CERN-TH.4167/85

GLUEBALL MASSES AND SYMMETRY RESTORATION IN SU(3) LATTICE GAUGE THEORY:

A HIGH STATISTICS MONTE CARLO STUDY

Ph. de Forcrand
CRAY Research, Chippewa Falls, Wiscomnsin

G. Schierholz
CERN - Geneva
and
Institut fiir Kernphysik, KFA Jilich

H. Schnelder
CRAY Research, Stuttgart
and
M. Teper

CERN - Geneva

ABSTRACT

We calculate 0++, 2+ and 17t correlation functions for a wide
range of momenta In a high statistics S8SU(3) study on an gt
lattice: 28,000 sweeps at B = 5.7 and 18,000 at B = 5.9. We
obtain an accurate confirmation of the restoration of the
continuum relativistic dispersion relation, E2 = p2+m2, and of
rotational 1lnvariance. We obtain accurate 2t mass estimates
up to two lattice spacings, and confirm comsistency with
asymptotic scaling. For the L% the results are much poorer
and we can only present some very crude mass estimates. We
compare our O't data to our previous calculations with a
source, and make some statements about the relative
efficiencies of source and wvariational calculations in this
range of couplings.
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The physics interest of the SU{3) non-Abelian gauge theory arises from the
fact that 1t provides the underlying dynamics of QCD. When the theory is

regularized by replacing Euclidean space-time with a hypercuble lattice of
1)

» 1ts non—-perturbative physics becomes amenable to solution by numerical

2)

points

simulation In the last year there have appeared calculations of the scalar

3
) 4) and the deconfining temperatures), which

glueball mass™“, the string tension
are reliable enough in their control of systematic and statistical errors as to
make 1t meaningful to ask the question of whether the spatial cut—-off is small

enough that one is addressing the physics of the continuum theory.

In the present paper we focus on calculations of the energies, over a wide
range of momenta, of 0, 2tF angd 1t glueball states. We would 1like to
emphasize immediately that these calculations are not in the same class of

3)

results we will try to make explicit their weak points. Nonetheless, these

reliability as, say, our recent 0t mass calculation , and in presentieg our
results are a significant improvement on previous calculations of the same

quantities, and the physics one can extract is of some importance.

The first piece of physics concerns the glueball energy-momentum
dispersion relation — does it have the continuum relativistic form, E? = p2+m2?
In a previous work6) such a relation was confirmed for both SU(2) and SU(3):
however, the statistical errors in the latter case were too large to give this
confirmation a great significance. Here we shall confirm the continuum E(p)
dependence with much greater precision. At the same time we shall confirm
continuum spatial rotational invariance: E depends only on yg'. Finding at which
{(bare) couplings such continuum symmetries are dynamically restored is of great
importance because 1t provides unmistakeable evidence that the lattice spacing
is becoming small enough to be invisible to typical non-perturbative physics.
Thus 1t provides a criterion for where it is sensible to try to calculate

continuum physics.

Secondly we shall obtain a high statistics estimate of the yARS glueball
mass on a reasonably large 8% lattice. We shall obtain an accurate confirmation
of previous results that were obtained either with low statistics om a similar

8)

g* lattice7), or on much smaller 4°8 lattices®’.

Our third piece of interesting physics should have been the (oddball) L%
glueball mass: it will not be because we were not able to simultaneously control

statistical and systematic errors. However, assuming the latter errors



to be small we can extract statistically accurate masses and this we shall do,

albeit with considerable reservations.

Finally we shall compare our 0t measurements with those we previously
obtained3) using a source method: this will enable us to compare the relative
efficlencies of source and variatiomal methods. Although a rather technical
point, this comparison should be very useful to anyone who wishes to pursue the

calculation of such quantities.

Throughout the present calculation we use the standard Wilson plaquette

iy

on an 8" hypercubic lattice with perioedic boundary conditions. We use a

2)

action
ten hit Metropolis algorithm for updating the lattice. Our glueball
measurements are performed every sweep and use all four directions for measuring
correlation functions. We have a total of 28,000 sweeps at 5(56/32) = 5.7 and
18,000 at 8 = 5.9. The statistical errors were computed by splitting the data
into bins of 500 sequential sweeps: our experience is that on lattices of the
size being considered, and for these couplings, bins of this size give
statistically independent sub—averages. The large number of bins (56 at 8 = 5.7,

38 at B = 5.9) ensures accurate error estimates.

In the next section we remind the reader what it takes to perform a
"reliable” lattice Monte Carlo calculation. Later in the paper we shall
continuously refer back to this section in evaluating the reliability of our
results. Then we briefly remind the reader how to calculate energles of
different JPC glueballs for non-zero (as well as zero) momenta. We address the
technical problem of how to do this on a lattice without mixing in o+t
operators. From there we go on to our studies of Lorentz and rotational
invariance, the 2tt and 1t glueball masses, and a direct comparison of source
and variational calculatioms for the Ot glueball. In the conclusions we shall
collect our results and point out how they could be improved (as the} should

be).

CRITERIA FOR A RELIABLE CALCULATICKN

To perform a calculation of the lowest mass m with some definite quantum
numbers, Q, one calculates the correlation function, C(t), of some (vacuum-—
subtracted) operatot ¢Q with these same quantum numbers, and extracts the mass

from its asymptotic exponential decay in (Euclidean) time
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At small t, C(t) will receive contributions from the exchange of all states with
the appropriate quantum numbers: the first criterion for a reliable calculation
is, therefore, that one unambiguously verifies the asymptotic expomential decay
(1). This is difficult in a Monte Carlo calculation where the exponentially
small signal in Eq. (1) rapidly disappears in statistical noise. Nonetheless the
only reasonable way to be sure that one is extracting the mass m is to carry the
calculation far enough so that at least three values of C(t) [t=nta, (nt+l)a,
(nt+2)a] lie on a single exponential, and that the errors on these points are

small enough as to make this fit statistically compelling.

