness in the action; only the Fierz-Pauli form allows for
this property. It is given by

S =

�
d4xL =

�
d4x

�
∂µh

µν∂νh− ∂µh
ρσ∂ρh

µ
σ +

1

2
∂µh

ρσ∂µhρσ − 1

2
∂µh∂

µh

−1

2
m2(hµνhµν − h2)

�
, (17)

where h ≡ hµµ.

Inserting (14) into the quadratic action (17) leads to

LPF = h̃µνEρσ
µν h̃ρσ − 1

8
FµνF

µν +
1

12
χ�χ− 1

2
m2
�
h̃µν h̃µν − h̃2

�
+

1

6
m2χ2

+
1

2
m2χh̃+m

�
h̃∂µA

µ − h̃µν∂µAν

�
+

m

2
χ∂µA

µ , (18)

where h̃µνEρσ
µν h̃ρσ = ∂µh̃

µν∂ν h̃−∂µh̃
ρσ∂ρh̃

µ
σ+

1
2∂µh̃

ρσ∂µh̃ρσ− 1
2∂µh̃∂

µh̃ describes the linear part of the
Einstein action. For k2 � m2, the action becomes diagonal in field space. The individual kinetic terms
for h̃µν and Aµ correspond to massless linearized Einstein and Maxwell theory, respectively. Thus, in the
limit where the mixing of the individual fields can be neglected, h̃µν carries precisely the two helicity-2,
Aµ the two helicity-1 and χ the single helicity-0 degrees of freedom.

Note that requiring the diagonalization of the kinetic term fixes the relative factor of 1/2 between
the χ-terms in (14). Similarly, the factors of m in (14) normalize the kinetic terms. The coefficient of
the kinetic term for χ is determined by the coupling of hµν to sources:

�
d4xTµνhµν . The propagator of

a massive spin-2 field hµν between two conserved sources Tµν and τµν is given by

1For dimension d < 2 we just have kinetic or mass mixing.
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TµνDµν,ρστ
ρσ = Tµν

�
ηµρηνσ + ηµσηνρ − 2

3ηµνηρσ
�

p2 −m2
τρσ

= Tµν

�
ηµρηνσ + ηµσηνρ − 1

2ηµνηρσ
�

p2 −m2
τρσ + Tµν 1

6

ηµνηρσ
p2 −m2

τρσ . (19)

The first term in the last line corresponds to the helicity-2 state h̃µν . The second term is an additional
interaction from the extra scalar degree of freedom χ and fixes the overall normalization of it in our
helicity decomposition. By considering non-conserved sources one can accordingly fix the normalization
of Aµ in (14).

For m = 0, the action (17) describes linearized Einstein gravity and is invariant under linearized
diffeomorphisms,

hµν → hµν +
1

2
(∂µξν + ∂νξµ) , (20)

where ξµ(x) defines the linear coordinate transformation. The gauge redundancy fixes the relative coeffi-
cients of the two-derivative terms. Since both vector and scalar appear with derivatives in the Stückelberg
decomposition, the only way for their equations of motion to be second order is for these derivative terms
to drop out from the two-derivative kinetic term for hµν . In other words, we impose on the kinetic part
of the Lagrangian the condition

L(hµν) = L(hµν + ∂(µÃν) + ∂µν χ̃) + boundaries , (21)

where Ãµ and χ̃ are respectively a vector and a scalar. This is equivalent to the gauge invariance (20) for
a specific ξµ.

The uniqueness of said structure can also be understood from a Hamiltonian analysis. Let us first
examine the kinetic term. After having integrated by parts such that h00 and h0i do not appear with time
derivatives, the canonical momenta of the Lagrangian (17) are

πij =
∂L
∂ḣij

= ḣij − ḣiiδij − 2∂(ihj)0. (22)

The other canonical momenta (π00 and π0i) are zero due to the integration by parts. Inverting (22), one
obtains

ḣij = πij − πkkδij + 2∂(ihj)0. (23)

Performing the Legendre transformation and rewriting the Lagrangian in terms of the canonical momenta
yields

L = πij ḣij −H+ 2h0i∂jπij + h00(∇2hii − ∂i∂jhij) ,

where H =
1

2
π2
ij −

1

4
π2
ii +

1

2
∂khij∂khij − ∂ihjk∂jhik + ∂ihij∂jhkk −

1

2
∂ihjj∂ihkk.

