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Abstract A good knowledge of the luminosity spectrum is
mandatory for many measurements at future e™e ™ colliders.
As the beam-parameters determining the luminosity spec-
trum cannot be measured precisely, the luminosity spectrum
has to be measured through a gauge process with the de-
tector. The measured distributions, used to reconstruct the
spectrum, depend on Initial State Radiation, cross-section,
and Final State Radiation. To extract the basic luminosity
spectrum, a parametric model of the luminosity spectrum is
created, in this case the spectrum at the 3 TeV Compact Lin-
ear Collider (CLIC). The model is used within a reweighting
technique to extract the luminosity spectrum from measured
Bhabha event observables, taking all relevant effects into ac-
count. The centre-of-mass energy spectrum is reconstructed
within 5% over the full validity range of the model. The re-
constructed spectrum does not result in a significant bias or
systematic uncertainty in the exemplary physics benchmark
process of smuon pair production.
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1 Introduction

Small, nanometre-sized beams are necessary to reach the re-
quired luminosity at future linear colliders. Together with
the high energy, the small beams cause large electromag-
netic fields during the bunch crossing. These intense fields
at the interaction point squeeze the beams. This so-called
pinch effect increases the instantaneous luminosity. How-
ever, the deflection of the particles also leads to the emission
of Beamstrahlung photons — which reduce the nominal en-
ergy of colliding particles — and produces collisions below
the nominal centre-of-mass energy [1123//4]. The resulting
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spectrum of centre-of-mass energies is traditionally called
the luminosity spectru [415L6.7].

The knowledge of the shape of this luminosity spec-
trum is mandatory for the precision measurements in which
a cross-section has to be known. While the cross-section de-
pends on the centre-of-mass energy, the observables mea-
sured in the lab frame also depend on the difference in en-
ergy of the colliding electronﬂ which determines the Lo-
rentz boost of the system.

Unlike the electron structure functions (i.e, Initial State
Radiation (ISR)) — which can be calculated precisely — the
beam-beam forces, and therefore the Beamstrahlung, highly
depend on the geometry of the colliding bunches. The ac-
tual beam-beam interaction taking place at the interaction
point cannot be precisely simulated, because the geometry
of the bunches cannot be measured. Therefore, the lumi-
nosity spectrum at the interaction point has to be measured
using a physics channel with well known properties, e.g.,
Bhabha scattering.

The observables measured in the events are affected by
detector resolutions. The distributions used for the recon-
struction of the luminosity spectrum are also dependent on
the cross-section of the process, and Initial and Final State
Radiation (FSR). All effects have to be taken into account
for the reconstruction of the luminosity spectrum.

It was pointed out by Frary and Miller [5] that a precise
reconstruction of the peak of the luminosity spectrum, nec-
essary for a top-quark threshold scan, can only be achieved
with a measurement of the angles of the outgoing electrons
from Bhabha scattering. The angles of the two particles are
the most precisely measurable observable [5]. The angles

'The luminosity spectrum is a dimensionless probability density func-
tion that is mathematically equivalent to the use of electron structure
functions and parton density functions.

2Unless explicitly stated, electron always refers to both electrons and
positrons.



of the outgoing electrons — or rather the acollinearity be-
tween the two particles — are sufficient to extract a relative
centre-of-mass energy, which gives access to the luminosity
spectrum.

Toomi et al. [6] showed that the reconstruction of a pa-
rameterised luminosity spectrum is possible using a tem-
plate fit. Their parameterisation only used three parameters
to describe the effective centre-of-mass energy spectrum.
However, as the boost of the initial system and correlation
between the energies of the two particles cannot be neglec-
ted [8], a description of the energies of the pairs of col-
liding particles is necessary. Correlations exist between the
two particle energies because the probability to emit beam-
strahlung depends on the distance travelled in the field of
the opposite bunch, and the field strength depends on the
position inside the bunch. As two particles can only collide,
when they are in similar position in their respective bunches
the energy between two particles is correlated.