Having calculated the mass m in the above fashion on some Lg Lt lattice
with lattice spacing a{f), the next step is to repeat the calculation on larger
lattices, so as to obtain the desired infinite volume (LS + «) and zereo
temperature [(Lta)”l > 0] limit of m. This procedure can be considerably
accelerated if one has an analytic expression for the leading large volume

9)

correction” ’.

Having followed the above steps we can at least be sure that we have
calculated the correct mass, m{B), for lattice spacing a(B). 0f course this mass
will be calculated in terms of the lattice spacing itself (since this is the
only explicit scale in the problem), that is to say as the dimensionless product
m(B).a{R). Assuming our ambition is to be calculating the continuum mass we need
to redo the calculation for several values of f and test whether for some
g » Bcthe calculated mass m(f) becomes independent of B, when measured in
physical units: if so it is reasonable to claim ome is obtaining continuum
physics for 8 > Bc° Expressing m(p) in "physical units” is of course a procedure

that needs to be defined. If we are simultaneously measuring two masses, and if

m(B).a(s) — A2 ind. of 8 (2)
m,(8). @ (B) M, () B2pc

then it is reasonable to believe that we are seeing continuum values of m), m;.

An alternative procedure 1is available 1f a(f) is small enough to be accurately

represented, in terms of B, by the two-loop perturbative formula: in that case
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(3)

where the second line follows if m{(f) attains its continuum value for B » Bc. If
our measurements of m(8).a(B) have the B dependence in Eq. (3) then it is
reasonable to assume that m{f) is indeed attaining its continuum value for
B » Ec, and alsc that a{(8) 1is indeed small enough to be given by its two-loop

expression.

Of course in practice one at best tries to confirm (2) or (3) over a finite
B range, say Bc < B < BC + AR. In addition the measured values of m(B).a(p) will
possess statistical errors. This raises the practical question of how to
evaluate the significance of an apparent verification of (2) or (3): how small
do the errors have to be for an apparent confirmation of (2) or (3) to be
reasonably compelling? In the case where we are testing for continuum scaling,
as 1n (3), a reasonable criterion 1s that the statistical errors on ma{f) be
very much less than the amount by which the two-loop expression for a(B) changes
in the A interval being tested. For example in the present paper we calculate
masses at B = 5.7 and B = 5.9. So we would want the statistical error Sm, to

satisfy

2 /4
Sm(sD)\, (Smb9) g 2ED-asy ] 0.2
m(s®) \m(s9 a(5-7) / -

4
2—/00/: ()

Calculations that begin to meet the above standards are now possible, and

indeed some are availab1e3)-5). We have gone in some detail into the desirable
standards not because we are goling to meet them in the present work, but because

they will enable us to put our results in an honest perspective.
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CALCULATING GLUEBALL ENERGLES: E(JPC;p)

Glueball energies can be calculated by measuring the asymptotic exponential
decay of the correlation functlion of two operators with the desired (JPC,B)

quantum numbers; as in Eq. (1).

The first step is to construct local colour singlet operators whose p = 0
plece will have the desired JPC properties. The trace of a closed loop is colour
singlet: the real part has C = + and the imaginary part C = -, Suitable linear
combinations of rotations and spatial inversions of such loops will then have
the desired JP quantum numbers. Consider for example the 2x2 plaquette centred
on the site EH' There are three such spatial loops which we may label by the
spatial direction orthogonal to the plane of the loop: so ¢i(nu)’ i=x,y,z. We

can form a 0t operator using the maximally symmetric combination
= Re tr 2,.) + P (i) + )
9{5)“ (") e ¢x( Y, 9% L) + P (7, (5)

and a 2% operator, with spin projection 2 along the z axis, by

%ﬁ-(ﬂ/" (P 2) = ke f,- { (Px(ﬂk) - ﬁ(ﬂﬂ)} 6)

(In the continuum limit these operators also project onto 4+F .., states.) There
exists a systematic variatiomal procedurelo) for choosing operators that have a

large projection onto the state of interest.

PC
If one wants to calculate the lowest mass m in some J channel, one can
take the correlation function of appropriate local operators; however, ome will
obviously do much better to project onto zero momentum if one wishes to see the

asymptotic exponential decay at a t which is as small as possible:
-3/2
lpojme) = L2 Z $(2:.70)
e

—-ma.ri,

C(p=0;n,) = <¢(ﬁ:afﬂ") ple=o; °)>”:; C o
A

c
To calculate the lowest energy for a given momentum p in some JP channel,

we need to construct an appropriate dperator, ¢JPC (Bjnt), with the required

guantum numbers. The simplest choicee)’7)’ll) (correct for the ot") might seem

to be
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i_f?a._,_z
PlR.7%) = L nZ c ¢:’rpc(g,n,,) ®)

However, while ¢ certainly has momentum P, it does not, in general, have the
pure JPC quantum numbers of the p = 0 piece of the component local operators.
[This mixing was noted in Ref. 11).] This is simple to see: the JPC properties
of the operator ¢ can be seen by boosting ¢ from momentum p to momentum zero
(i.e., to the rest frame). Under such a boost the local rotational properties

are mixed. A simple example is given by the "27+" sperator

pp.o) = [dx eFEE en -Elen) o

which we write in continuous space~time to emphasize that the lattice
discretisation is irrelevant to the argument. Suppose p is parallel to the x

axis. Boosting to p = 0O rotates

X —> 2! = x2xen®@ + LsnO (10)

and hence in (8) one will pick up pileces of the form nyF
0t as well as 27+,

gt which project onto

In the continuum, curing this presents no problem; however, on the lattice
one would in general have to include an appropriate linear combination of
timelike loops, which is undesirable in the present region of couplings. Une
notes, however, that if our momentum Is parallel to the spin (helicity *2 for
our example}, the boost will leave the helicity unchanged so that the state does

not mix with J < 2 states.