(24)

The canonical momenta for h00 and h0i are zero and the variables themselves appear only linearly
in terms without time-derivatives. They are Lagrange multipliers which give the constraint equations
∇2hii − ∂i∂jhij = 0 and ∂jπij = 0. All these constraints commute, in the sense of Poisson brackets,
with each other. Hence, the constraints are first class (for an introduction to constrained systems see for
example [10, 11]). This is characteristic for theories with a gauge symmetry. The constraints together
with the gauge transformations reduce the physical phase space to a four dimensional hypersurface,
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which is described by the canonical coordinates of the two physical polarizations of the massless spin-2
graviton and their conjugate momenta.

Adding a mass term to the analysis changes the Hamiltonian and the Lagrangian of (25) in the
following way

L = πij ḣij −H+m2h20i + 2h0i∂jπij + h00(∇2hii − ∂i∂jhij −m2hii) ,

where H =
1

2
π2
ij −

1

4
π2
ii +

1

2
∂khij∂khij − ∂ihjk∂jhik + ∂ihij∂jhkk

−1

2
∂ihjj∂ihkk +

1

2
(hijhij − h2ii). (25)

Note that the conjugate momenta are unchanged by the additional mass term. However, the structure
of the Lagrangian is different and h0i is no longer a Lagrange multiplier. Nevertheless, it is still non-
dynamical and its equation of motion yields the algebraic relation

h0i = − 1

m2
∂iπij . (26)

h00 still is a Lagrange multiplier and it enforces the constraint

∇2hii − ∂i∂jhij −m2hii = 0 (27)

which is now of second class. Requiring that the constraint is conserved in time, i.e. that it commutes
with the Hamiltonian, gives rise to a secondary constraint. Since h0i is determined by (26) and h00
gives two second class constraints (one primary and one secondary), the resulting physical phase space
is then ten dimensional describing the five physical polarizations of the massive spin-2 particle and their
conjugate momenta. Departing from the Fierz-Pauli mass term introduces nonlinearities in h00 and the
constraint which fixes the trace hii to zero is lost resulting in either a tachyonic or ghost-like sixth degree
of freedom [12, 13].

Let us briefly mention coupling to sources. Adding a source term to the Lagrangian (17) of the
form hµνT

µν does not change the linear constraint analysis. No matter whether the source is conserved,
∂µT

µν = 0, or not, the source coupling will only introduce h00 and h0i linearly and without time
derivatives and therefore it will not affect the number of constraints. Note that this holds true for any
linear coupling of hµν to sources.

3 Self-interacting theories
We now focus on the question of self-interactions in massive spin-2 theories. We address subtleties in
the construction and inquire whether uniqueness theorems can exist similar to the case of the Einstein
theory for a massless spin-2 field.

3.1 Boulware-Deser ghost
Boulware and Deser (BD) argued in [13] that simply introducing a mass term for the full nonlinear
theory of general relativity reintroduces the sixth degree of freedom which could be tuned away in the
Fierz-Pauli theory. Although this result turned out to be not generic, it is instructive to see their reasoning.

Let us first consider pure general relativity. Using the ADM formalism [14] in which a general
metric can be re-written as

ds2 = gαβdx
αdxβ = −N2dt2 + γij

�
dxi +N idt

� �
dxj +N jdt

�
, (28)
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where γij ≡ gij , N ≡ (−g00)−
1
2 (lapse), Ni ≡ g0i (shift). The full action reads (for simplicity we set

the Planck mass to one)

S =

�
d4x

√−g R =

�
d4x(πij γ̇ij −NR(0) −NiR

i − 2(πijNj −
1

2
πN i +N |i√γ)|j), (29)

All curvatures are functions of γij and πij , but do not depend on N or Ni. R is the four dimensional
Ricci scalar and −R(0) ≡ 3R + γ−

1
2 (12π

2 − πijπ
ij) and 3R is the three dimensional Ricci scalar with

respect to the metric γij . Ri = −2πij
|j , where the bar “|” denotes covariant differentiation with respect to

the spatial metric γij .