The relative centre-of-mass energy, that is reconstructed
from the acollinearity, is equal to unity for back-to-back par-
ticles, and always smaller than unity for larger acollinearity,
regardless whether one of the particles has a higher or lower
energy than nominal. Therefore, Shibata et al. [[7]] proposed
to calculate the distribution of the four-vectors of the Bhabha
electrons and extract the luminosity spectrum with the itera-
tive Expectation—-Maximisation algorithm. They have, how-
ever, considered neither detector resolutions, nor Initial and
Final State Radiation. For a full description of the outgoing
Bhabha electrons, the luminosity spectrum would have to
be weighted with the Bhabha cross-section and convoluted
with the detector resolutions, which would require a huge
computational effort, when using their method.

A reconstruction of the energy of the particle pairs was
done for the 500 GeV ILC [9]. The acollinearity and the
energies of the electrons measured in the calorimeter were
used in a reweighting fit to reconstruct the luminosity spec-
trum. The parameterisation — necessary for the reweighting
fit — accounted for the correlation between the two beams
and the beam-energy spread.

This paper follows the approach of the 500 GeV ILC
study [9], extends it, and applies it to the luminosity spec-
trum of the 3 TeV CLIC [10]], which is the most challenging
luminosity spectrum. This paper is structured as follows: in
Section[2|the basic and cross-section scaled luminosity spec-
trum are defined. The Bhabha scattering and observables
used for the reconstruction are also introduced. In Section[3]
the model of the luminosity spectrum, required to perform
a reweighting fit, is constructed. The reweighting technique
is explained in Section ] and in Section [3]it is applied to
first validate the model against the luminosity spectrum at
the 3 TeV CLIC; then all the relevant effects leading to the
measured observables are included, and the luminosity spec-
trum is reconstructed from these distributions. In Section [6]

the impact of the reconstructed luminosity spectrum on the
measurement of the masses of supersymmetric particles in
a CLIC benchmark process is estimated. The paper closes
with a summary, conclusions, and outlook in Section

2 Luminosity Spectrum, Bhabha Scattering, and the
Measurement

The nominal centre-of-mass energy +/snom Of a collider with
two beams with the nominal beam energy Epeam iS given by
V/Snom = 2EBeam. If the two interacting particles carry only a
fraction of the nominal beam energy x;> = E1 > /EBeam, the
effective centre-of-mass energy is

X/EZZEBeam\/xle (1)

The basic luminosity spectrum .Z (x) describes either the
distribution of the fraction of centre-of-mass energies x =
\/5'/\/$nom- or the distribution of the fraction of energies
of colliding particles .Z (x1 ,xz) prior to hard collisions and
prior to Initial State Radiation. The two functions are con-
nected via the integral along the lines of constant centre-of-
mass energies, given by Equation (TJ). Therefore,
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The luminosity spectrum affects all centre-of-mass en-
ergy dependent observables. For example, the luminosity
spectrum has to be used to predict the inclusive (i.e., ob-
served) cross-section G%?Chi“e at the machine. The principle
is the same as for the parton density functions at hadron ma-
chines, except that the luminosity spectrum depends on the
machine and not only on the colliding particles. To calcu-
late the effective cross-section the differential cross-section
is weighted with the luminosity spectrum, either with the
one-dimensional luminosity spectrum

Xmax

Machine
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or for the two-dimensional luminosity spectrum

Xmax
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Bhabha scattering is the process of choice for luminos-
ity measurements. It can be calculated with high precision
and has a large cross-section. To first order, the differential
Bhabha cross-section is [11]]

dOBhabha _ 271:062 sin O (5)
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where « is the fine-structure constant and 6 the polar scat-
tering angle.

Because cross-sections Gx(\/E’) depend on the centre-
of-mass energy, any process used to reconstruct the basic
luminosity spectrum will inherently contain a scaled lumi-
nosity spectrum

Oy (x V snom)
f;(‘nax dx' o, ( X /ﬁnom)

min

Licaled ()C) = f(x) (6)

This means that it is not enough to reconstruct the observed
centre-of-mass energy spectrum, the luminosity spectrum
has to be extracted from the observed spectrum.

The observed centre-of-mass energy is further affected
by Initial State Radiation. It is impossible to distinguish be-
tween energy loss from Initial State Radiation and Beam-
strahlung on an event-by-event basis. Initial State Radiation
and Beamstrahlung have to be disentangled statistically.