So to construct an operator with (JPC,E) quantum numbers one uses Eq. (8};
with impunity if JPC = 0++, and with maximal helicity local operators otherwise.

Then the lowest energy caa be calculated as usual:
- Pe
<¢ (B .7) ¢ (F—’-°>> ~ X e FETR)-an (11)
!TPC J‘PC n§4>ao

We observe, finally, that the operator mixing under boosts disappears as
p/m + 0. Moreover the operators that are mixed in, such as nyFyt in our
example, have in fact a very small projection onto the 01t. Hence one may expect

that correlation functions using operators defined as in Eq. (8) will always be
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dominated for moderate nt and for p/m small by exchanges of the naive JPC. We

shall see later what actually happens in practice.

DYNAMICAL RESTORATION OF LQRENTZ INVARIANCE

Using as our basic local loops 1x1 and 2x2 plaquettes, we construct ot

operators with momenta, p, covering the range

2. T
Fe 4a

(12)

where

ﬂx,”y = OJ’:‘Z

ﬂz = or ’;‘z/ g;tf—

so that at least one momentum component takes all possible values. We then
calculate correlation functions of these operators up to the maximum distance of

t = 4a on our periodic 8" lattice.

Qur statistics are not good enough and our lattice is not long enough for
us to ldentify the asymptotic expomential decay, as in Eq. (1). However, our

3)

previous (source-method) calculation at B = 5.7, for the p = 0 correlation
function, showed that for a lattice of the present size the effective mass one
extracts between t = a and t = 2a is already a good (though not perfect)
approximation: that is to say the admixture of higher mass states is at this
distance relatively small. Since our data ceases to be very accurate further

than t = 2Za, we shall focus on energy estimates obtained from a to 2a:

: C ; a
E(p). a = Zﬂ[z%z%)] (13)

A second weakness of our calculation is that we have no explicit contrel of
finite size effects: we calculate on only one lattice size. Once again we have

3

recourse to our previous calculation™”’ where we demonstrated that at § = 5.7 an

83 lattice is (very probably) close to the infinite volume limit.

So, we extract E(p).a from our § = 5.7 measurements using Eq. (13). In
Fig. la we plot the extracted [E(p).a]2 versus (p.a)2 for the lowest momenta. We
find an excellent confirmation of the continuum relativistic dispersion

relation:



(Ea)™ = (pa) +(mad™ (s

Indeed our data are completely inconsistent with the leading strong coupling

result
E(p.a = ma ; VF’ 15

[as well as with Monte Carlo measurementsG) of E(p).a taken at § = 4.0]. It is
amusing to note that our data are accurate enough to rule out the rotationally

invariant but non-relativistic continuum energy momentum relation

E a = ma + CF“;

2ma (1.6)

In Fig. 1lb we plot (E.a)2 versus (p.a)2 for a different logal operator and
over our full available momentum range. One expects that as one increases P
towards its maximum value while keeping py and P, fixed and small, [E(p).a]2
must bend over to a maximum at px = pmax = qm/a., In Fig. 2 we show such plots for
(Py,Pz) = (0,0) and (0,n/4a) respectively. We observe a signal of the expected
behaviour: moreover the transition from low momentum continuum physics, to the

ultra-violet lattice physics appears smooth.

We now form non-zero momentum 21T operators (as explained previously) and
measure their correlation functions. In Fig. 3 we display (Ea)? versus (pa)?, as
extracted from t = a to t = 2a, for both 8 = 5.7 and B = 5.9. The open points
come from operators with helieity (spin projection along p) two: as shown
previously these will be operators with minimum J of 2. The solid points may
suffer some mixing with the ott state. We shall discuss the quality of this 2+
data in more detail later on. For the moment we remark that it is consistent
with the continuum dispersion relation and that there 1s, at small momenta, no
sign of the kind of flattening of E(p).a which one would expect if there were a

significant admixture of the ott state.

In summary: we find good evidence that by B = 5.7 continuum Lorentz
invariance has been (dynamically) restored. Qur control of systematic errors in
this calculation is not direct: we need to appeal to our previous calculation3)
of the 0Mr mass. Thus the systematic errcrs on the energies begin to slip out of
our control with incréasing momentum: the reader should bear this in mind
particularly when Interpreting the data with the very largest momenta. To do

better, one should repeat the calculation we previously performed for the mass,
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using a source that projects onto the desired non—-zero momenta {(the comstruction

of such a source is trivial).

RESTORATION OF CONTINUUM ROTATIONAL INVARIANCE

On a cublc lattice continuous rotational symmetry is broken down to that of
n/2 rotations. As we approach the continuum limit, the long-distance physics
should recover full rotational iInvariance and the cubic nature of the lattice

should be felt only near the ultra-violet cut-off.

In practical calculations the restoration of rotational symmetry will
manifest 1itself in the fact that the energy is a smooth function of IE_ only
(for p small compared to the maximum momentum). Equally the heavy
quark-antiquark potential, V(r), should be a smooth function of |r| only, for
IE‘ much bigger than the lattice spacing. Indeed SU(2) rotational imnvariance

12)

restoration was first confirmed by the latter type of calculation . Later

evidence came from the smoothmess of momentum—dependent correlation fumnctions,
this time for both SU(2) aud sU(3)%7°1%

from the potentiall4).