In the massless theory, N and Ni are Lagrange multiplier which enforce first class constraints on
the system, thereby eliminating four (and correspondingly eight phase space) degrees of freedom yielding
2 propagating helicities of the massless spin-2 particle. We now introduce the Minkowski background
by expanding

gαβ = ηαβ + hαβ , (30)

where ηαβ is the Minkowski metric and hαβ is a tensor on the flat background. Its indices are conse-
quently raised and lowered by the Minkowski metric. The inverse metric gαβ is given by an infinite
series of hαβ and can be obtained from gαµgµβ = δαµ . At linear order N = 1− 1

2h00 and Ni = h0i and
one recovers the result of the previous section. At nonlinear order, however,

N2 = (1− h00)− h0ih0jg
ij , (31)

whereas Ni remains unchanged.

The Fierz-Pauli mass term f = (hµνh
µν − h2) can nevertheless easily be expressed in terms of

Ni and the nonlinear N [13],

f = h2ij − h2ii − 2N2
i + 2hii(1−N2 −NiN

i). (32)

In contrast to the linear case, here N (which to linear order is equivalent to h00) appears quadratically in
the mass term although still appearing linearly in the full non-linear derivative (Einstein) structure of the
theory. Therefore now neither N nor Ni are Lagrange multipliers.

Thus, at the full non-linear level, the trace hii is no longer constrained since the constraint was
related to the fact that N was a Lagrange multiplier. Therefore, there are six degrees of freedom prop-
agating: The so-called Bouleware-Deser ghost propagates on top of the five degrees of freedom of the
Fierz-Pauli massive spin-2. We will see that this conclusion, although correct generically, can be avoided
for specific theories.

The simplest example is the free Fierz-Pauli theory discussed above. There, since the expansion
is truncated at the linear level we have that N = 1− 1

2h00 and the mass term in the Lagrangian is

f = h2ij − h2ii − 2N2
i + 2hii(1− 2N). (33)

Thus, as in the derivative part of the action (the linearized Einstein-Hilbert Lagrangian), N only appears
linearly. In other words, the lapse is here again a Lagrange multiplier, as in General Relativity.

The philosophy of avoiding the BD ghost will be the same for interacting theories: we will search
for theories that can be written in terms of a linear lapse function acting as a Lagrange multiplier. In
order to do that and to avoid the BD conclusions, we will have to either deform the derivative structure
of the massless theory and/or the non-derivative structure.
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3.2 Cubic interactions for a massive spin-2 particle

We will start by considering the simplest possible interaction, a cubic interaction as described in [2].

There, the idea was to consider a cubic interaction that keeps the structure of the linear Fierz-
Pauli action. In other words, by deviating from the Einsteinian derivative structure at the cubic order,
N = 1 − 1

2h00 remains a Lagrange multiplier also in the nonlinear theory. Non-derivative interactions
can then be constructed that preserve this property.

This construction can straightforwardly be achieved by considering the most general cubic inter-
action with at most two derivatives on hµν . Demanding linearity in h00 fixes all coefficients besides
respective prefactors of the zero- and two-derivative terms.

The unique structure is found to be [2]

L(3) =
k1
Λ7

�
hαβ∂αh

µν∂βhµν − hαβ∂αh∂βh+ 4hαβ∂βh∂µh
µ
α − 2hµν∂αh∂

αhµν + h∂µh∂
µh

−3hµν∂αh
α
µ∂βh

β
ν − 4hµν∂νh

α
µ∂βh

β
α + 3h∂µh

µν∂αh
α
ν + 2hµν∂αhµν∂βh

β
α

−2h∂αh∂βh
αβ + hµν∂αhνβ∂

βhαµ + 2hµν∂βhνα∂
βhαµ − h∂αhµν∂

νhµα − h∂αh
µν∂αhµν

�

+
k2
Λ5

�
2hµνh

ν
ρh

ρ
µ − 3hhµνh

µν + h3
�
. (34)

In terms of the components of hµν , for example, the non-derivative part is given by

L =
3k2
2

h00(h
2
ii − h2ij) + terms independent on h00. (35)

Hence, h00 and h0i appear in the same way as in the free action. We do not display the explicit expression
for the derivative part because the expression is rather lengthy. Still, one can easily check that also there
h0i remains non-dynamical and can be solved for algebraically, yielding 3 constraints on hµν . Further-
more, h00 appears as a Lagrange multiplier in (34) and accordingly eliminates another two degrees of
freedom [2].

The fact that the action (34) propagates five degrees of freedom can also be checked in the helicity
decomposition (14). Inserting the decomposition into (34) reveals that the corresponding equations of
motion are free of higher time derivatives on the helicity components.