Finally, the scattered particles are recorded in the detec-
tor, where their properties are reconstructed within the limits
of the resolution of the respective sub-detectors.

2.1 The Basic Luminosity Spectrum

The luminosity spectrum distribution can be seen as a con-
volution of the beam-energy spread, which is inherent to the
accelerator, and the Beamstrahlung due to the Beam-Beam
effects. Figure[T|shows the beam-energy spread of the 3 TeV
CLIC machine. It is obtained from a simulation of the main
linear accelerator and the beam delivery system [12].

The energy of a particle depends on its longitudinal posi-
tion in the bunch (Figure@. Due to intra-bunch wakefields,
particles in the front of the bunch gain more energy from
the RF cavities than particles in the back of the bunch [13].
This leads to the two distinct peaks near the minimal and the
maximal value of the beam-energy spread (Figure [Tb). The
energy spread is not following a Gaussian distribution. The
dependence of the particle energy on the longitudinal po-
sition also leads to larger correlations between the particle
energies. The precise shape of the beam-energy spread de-
pends on the RF-phase and the bunch length [13]]. To avoid
a loss in the luminosity, these parameters are not allowed to
vary freely and have to be precisely controlled [10]. There-
fore, it can be assumed that a limited knowledge of the shape
of beam-energy spread is available.

The distribution of particles is used as the input to the
beam-beam simulation. The simulation of the beam-beam
effects is done with GUINEAPIG [4]. During the bunch cross-
ing the intense electromagnetic fields — due to the oppos-
ing bunches — deflect the beam particles and cause Beam-
strahlung.

Figure [2| shows the full range and the region around the
maximal energy of the two-dimensional luminosity spec-
trum. The square region in the distribution of the two en-
ergies is due to the beam-energy spread (see Figure [ID).
Events with x; < 0.995 or x; < 0.995 were significantly af-
fected by the Beamstrahlung.

Figure [3a] shows the basic luminosity spectrum with re-
spect to the effective centre-of-mass energy /s’. The spec-
trum possesses a peak around the nominal centre-of-mass
energy and a long tail down to less than 5% of the nomi-
nal centre-of-mass energy. Figure [3b| shows the peak of the
luminosity spectrum as it is produced by GUINEAPIG. Be-
cause the beam-energy spread is not Normally distributed,
the centre-of-mass energy peak is not Gaussian either. Fig-
ure [3b]also shows a spectrum obtained by randomly pairing
the energies of two particles, i.e., removing the correlation
between the energies of the two beams. There is a clear dif-
ference between the two cases. If the correlation between
the particle energies is not taken into account, the luminos-
ity spectrum cannot be reconstructed properly.

To describe the beam-energy spread — and anchor the
luminosity spectrum — the absolute energy of the beam has
to be known. The average beam energy can be measured
on a level of 0.04% [10] with a dipole and beam position
monitor in the beam delivery system of the accelerator. If
the distribution itself can be measured as well is still under
study.

2.2 Cross-Section-Scaled Luminosity Spectrum

The observed events are distributed according to the scaled
luminosity spectrum (Equation (6)), thus the events obtained
from GUINEAPIG have to be either weighted with very large
weights, or sampled with an accept-reject method [[14] to
obtain events with constant weights. Because large event-
weights are undesirable, the accept-reject method is chosen.

The 3 TeV CLIC luminosity spectrum extends over more
than three orders of magnitude of the Bhabha cross-section,
meaning the accept-reject method is very inefficient. If a
very large number of events for the basic luminosity spec-
trum were available, the scaled luminosity spectrum could
be directly sampled from them. To avoid storing the large
number of basic events the accept-reject method is directly
added in GUINEAPIG.

The differential cross-section of the Bhabha scattering
has to be known for the accept-reject method. Instead of
using Equation (§) to calculate the Bhabha cross-section, it
is estimated with BHWIDE [15]. BHWIDE includes higher-
order effects and Initial State Radiation. Only events with
the electron and positron polar angle inside the tracking ac-
ceptance (7° < 6 < 173°) are accepted. The cross-section is
estimated at precise centre-of-mass energies from 10 GeV to
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Fig. 2 @Energy spectrum of colliding parti-
cles as simulated with GUINEAPIG for 3 TeV
CLIC. [(b)] Zoom of the luminosity spectrum
around the nominal beam energies.
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3000 GeV without any luminosity spectrum. Figure[d]shows
the cross-section as given by BHWIDE.