, and then, in the case of 5U(3), also

With our present calculation we are able to test the rotational invariance
of momentum dependent correlation functions much more accurately. In Fig. 4 we
plot C(p;a}/C(p;0) for the ott state at 8 = 5.7: we distinguish the values of p
according to whether they lie along a cube axis, a cube face diagonal, a cube
diagonal, or otherwise. The accurate smoothness of the correlation functions is

apparent.

In addition we note that there are two momenta accessible to our
measurements, which have the same lR P Py < (1,2,2){(n/4a) and
Py = (0,0,3){(n/4a). In Fig. 5a,b we plot the values of C(BA’a)/C(EA:O) and
C(BB!a)/C(EB’O) for the 2x2 local operator for B = 5.7 and 5.9, respectively. We

also plot these ratios for the immediately neighbouring momenta so that one may
judge the significance of the comparison. It is clear that again we have a
remarkably accurate confirmation that continuum spatial rotational invariance

has been restored by B = 5.7.
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THE MASS OF THE 21t GLUEBALL

Our 2+t correlation functions are of useful {statistical) accuracy only up
to t = 2a. Accordingly we shall extract our energies using Eq. (13). How much
one can justify this procedure is left to the following section: not because the
problems are minor, but rather because they are difficult! For the moment we

merely remark that because of the typical decomposition

C(p.t) {PP, &) pP.o>>
= <pe >
Z‘ e-—E;(P).t/<ﬂ/¢/ﬂSIZ -

n

l

|

we know that any energy we extract using Eq. (13) will be an upper bound on the

true minimum energy in that channel,

The most direct way to get a mass is from the ratie of p = 0 correlation

functions at t = 2a and at t = a. This gives us

+0-3F
2'65_0.2; /_{-5'.7-
m2.a = t 0.22
. s (18)
2.09 —0.19 B 5.9

To reduce the statistical errors further one can use the measured energies E(p)

with maximal helicity, and, assuming E2 = p2+m2, extract a mass. This gives

+ 013 i
2.39 _ .o [B57
m.a =

+ 012 ) (19)
2-02 _ /o [5’ 5.9

In practice we use p € w/2a and the final numbers in (19) are dominated by p = O

and m/4a. That is to say

2 0-1 :S.F
2 4
1 ~ .
0- 15 /8—5'-‘7 (20)

and the uncertainty introduced by the use of EZ = p2+-m2 is presumably minimal.
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If we take our values in Egs. (18) and (19) and express them in units of AL
[by using the two—-loop perturbative formula for a(ﬁ)] we obtain
t+ 29

m(B=57) = Fz6 __ . AL

Pl s

m(g=59 = 77 A

- 35 - . (21)

|

505 *2 A,

m (B =57)

Te:o =5 + 84 /\ (22)
m (=57 79775, - N

These values are plotted in Fig. 6 [with ot mass values from Ref. 3)]. We
confirm asymptotic continuum scaling to ~10% over a region of couplings where
the inverse two-loop lattice spacing changes by ~25%: that is to say, we have a
reasonably significant confirmation of asymptotic scaling for the 2t glueball

state (as measured herein).

THE MASS OF THE 1~1 GLUEBALL

Qur 171 correlation functions are only statlstically accurate up to t = a:
to obtain statistical accuracy up to t = 2a one must {Include p '{ s

contributions, and this incurs problems of mixing.

So from our zero momentum data at t = 0 and t = a we obtain the following

4-5¢ (5) =

upper bounds:

5.F

S.9 (23)

Y

4.5308) A

However, we can hardly pretend to get realistic mass estimates from such short
time intervals. To see what we can extract at t = 2a we calculate the energies,
E(p), for all momenta, using Eq. (13), and then extract a mass, ma, assuming
(ma)2 = (Ea)2 - (pa)z. The extracted masses are displayed in Fig. 7a,b for
B = 5.7 and 5.9, respectively. The solid circles represent masses from maximal
helicity states, i.e., where there should be no mixing of lower spin states. It
is clear that the latter data contains no information at B = 5.9, and just

barely some at § = 5.7. From the latter data we can extract the mass estimate
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2/ s ma 2. +0-7
fg: S F ~0-4

which is not accurate enocugh to be useful.

(24)

To do better we take a slightly greater risk (of being wrong). Noting that
the masses Iin Fig. 7 show no sign of decreasing with increasing |E| - as one
might have expected from any intermixing of light J = 0 states - and noting in
addition that the IR‘ = n/4a states should have the least of this mixing, we

boldly go forth to extract from our data, at this momentum, the mass estimates

RI=E : ma - [ 1660 ST
a
2-41 (15) L=59

504 (18). A, Be5F
920 (59N, S5 s

Equation (25) represents, evidently, a dramatic violation of asymptotic scaling.
We conclude that either our mass estimates, Eq. (25), are simply incorrect (due
to our lack of control of systematic errors), or, 1f they are correct, we are

not yvet seeing any evidence for continuum 1™+ physics.

HOW GOOD ARE OUR MASS ESTIMATES?

It is now time to assess how reliable are our 2%t and 1™ mass estimates.
Since, in fact, we do not have any very serious 1=t results, we focus on the
case of the 2+t glueball (any reservations concerning the latter may be carried

over, and even more so, to the 1—+ case).

There are three major causes for concern. Two have been alluded to
previously: are we far enough along the correlation function to be extracting
something close to the lowest yam glueball mass, and how 1mportant are finite
volume corrections? The third problem (which does not arise for the lowest mass
ot state) is that if the 2t glueball mass is greater than twice the 0% mass

(and our estimates suggest it 1s) then the truly asymptotic exponential decay of
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a 2t correlation function will be given not by the 2 glueball but by the
L = 2 ott-ott cut. How should we deal with this ambiguity?