Indeed, this is in direct correspondence to the Hamiltonian analysis outlined above. The com-
ponents h00 and h0i are exactly those components of hµν which can introduce higher time derivatives
on the equations of motion as, in terms of helicities, these correspond to ∂2

0χ, ∂0A0, ∂0∂iχ and ∂0Ai.
Therefore, any action free of higher derivatives on the helicities, requires h00 to be a Lagrange multiplier
and h0i to be nondynamical.

Up to boundary terms, one can rewrite the above Lagrangian in a compact form [15] as follows

L(3) = k1�
α1...α4�β1...β4∂α1∂β1hα2β2 . . . hα4β4 + k2�

α1...α3σ4�β1...β3
σ4

hα1β1 . . . hα3β3 . (36)

�α1...α4 denotes the totally antisymmetric four-tensor in four dimension. From its antisymmetry proper-
ties it is then simple to conclude that the constraint structure of the free Lagrangian is preserved. If there
is one h00 in (36), then there cannot be any other factor of it in that term. Therefore, h00 can only appear
as a Lagrange multiplier. Terms with h0i can carry at most one time derivative and one power of h0i
or only spatial derivatives and at most two powers of h0i; all other terms have spatial indices. Variation
with respect to h0i, thus, leads to a constraint equation for itself which defines it algebraically in terms
of the components hij .
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3.3 Resummed theories
The second possible route to find nonlinear extensions of the Fierz-Pauli theory is to retain the Einsteinian
derivative structure and construct a nonlinear extension of the mass term. In this case one searches for
a theory preserving a similar constraint structure of the lapse for the full Einstein theory. This approach
was taken in [16].

What we learned from the analysis of BD is that the lapse N cannot be a lagrange multiplier if the
the two following assumptions co-exist

– The derivative structure is Einsteinian
– N and N i are independent variables.

As we are interested in the class of theories that fulfill the former assumption, one needs to relax the
latter, thereby keeping N as a Lagrangian multiplier such to eliminate the BD ghost. The theory with
this property has been found by [16], the so-called dRGT massive gravity.

In other words, the theory of [16] is a deformation of General Relativity with non-derivative term
such that [17]

– The derivative structure is Einsteinian.
– N i can be fully traded by a new variable ni(N,N i, hij).
– After the field redefinition, N only appears linearly in the action and without derivatives.

The second condition forces the redefinition to be of type

N i =
�
δij +NDi

j

�
nj , (37)

where Di
j is an appropriate matrix independent upon N .2 Of course, any truncation in powers of hij of

this construction would bring back the BD ghost.

For our purposes, we adopt the notation of [17]. We write the resummed theory of [16] in terms of
the inverse metric g−1 and an auxiliary background metric η. The action of dRGT massive gravity can
then be written according to [17] (here we re-introduce the Planck mass MP )

S = M2
P

�
d4x

√−g

�
R(g) + 2m2

2�

n=0

βnen

��
g−1η

��
, (38)

where m is the graviton mass and the en(X) are functions of matrix traces given by

e0(X) = 1 , e1(X) = [X], e2(X) =
1

2
([X]2 − [X2]) . (39)

The square brackets denote the trace and β0 = 6, β1 = −3 and β2 = 1 for dRGT massive gravity [16,17].
Note that the coefficients are chosen such that the action describes a flat background without a cosmo-
logical constant. The matrix

�
g−1η is defined by

�
g−1η

�
g−1η = gµνηνρ. Since ηµν transforms as a

rank-two tensor, the action (38) is invariant under general coordinate transformations.

Expanding the action (38) to second order in the metric perturbations gµν = ηµν + hµν , one
recovers the Fierz-Pauli action (17).

As suggested in [16] and later shown in [17–20], the action (38) indeed only propagates five
degrees of freedom. In order to see this, one can redefine the shift as (37). This has been also done for
the full nonlinear action in [17]. We will briefly discuss their findings.