Figure [4] shows the basic luminosity spectrum obtained
with GUINEAPIG, the bin-wise multiplication of the lumi-
nosity spectrum with the cross-section, and the scaled lu-
minosity spectrum from GUINEAPIG with the cross-section
used in the accept-reject method. The last two curves are
nearly identical showing that the modified GUINEAPIG pro-
duces a properly scaled luminosity spectrum with equally
weighted events.
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CLIC as simulated with GUINEAPIG. [®)] The
peak of the luminosity spectrum with and
without correlated particle energies.
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2.3 Generation of Bhabha Events

The different luminosity spectra are used in the Bhabha gen-
erator to create the events which are observed in the detec-
tor. The Bhabha events are generated with BHWIDE, where
the energies of the initial electron and positron can be de-
fined on an event-by-event basis, as implemented by Rim-
bault et al. [16]. The polar angle 6 of the final state electrons
must be 7° < 8 < 173° to ensure they will be observable in
the tracker. BHWIDE produces also Initial and Final State
Radiation photons and accounts for their effects during the
Bhabha scattering.
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Fig. 4 Bhabha cross-section from BHWIDE for electrons with a polar angle 7° < 6 < 173°, and
the basic luminosity spectrum from GUINEAPIG (GP Basic), the luminosity spectrum scaled
by bin-wise multiplication with a normalised Bhabha cross-section (GP x cross-section), and
the luminosity spectrum scaled with an accept—reject method in GUINEAPIG (GP Scaled). The

lines of ‘GP x cross-section’ and ‘GP Scaled’ are overlapping.

The cross-section — including the luminosity spectrum
— for events with a centre-of-mass energy above 1.5 TeV
is 11 pb, which results in more than 1 million events for
an integrated luminosity of 100 fb~!. The expectation for
the 3 TeV CLIC is an integrated luminosity of 500 fb! per
year [L17].

2.4 Observables and Detector Resolutions

Three observables, which can be extracted from the final
state electrons, are used for the reconstruction of the lu-
minosity spectrum: the relative centre-of-mass energy cal-
culated from the polar angles of the outgoing electron and
positron \/s}.o;/+/Snom, the energy of the electron E;, and
the energy of the positron E;. The relative centre-of-mass
energy reconstructed from the acollinearity of the final state
electrons is [89]]

\4 séicol —
V' Snom

where 0 is the polar angle of the electron and 6, that of
the positro V/Sheor 18 equal to the effective centre-of-mass
energy /5, if only one of the particles radiated photons —
Beamstrahlung or Initial State Radiation. If both the electron
and the positron radiated photons, the reconstructed centre-
of-mass energy /s}.,; Will be larger than /.

The GEANT4 simulation of tens of millions of electrons
is too time-consuming. To include the detector effects, reso-
lution functions of the energy and angles have been obtained
from fully simulated and reconstructed Bhabha events using
the CLIC_ILD_CDR detector model [18]. The dominating
beam-induced background, the yy — hadron events [19],
was accounted for.

The rate of electrons produced in Bhabha scattering falls
with an increasing polar angle 0 (cf. Equation (3))) and the
events will be predominantly at small polar angles. Because
the magnetic field is nearly collinear to those tracks, their

sin(0;) + sin(6,) + sin(6; + 6,)
sin(60;) +sin(6:) —sin(6; + 6>)’

)

3Strictly speaking, 8; and 6, are the angles with respect the positive or
negative z-axis. The angles have to fulfil 6; + 6, > & by construction.

curvature does not allow for an accurate measurement of
the momentum. Therefore, the energy is reconstructed us-
ing only the calorimeter information. The tracking informa-
tion is used to measure the angles. The energy resolution is
shown in Figure [5a It is modelled in the analysis with

Or _ _243% ©1.23%, ®)

E  \/E/GeV

obtained from the reconstruction with overlaid CLIC 3 TeV
vy — hadron background. The angular resolution needed
for the computation of the relative centre-of-mass energy
depends on the energy, shown in Figure 5bl The angular
resolution is better than 20 prad for particle energies above
200 GeV.