To address the first question we begin by presenting, in Fig. 8, the masses
extracted from our data for C(p;3a)/C(p;2a) (at low momenta) - the wvalues
represented by shaded circles should have no lower J mixing, while the open
circles in principle may have. We simultaneously plot the values expected
(shaded triangles) if our mass estimates in Eq. (21) are correct. The values are
mutually consistent; but due to the large errors the significance of this
consistency is weak. What is perhaps much more interesting is that we can see
2+t signals at t = 3a, and with an extra factor of ~10 in statistics we might
expect to get useful numbers at three lattice spacings. This would require about

75 hours of one CPU of a Cray X-MP: an accessible amount ¢f time.

In Fig. 9, we plot the masses extracted from t = a and t = 2a using Eqs.
(13) and (14). The data suggest, simultaneously, that there is no significant
ot mixing (which should lead to ma decreasing with increasing pa) and that
Lorentz invariance is being respected. This would also suggest that one state 1is
dominating the correlation function — otherwise there would be no reason for the
"effective mass” to be independent of momentum. Of course, this apparent
independence might be accidental.

Perhaps the best argument comes from comparing with 0tt correlation
functions: at B = 5.7 the lowest mass glueball can be extracted from t = a to
t = 2a with an error of only about 10%3). 0f course, while this argument
suggests that our § = 5.7 27+ mass estimate may be Teasonably accurate, the same
argument would suggest that the § = 5.9 estimate is not: at this B the O™ mass
extracted from t = a to t = 2a 1s about 50% higher than the trxue mass! There is,
however, some evidence that allows us to be optimistic even at § = 5.9. The
argument goes as follows. In Fig. 10a, we plot C(p=0;a)/C(p=0;0) for the o+t 2x2
plaquette operator as a function of B (using the present as well as previous
published7)’8) and unpuhlishedls) data). This quantity rises rapidly as B
increases, reaches a maximum near B = 5.7, and then begins to drop rapidly. The
reason for this behaviour iIs that at smaller B the lattice spacing is large, so
that this ratio of correlation functions 1is dominated by exp(—ma) and hence
increases as f 1s increased and a(B) decreases; at sufficiently 1large B,
however, the 2x2 operator becomes ultra-violet, projects rapidly less onto the
lowest 1lying glueball, and 1its correlation function over short distances

decreases, being dominated by large mass exchanges. Hence where this ratio

begins to fall is where, at t = a, the correlation function loses knowledge of
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the lowest mass. In Fig. 10b we show the same ratio for the 2tt; the flattening
occurs at higher B than for the 0++, near f = 5.9. We may take this as providing

evidence that a ¢t 2a 2%t mass extraction at B = 5.9 will be roughly as
reliable as a 0% t = 2a mass at B = 5.7: that is to say, that it will be within

~10% of the true mass.

Leaving this question with this (overly?) optimistic point of view, we now
address the question of finite size corrections. The functional form of the
leading finite (spatial) size corrections is knowng):

ex {—-— const. rrz(oo)-al-}
P (26)
n7(e0)y . all

m{L) = m(w)[[ - C

for a lattice of spatial length L. These corrections are the same as for the 01+
except for the wvalue of the coupling contained in c¢. (They arise from the
longest distance piece of the self-energy: a 0t is emitted by the 2t and is
reabsorbed after winding through the periodic spatial bcoundary.) If ¢ is not
much greater for the 2¥T.27+, 0t vertex than for the 301" vertex then we can
make a statement as follows: at f = 5.7 the finite spatial corrections are small
(~5%) but at B = 5.9 they will be large. In addition the finite length in time
induces finite temperature corfections whose size 1is not known, but which could
well be important at B = 5.9 where the temperature associated with eight lattice

spacings is a large fractlon of the critical deconfining temperatures)’ls)

7-(/3’5'9} fa) = 075 7T, (27)

l

(Note, however, that there is no reason why the mass of the 2t resonance should
change dramatically as we cross into the deconfined phase.) We conclude that
finite size corrections are very probably small at B = 5.7: at B = 5.9 they
could be large. [In this context, we are tempted to point out that previous 2+
calculations on a 4°8 latticea) (extracting the mass from t = a to t = 2a)

found

223 BS7

. +0.26 = $9 @8
-8l .. A

which tells us that 1if indeed the lowest mass is dominating at t = a to t = 2a,
then finite size effects are not large at either f. However, this last
observation should certainly not be overstressed - a similar point can be made
about the O+t glueball7), vet, nonetheless, we now know that finite size effects

over this range of lattice sizes are in fact large 3)!]
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We now turn to the third problem: if indeed the 21+ glueball mass is

greater than twice the 0% mass, and our best estimate is

M,y =& .5 12 _ 4y (29)
Z O

then the asymptotic exponential decay will come from the L = 2 two 0** glueball

cut. How can we measure the 2¥F mass, and indeed are we certain that our present

2+ mags estimates are not already badly contaminated by 0tt-0*t cut contribu-

tions? This is of course not a new question, and it has been addressed in some

7)

detall in the 1iteraturel . Generally these ambiguities can only be resolved
with measurements which are sufficiently accurate to reliably isolate both types
of contribution in several different correlation functions. A more practical
observation is that the projection onto the cut will typically be spread over a

large energy range, so that the projection onto energies close to the branch

peint Eb, say
E £ 2.5M ., = [Z5 E, (30)

will be very small. Im Ref. 17), operators which largely project onto the L = 2
two OTF glueball cut were constructed for SU(2) and typically the correlation
functions would fall much more steeply - over the range of time intervals being
considered herein - than the 2*+ correlation functions we have obtained in the
present work. We refer to Ref. 17) for more details: it seems reasonable to

expect that the cut contributions are very small for t € 2a:

ott: COMPARING SOURCE AND VARIATIONAL METHODS

The high statistics of the present simulation gives us an opportunity to
compare the relative efficiencies of variational (as herein) and source [as in
Ref. 3)] methods. Although such a comparison is preliminary in the sense that
both types of method are open to substantial improvement, it should be of a very
practical interest to anyone who wishes to pursue calculations of this kind.