2Note that we would get exactly the same results by not doing the field redefinition. This field redefinition only makes
manifest that the lapse is a Lagrange multiplier.
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A constraint analysis is most conveniently carried out by using the ADM decomposition [14].
Using (28), the Lagrangian (38) is given by

M−2
P L = πij∂tγij +NR0 +RiN

i + 2m2
�
det γN

2�

n=0

βnen

��
g−1η

�
. (40)

The mass term includes N in a non-linear way and is, therefore, responsible for the seeming loss of the
constraint. However, one can redefine the shift Ni by (37) and finds the following Lagrangian [17, 19]

M−2
P L = πij∂tγij −H0(π

ij , γij , nj) +NC(πij , γij , nj) , (41)

where H0 is the Hamiltonian and C is the additional constraint ensuring that only five of the six com-
ponents of γij are propagating. Thus, we have established that there are three independent variables ni

which are not propagating and algebraically determined by their equations of motion and there is one
Lagrange multiplier N which yields a constraint equation for πij and γij . Therefore, there are only five
propagating independent degrees of freedom which constitute the massive graviton.

It is, however, important to note that the redefinition (37) can only be used when considering the
full non-linear action (38). Whenever truncating the theory, this ceases to be valid and thus one is left
with six propagating degrees of freedom.

One might be puzzled by analyzing the action (38) in terms of the helicity decomposition (14).
There, indeed, are higher derivatives (apparently signaling new degrees of freedom) appearing on the
equations of motion of, e.g., the scalar helicity χ for the nonlinear terms [2]. The lowest suppression
scale of these terms is Λ5 = (m4MP )

1
5 . In the full theory, however, this scale is redundant and can

be removed by a field redefinition [18]3. With this field redefinition also the higher derivative terms
disappear. It can be shown that this happens for all scales below Λ3 = (m2MP )

1
3 [18], such that the

theory in terms of the redefined fields is free of higher derivative interactions. Note, however, that when
truncating the theory to any finite order this is no longer the case.

In works subsequent to [16, 17], it was furthermore shown that the absence of the sixth ghost like
degree of freedom can also be confirmed in the Stückelberg language [20].

4 Conclusions
Within this work we have addressed the question whether theories of a single interacting massive-spin 2
field obey similar uniqueness theorems as in the massless case.

For a long time, it was doubtful whether there even exists one consistent theory that describes
self-interactions of a massive spin-2 particle. The fact that adding the Fierz-Pauli mass term to the
Einstein-Hilbert action introduces nonlinearities in the lapse into the action was taken as the basis of
a no-go-theorem for nonlinear extensions of Fierz-Pauli theory. It was argued that any such extension
necessarily leads to the appearance of a sixth unphysical and ghost-like polarization in the theory, the
Boulware-Deser ghost.

We have reviewed two possible ways to circumvent this apparent theorem. One is to sacrifice the
Einsteinian derivative structure, such that the (00)-component of the tensor field hµν enters the action
only linearly even when self-interactions are added. This ensures that only five degrees of freedom are
propagating. We have shown that this property can equivalently be checked in a helicity decomposition
of the massive tensor. The found action is characterized by the absence of higher derivatives on the
helicity components. It is the unique theory with this property.

3Note that this field redefinition is in fact necessary in order to define a Hamiltonian in terms of the helicities. Without it,
the relation between the canonical momenta and time derivatives of fields is not invertible. This reflects the redundancy of the
coupling in the full theory.
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The second route is to leave the derivative structure untouched, but instead adding a potential for
the massive spin-2 field in such a way that guarantees the presence of a Lagrange multiplier in the system.
By casting the action into an appropriate form, this Lagrange multiplier is once again given by the lapse.

The latter approach, since it relies on redundancies of the full action, requires a full resummation
of the theory. Any truncation to finite order appears to propagate more than five degrees of freedom.
However, the scale at which this additional degree of freedom appears coincides with the scale at which
nonlinearities become important. Henceforth, conclusions can only be drawn from the resummed theory.

We have further addressed the issue of higher derivatives in the helicity decomposition in the
latter class of theories. While these are present, the fact that redundancies are present prevents one from
constructing a Hamiltonian. A field redefinition is necessary in order to be able to invert the canonical
momenta; after this redefinition, no more higher derivatives are present. The Hamiltonian of the theory
does not suffer from an Ostrogradski linear instability.

The experimental viability of either theory is unknown. The former deviates from the well probed
Einsteinian cubic vertex and is therefore not viable as a massive graviton. The latter has the correct vertex
structure. However, choosing its mass to be of the order of the Hubble scale leads to a strong coupling
already at very low energies, Λs = (m2MP )

1/3 ∼ (1000 km)−1.

Either theory could in principle describe self-interactions of a massive spin-2 meson and could
therefore be of different phenomenological interest.
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