The distributions of the particle energies and the relative
centre-of-mass energy are shown in Figure[6] Figures|6aand
[6b] show the distributions before and Figure [6¢| and [6d] af-
ter the application of the resolution effects via four-vector
smearing. The relative centre-of-mass energy is hardly af-
fected by the resolution, due to the high angular resolution
of the tracking detectors. The energy of the particles is much
more affected by the detector resolution.

3 Modelling the Luminosity Spectrum

For the reconstruction of the basic luminosity spectrum with
the reweighting fit, a model or parameterisation of the lu-
minosity spectrum is needed. If the beam energy were not
affected by beam-energy spread or Beamstrahlung, it could
simply be described by a Dirac delta-distribution

EBeam(x) = 8()67 1), &)

with the random variates for this function xg,, . = 1. The
nominal energy is modified by the contributions from beam-
energy spread Axspread and Beamstrahlung Axg,,, which
change the beam energy away from its initial value. The
functions describing the two contributions will therefore de-
scribe the difference to the nominal value, and the final ran-
dom variate will be

XFinal = XEpeam + AxSpread + AxStrahl' (10)
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Thus, the functions for the beam-energy spread and Beam-
strahlung should describe the energy change of particles due
to the respective effect.

The luminosity spectrum model will be built by describ-
ing the two particle energies. Using x; and x; as defined
in Section 2] the simplest description of a two-dimensional
model is .Z (x;,x2) = f(x1)f(x2). However, a purely fac-
torising Ansatz is insufficient to describe the correlation be-
tween the particle energies. Therefore, the two-dimensional
energy distribution is divided into four regions (as shown in
Figure[7): one region where neither particle radiated Beam-
strahlung (called the ‘Peak’); two regions where one or the
other particle radiated Beamstrahlung (called the ‘Arms’);
and one region where both particles radiated Beamstrahlung

(called the ‘Body’). This separation is only determined by
whether a particle produced Beamstrahlung or not and ig-
nores the beam-energy spread for the moment. The result of
this division is a piecewise function

freak, forx;=1landx; =1
) fi =1 d <1
g(xl’xz) _ SArm1 or xp and xp (11
fam2, forxi<landx; =1
fBody, forxy <landx;<I.

For each region, the resulting particle energies are described
by a product of the functions for the two particles fregion =
f}%egion (x1)- fl%egi on(*2), and the individual functions are con-
structed from convolutions of the beam-energy spread and
Beamstrahlung functions, depending on the region.
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Fig. 7: Two-dimensional luminosity spectrum where the dif-
ferent regions have been labelled. The beam-energy spread
is included and in principle all the regions are overlapping.

3.1 Parameterisation of the Beam-Energy Spread

The function fpeax to describe the behaviour of the beam-
energy spread (Figure has to rise very steeply at the
two extremities. A hyperbolic cosine, parabola, or higher
order polynomials — with a reasonable number of parame-
ters — do not describe this energy distribution well. A beta-
distribution b(¢) = ++*"(1 —1)®" is used to describe the
beam-energy spread. As the beta-distribution is limited be-
tween 0 and 1, a variable transform

= S Tmin_ (12)

Xmax — Xmin

is used to describe the beam-energy spread between the two
endpoints xpin and xpax near the maximal values at the be-
ginning and end of the distribution. Here, the variable x is
the relative difference between a particle’s energy Eparicle
and the nominal beam energy Egeam,

Y= Eparticle — EBeam o AE
- - )
EBeam

EBeam ( ! 3)
which corresponds to Axg,.,q from Equation (T0). To also
describe the particles with energies below the x,;, and above
Xmax, the beta-distribution is convoluted with a Gaussian dis-
tribution g (x) with a mean y = 0 and a width . The Beam-
Energy Spread (BES) function is

BES (x; 0%, 0°,0) = b(x; 0*, 0°) ® g(x;0), (14)

where ® is the convolution operator h(x) = (f®g) (x) =
J=. f(1)g(x — 7)dt. Due to Fubini’s theorem the convolu-
tion of two probability density functions always results in
another probability density function [20].