18) one places a source at t = 0, e.g., by fixing

In a source calculation
all t = 0 spacelike 1links to umnity [as in Ref. 3)}, and measures how the
expectation value of a suitable colour singlet operator, ¢, approaches its value

at "t = =";
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—rmt

<¢(£')> o~ {p(d> + c € (31)

£>00
where m is the lowest mass state sharing the quantum numbers of ¢ and the
source. The major advantage of this method is that the statistical errors come
only from the measurements of ¢: in the variational method the errors come from
both ends of the correlation function, and so typically the error/signal ratio
would be worse. A disadvantage of the source method is that 1f one extracts a
mass at finite t, assuming Eq. (31) to be valid, then this mass can be larger or
smaller than the true mass: with the variational method, by contrast, such a
mass will always be greater than the true mass. Here we do not wish to enter
into the relative merits of the two methods [the reader is referred to Ref. 3)
for a slightly more detailed discussion]: we shall confine ourselves to

comparing their relative statistical errors.

Such a comparison 1s inevitably ambiguous. To reduce these ambiguities it
is best to use a lattice of the same spatial size with both methods. This is
possible at B = 5.7 where we can compare the results of this paper obtained on
an 8" lattice, with source method calculations on an 8316 lattices). At B = 5.9,

however, we shall have to compare our 8 results with source calculations on a
10320 lattice.

The 0 correlation functions in this paper have been constructed from both
1x1 and 2x2 plaquettes. Since the latter loop gives larger values of <¢(a)¢$p(0)>/
<$(0)9(0)> we shall only consider its {vacuum—subtracted) correlation function
here (this being in the spirit of the varlational approach). We now extract

effective masses by making local cosh fits (the lattice 1s periodic) to the

correlation functions between t = (nt—l)a and t = n a:

Lp(n,) Py _ ch [( éé"'?e) m‘,#a]
POty flo)p ch[(kt - ) myya ]

where Lt = 8 is the timelike extent of the lattice. In Fig. 1l we plot m

(32)

.a
eff
{open circles) as a function of nta/(nt—l)a. We repeat the same procedure with

the pa = n/4 correlation function to extract an effective energy, E , and

eff
then, using

(E-ef'f a) FG\) + (Meﬁca )Z (33)



_17_

and effective mass, m a. This is also plotted in Fig. 11 (solid points). We

eff
now repeat the procedure for our source data on the 8316 lattice: i.e., we use

Eq. (32) but replacing the left—hand side:

P n) dep < Bt~ pl)>
FoD §03 T G- pleay

We obtain the crosses in Fig. 1l. We now compare the errors for n = 3:

error (var ; p=0) 8
error (sowrce, p=0) -
error (var ; p=T
C ; P 4') ~ 33 (35)

error (source; p=o)

The number of 8316 configurations used was comparable to half the number
(28,000) of 8" configurations: that is, the computing time was comparable for

both calculations. So the effective gain in CPU time through using the socurce

e 0(60)  p-o

0

CPU gain
factor 57 0 (10) pq GO

depending how we perform the comparison. Of course, it is perhaps misleading to
compare the p = n/4a varlational results with a p = 0 source: perhaps a p = ®/4a
source would do better. A second important point to note from Fig. 11 is the
evidence that the source correlation function reaches its asymptotic exponential
decay slightly later than the conventional method. In any case the gain in
statistics obtained by using the source at this B is overwhelming, as we see
from Eq. (36). (Note that at fixed B and for p = 0 the improvement the source
brings relative to the variational method should grow linmearly with the spatial

volume: cur results are consistent with this expectation.)

We now go to § = 5.9 where we compare the 8% results in this paper, with
the 0t correlation function on a 10320 lattice with source (mesurements with a
2x2 1oop)3). Repeating the same procedure as above, but using only p = O
correlation functions, we get the effective masses shown in Fig. 12. Comparing

the errors for nt = 3 we find:

error (var ; p=0) . §
error (source , p=0)

37



- 18 -

However the CPU time spent on the 10320 lattice was ~6.5 times that spent on the

8% calculation. Hence

CPU %a,t;fl
fCICCtZ?(' /ég;rfgca

One might argue that since the conventional calculation require a computing time

= 4 (T’:") (38)

that grows as the spatial volume to reach a given error/signal ratio, we should
multiply the 4 in Eq. (38) by (10/8)3 = 2. On the other hand, the information
from the p = m/4a correlation functions on a 103.Lt lattice might well push the
comparison in favour of the conventional calculation. A more important polnt is
that at this B the source effective mass appears to lag by almost a whole

lattice spacing behind the variational me i.e., the asymptotic exponential

£f°
decay sets in significantly earlier in the latter case. In summary: by f = 5.9
the enormous advantage of the source method over the variational method has
almost completely evaporated. With increasing f the nalve source calculation

gets worse much more quickly than the naive variational method.

CONCLUSIONS

The high statistics of the present calculation enables us to extract much
cleaner glueball correlation functions than in any previous SU(3) wvariational-
type calculation. We show examples in Fig. 13. This has enabled us to present an

6)

accurate confirmation 7 of the restoration of the continuum relativistic energy-
momentum dispersion relation, 2 = p2+m2, for the O*' glueball at B = 5.7
(Fig. 1); and also to see the expected deviations from the continuum relation
when the momenta approach the ultra-violet lattice cut-off (Fig. 2). In addition
we have obtained accurate qualitative (Fig. 4) and quantitative (Fig. 5)
demonstrations of spatial rotational symmetry restoration at B = 5.7 and 5.9, in
the sense that we find our 0%t correlation functions to depend only on the

modulus of the momentum vector, p.

We have also calculated the energy of the 27t glueball as a function of
momentum (Fig. 3). There are extra problems here due to the possible intermixing
of the 0%t glueball state for P # 0: we point out that there is no such mixing

for maximal helicity wave functions.
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Qur demonstratioms of symmetry restoration at f = 5.7 are nonetheless open
to improvement. We extract our energies from correlation functions between
At = a and At = 2a. From Ref. 3) we know that for p = 0 the admixture of higher
mass states will in fact be non-zero: however, it will be small. For p # 0 we
héve no direct control over this particular systematic error, and this lends an
uncertainty to our results that, obviously, increases with momentum. It would be
useful to repeat the type of calculation performed in Ref. 3) for some non-zero

momenta to remove this uncertainty.

Our high statistics study should also lay to rest a long-standing
argumentlg) about whether the 2%t glueball mass as extracted from t = a to 2a
along the correlation function is indeed very different from that extracted
between t = 0 and t = a. It is: the latter mass 1is higher, and violates
asymptotic scaling. The mass we extract in this paper (Fig. 6) 1s sufficiently
accurate so that 1its consistency with asymptotic scaling is statistically
significant, i.e., we have real evidence that we are seeing continuum 2+t
glueball physics. The mass we extract

2.39 + 013 /g - §.F
~-0-10
7nzz++ - a =

+ 012 5.
R-02 ", pg:517 (39)

20)

can be expressed in physical units by using the p mass as extracted in the

valence quark approximation: if we do so, we find

+ 0-10

—008 SV 757

MH B +0-/2
2 /99 GeV L7357 wo
(It goes without saying that such a translationm into physical units is open to

whatever uncertalnties are involved in the p mass determination.)

Having congratulated ourselves on the extent to which our present 2+t
calculation improves upon previous omes, it remains to confess that several
important systematlic errors are still largely out of our control. Three
particularly important problems are: finite volume effects; have we gone far

enough along the correlation function to isolate the 2t ground state; if the

2™+ {s heavier than twice the Ott mass, how do we untangle the resonance and cut
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contributions? In examining these problems (Figs. 8, 9 and 10) we concluded that
the third problem should not be serious for At < 2a (on the basis of previous

7)

calculations1 of typical cut contributions to 2+t correlation functions) and
that the other two should not be serious at B = 5.7 (on the basis of what we
learn from the 0FF calculations3)). At B = 5.9 there is every pOSgibility that
the last two errors are important. So we emphasize that our 2t masses and their
apparent continuum behaviour need considerable further work, and our results

should be regarded as rather preliminary.

The situation with respect to our 11—t glueball mass estimates is
significantly worse. This is unfortunate because the 1™t is an "oddball”, i.e.,
its quantum numbers are not accessible to a pure qa system, and hence its
experimental detection would be particularly significant. To get mass estimates
at At = 2a, we were forced to use B.f 0 correlation functions with p ¥ s so that
intermixing with different quantum number states might have occurred. We
minimized the risk of the latter by using only the lowest non-zero momentum. Our

results were

166 (6). a’ B 57

m?

/

1 -
z.41 (5) a B=5.9

/-zg (5) CeN B =57

2.38 (1S) Gev £:59

where to express the mass in GeV units we once again use the p masszo>. The fact
that the mass changes rapidly with the (bare) coupling means that there 1is no
evidence that the mass has yet attained its continuum value. Nonetheless we
remark that the $ = 5.9 wvalue is similar to that obtained in a previous

calculationZI)

where the spacelike and timelike lattice spacings differed (and
roughly corresponded to B = 5.8 and B ~ 6.0, respectively). The relatively light
mass (a little above that of the 2+*) we find for the 17% at our highest B

value is very motivating for improving the calculation of this important state.

The final part of our paper involved a comparison of the variational

8)

calculations [as used in ref. 3)] for the Of' glueball state. At B = 5.7 the

typelo) of mass calculation (as used herein) with the source m.ethod1 for mass

source method is more efficient (in CPU time) by a factor that lies somewhere

between 10 and 100 depending on how one does the comparigon. The source method
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results are so much more accurate that we have not bothered, in this paper, to
extract masses from our 0T data except insofar as we require them for this
comparison (Figs. 11 and 12). The story at B = 5.9 is, however, very different:
the methods seem to have become of comparable efficiency — the overwhelming
advantage of the simple source method at B = 5.7 evaporates rapidly with
increasing B as shown in Fig. 14. On the other hand the source method still has
the very nice feature that the computer time to reach a given signal-to-error
ratio (for p = O correlation functions) is naively independent of volume [the
argument to the contrary in Ref. 3) is not correct] — while 1t increases
linearly for the variational method. This emphasizes the desirability of

constructing Improved sources.

ACKNOWLEDGEMENTS

The numerical calculations have been done on the CRAY X-MP at Julich. We
are grateful to J. Speth for the hospitality of the Institut fiir Kermphysik
during the course of this work and to F. Hossfeld for his support. We are also
indebted to E. Brikel and J. Chiabaut for valuable computatiomal assistance, and
to D. Lellouch and C. Roiesnel for their involvement in the vectorized program

we have usedzz).