The beam-energy spread histogram is fitted by the func-
tion BES (x) with a binned log-likelihood fit with ROOT ver-
sion 5.34.01 [21]. Figure @ shows the best fit to the beam-
energy spread with this model, and the resulting parameters
are given in Table[T} The histogram contains 300 000 entries.

The width of the Gaussian ¢ and the boundaries of the
beam-energy spread beta-distributions (xpin,Xmax) are fixed
for all following fits. This assumes an existing knowledge of
the beam-energy spread coming from the accelerator. Fixing
these parameters can introduce a large systematic error, if
they are not measured correctly.

3.1.1 Luminosity Weighted Beam-Energy Spread

The correlation between the particle energy and its position
in the bunch causes a change in the effective beam-energy
spread. The probability to radiate Beamstrahlung photons,
and therefore the fraction of energy lost by particles, in-
creases with the distance travelled in the electromagnetic
field of the oncoming bunch.

Figure [8b] shows two energy distributions, one of the
Peak-region, where both particles posses an energy of more
than 99.5% of the nominal beam energy, and one of the
Arms-region, where only one of the particle contains more
than 99.5% of the nominal beam energy. Both histograms
contain 300 000 entries.

The energy spread of the Peak-region is clearly flatter
than the energy spread coming from the accelerator (Fig-
ure [8a). In the column Peak, Table [I] lists also the param-
eters @* and P found by fitting Equation to the dis-
tribution. For this fit, the limits and the Gaussian width are
fixed. For the best fit both @? and P are closer to zero, but
still negative, i.e., there are still two maxima at the lower
and upper end of the distribution. The peak at the lower end
of the spectrum is reduced, because the particles in the tail
are less likely to interact with particles that did not radiate
Beamstrahlung.

The energy spread of the Arms-region, where one of the
particles radiated Beamstrahlung, shows a large peak at the
lower energy, and almost no peak at the upper end of the
spectrum. This is also caused by the correlation between the
energy and the position in the bunch. Particles in the tail
are more likely to collide with a particle that already ra-
diated Beamstrahlung, and therefore the peak at the lower
edge of the beam-energy spread is enhanced. Likewise, only
very few particles with the highest energy — located near the
front of the bunch — interact with particles from the tail of
the bunch, which leads to the disappearance of the peak at
the highest energies. The beam-energy spread for the Arms-
region is described by a beta-distribution for which @° > 0
(see column Arms in Table[T).

The 2 /ndf becomes larger for the fits to the luminosity
weighted beam-energy spreads than for the fit to the initial
beam-energy spread. The chosen function cannot perfectly
model the distributions, however, the fits are only used to
check qualitatively if the model can represent the luminosity
spectrum at this stage. In addition, as there was only a single
input file available to run GUINEAPIG, the macro-particles
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Table 1: Parameters found by the fit of Equation (T4) to the beam-energy spread from the accelerator simulation and to the
beam-energy spread for two different regions of the luminosity spectrum.

Energy Spread Peak Arms
Parameter ~ Factor ~ Value  Uncertainty =~ Value  Uncertainty = Value  Uncertainty
w? —0.522 0.001 —0.333 0.002 —0.470 0.001
° —0.409 0.002 —0.298 0.002 0.405 0.004
Xmin 1073 —4.679 0.001 Fixed Fixed
Xmax 1073 5.495 0.002 Fixed Fixed
o 1074 1.367 0.010 Fixed Fixed
x%/ndf 764/195 6032/198 3803/198

are re-used for luminosity events. This re-use means that the
fluctuations in the number of entries are larger than what
can be expected from the statistical uncertainties, which also
increases the y2/ndf value.

3.2 Beamstrahlung

Following Ohl’s CIRCE model [22]], the energy distribution
of the particles after the emission of Beamstrahlung photons
is modelled with a beta-distribution. Beamstrahlung will al-
ways reduce the energy of a particle, so that the random vari-
ate Axg,,;,;, would be between —1 and 0 (cf. Equation (10)).
Beta-distributions are limited between O and 1, so that the
function describing the Beamstrahlung effect is convoluted
with the d-distribution from Equation @[) which moves the
range t0 0 < xgy . = 1 +Axg, <1 and no further vari-
able transform is necessary for the probability density func-
tion.