- 22 -

BREFERENCES
1) K. Wilson -~ Phys.Rev. D10 (1974) 2445.
2) M. Creutz — Phys.Rev. D21 (1980) 2308; Phys.Rev.Lett. 43 (1979) 553;
K. Wilson - Cargése Lectures (1979);
M. Creutz, L. Jacobs and C. Rebbi - Phys.Rev. D20 (1979) 1915.
3) Ph. de Forcrand, G. Schierholz, H. Schneider and M. Teper ~ Phys.Lett. 152B
{1985) 107.
4) Ph. de Forcrand, G. Schierholz, H. Schneider and M. Teper -~ Preprint DESY
84-116 (1984).
5) A. Kennedy, J. Kuti, 5. Meyer and B. Pendleton ~ Preprint NSF-ITP-84~61
{1984).
6) G. Schierholz and M. Teper -~ Phys.Lett. 136B (1984) 69.
7) G. Schierholz and M. Teper - Phys.Lett. 1368 (1984) 64.
8) K. Ishikawa, A. Sato, G. Schierholz and M. Teper - Z.Phys. C21 (1983) 167.
9) For particle masses:
M. Lischer — DESY Preprint 83-116 (1983).
For Wilson loops:
M. Lischer, K. Symanzik and P. Weilsz — Nucl.Phys. B173 (1980) 365;
M. Liischer — Nucl.Phys. B180O (1981) 317.
For Polyakov loops:
See Ref. 4).
10) M. Falcioni, E. Marinari, M.L. Paciello, G. Parisi, F. Rapuano,
B. Taglienti and Zhang Yi-cheng - Phys.Lett. 110B (1982) 295;
K. Ishikawa, G. Schierholz and M. Teper — Phys.Lett. 110B (1982) 399;
B. Berg, A. Billoire and C. Rebbi - Ann.Phys. 142 (1982) 185.
11) K. Ishikawa, G. Schierholz and M. Teper — Z.Phys. Cl9 (1983) 327.
This observation has appeared more specifically 1In strong coupling
calculations:
N. Kimura - Private communications.
12) C.B. Lang and C. Rebbi - Phys.Lett. 113B (1982} 137.
13) G. Schierholz and M. Teper — Unpublished.
14) A. Hasenfratz, P. Hasenfratz, U. Heller and F. Karsch - Z.Phys. C25 (1984)
191;
R. Sommer and K. Schilling — Preprint Wuppertal B-85-6 (1985).
15) J.P. Gilchrist, G. Schierholz, H. Schneider and M. Teper - Unpublished.
16) F. Karsch and R. Petronzio — Phys.Lett. 139B (1984) 403.
17) Filrst paper of Ref. 1l1).



18)

19)

20)

213

22)

-23 -

K. Miitter and K. Schilling - Nucl.Phys. B200 (1982) 362; Phys.Lett. 117B
(1982) 75; ‘

C. Michael and I. Teasdale - Nucl.Phys. BZ15 (1983) 433;

Ph. de Forcrand - Ecole Polytechnique Preprint A615.0784 (1984);

M. Falcioni, M.L. Paciello, G. Parisi and B. Taglienti - Rome Preprint
(1984).

For a sceptical approach to the 2t results at t = 2a, see for example:
B. Berg -~ Preprint DESY 84-012 (1984).

J.P. Gilchrist, G. Schierholz, H. Schneider and M. Teper - Phys.Lett. 136B
(1984) 87; Nucl.Phys. B248 (1984) 29.

K. Ishikawa, A. Sato, G. Schierholz and M. Teper - Phys.Lett. 120B (1983)
387.

Ph. de Forcrand, D. Lellouch and C. Roilesnel -~ Ecole Polytechnique
Preprint A601.0384 (March 1984).



_24_

FIGURE CAPTIONS

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

10

The energy momentum dispersion relation at 8 = 5.7 (extracted from
At = a and At = 2a correlation functions) for the 0FF glueball: (a) for
the 2x2 loop operator, and the smallest momenta; (b) for the 1x1 loop

operator and all measured momenta.

The variation of the energy [extracted from C(B,Za)/C(BJa)] as a
function of Py at fixed py and P, -

As in Fig. la but for the 2t glueball: (a) at B = 5.7; (b) at
B = 5.9.

Ratio of O'F correlation functions, C(p,a)/C(p,0), for 1x1 and 2x2 loop
operators as a function of momentum, for momentum along axis ( ), a
face diagonal {A), a cube diagonal (o) or otherwise (®). Errors within

points unless shown otherwise.

Comparison of ot correlation functions (based on the 2x2 local
operator) for two different momenta of the same magnitude and for
(a) B = 5.7, (b) B = 5.9.

2+t glueball masses extracted from t = a and t = 2a correlation

functions. Also shown are the 0t masses of Ref. 3).

The 1~t mass as extracted from the energy, E(p), using E2 = p2+m2:
(a) at B = 5.7; (b) at B = 5.9.

2+ glueball masses extracted from t = 2a to t = 3a and compared with
the masses as extracted from t = a to t = 2a along the correlation
functions.

As Fig. 7 but for the 2*t.

The ratio of (a) ott, (b) 2+t correlation functions C(p=0;a)/C(p=0;0)

as a function of B.
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Fig.
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13
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0™ passes extracted at increasing distances along correlation
functions obtained with source on an 8316 lattice [Ref. 3)] and by the
conventional method of this paper on an 8" lattice. All at B = 5.7.

As in Fig. 11, but at B = 5.9 and the source results [Ref. 3)] come
from a 10320 lattice.

0tt correlation functions from the present work.

Ratio of CPU times required by variational and source methods [as used
herein and in Ref. 3), respectively] to achieve a given error/signal
ratio, at distances where the 0+ correlation function begins to be
dominated by the lowest mass: a range of values is given at each B (see
text). The data comes from this work, Refs. 3) and 7), and

unpublished work} >,
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