The parameters of the beta-distributions used to describe
the energy distribution due to Beamstrahlung are called n®
and n°. The beta-distribution parameters must fulfil the con-
ditions 0 < n? and —1 < n® < 0 for the distribution to fall
towards x = 0 and rise towards x = 1.

Previous studies by Daniel Schulte have shown that the
tail of the CLIC centre-of-mass energy distribution is better
modelled by a sum of three beta-distributions. Therefore, the
energy distributions from Beamstrahlung are initially fitted

by linear combinations of Npe, incomplete beta-distribu-
tions

NBela .
Diinear(x) = Z p,'b(x; [p]laBLimit)7 (15)
i=1
and the constraint
' NBela
1=Y p (16)

i=1

where p; are the respective fractions of the individual beta-
distribution contribution and [p]’ = {n#,nP} the parameter-
set for each beta-distribution. The beta-distributions are lim-
ited with an upper limit of B ; . = 0.995. Above 0.955 the
beam-energy spread is dominant and would have to be in-
cluded for the fit.

Figure [0 shows the fits with Npea = 1,2,3 to the dis-
tribution of the particle energy. In Figure D4 the fit to the
histogram is performed in the range of 0.0 < x < 0.995;
It is visible that the function with three beta-distributions
— with eight free parameters — shows a better agreement
with the distribution than the other functions. As all the beta-
distributions cover the full range for the fit, there are large
correlations between the parameters of different beta-distri-
butions.

Figure[Ob|shows the same fit of linear combinations with
a range limited to 0.5 < x < 0.995; all three fit-functions
overlap. Therefore, a single beta-distribution is enough to
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describe the particle energy between half and 99.5% of the
beam-energy. For the Model, the Beamstrahlung is described
by a single beta-distribution to reduce the number of free
parameters. However, this will also limit the energy range in
which our Model can be considered as valid.

3.3 The Model for the Full Luminosity Spectrum

The individual contributions discussed in the previous sec-
tions are now used to create the Model of the basic two-
dimensional luminosity spectrum. As was discussed in Sec-
tion the beam-energy spread BES (x) is described by a
convolution of a Gaussian function g(x) and a beta-distribu-
tion b(x)

BES(x) = (b®¢) (x). (17)

The beta-distribution for the beam-energy spread has a very
narrow range. The particle energy distribution including the
energy loss due to Beamstrahlung is described by a convo-
lution of the beam-energy spread with an incomplete beta-

distribution with the upper limit of ﬁé;ﬂ‘}l =0.9999,

BB(x) = (b ®BES) (x). (18)

The upper limit is chosen to be close to 1, so that the convo-
lution with beam-energy spread causes an overlap with the
Peak-region (cf. Figure[I0).

To describe particle energy distributions only negligibly
affected by the beam energy spread, a beta-distribution with
an upper limit of Bme 0.995 convoluted with a Gaussian
function is used

=(beeg) (). (19)

This upper limit separates the distribution from those more
significantly affected by the beam-energy spread. This func-
tion is different from due to the different ranges of the
beta-distributions.

As described in Equation @]), the distributions in the
four different regions are described by the product of two

BG (x)

04_ 06 _0.8 1
x=Particle Energy/EBeam

(13)) to the particle energy spectrum after
Beamstrahlung. [(a)] Fit for 0.0 < x < 0.995,
[BYfit for 0.5 < x < 0.995.

functions, one for each particle. The explicit piecewise de-
scription shown in Equation (TI), however, is replaced by
the use of delta-distribution and implicit ranges of the indi-
vidual functions. The Peak region is described by two pure
beam-energy spread functions (Equations (TI4) or (I7)) and
delta-distributions to signify the absence of Beamstrahlung;
the Arms are modelled by one beam-energy spread function
and a delta distribution, and one function describing Beam-
strahlung convoluted with the beam-energy spread (Equa-
tion (T8)); the Body is described by two functions describing
only the Beamstrahlung (Equation (19)).

L(x1,%2) = preak (1 —x1)®BES (x1: [Pl peak)
8(1 —x2)@BES (x2; [Plfear)
+ parmi 0(1 —x;)®BES (xl; [p]jl\r )
BB (x2; [P]Arm1- Blim)
+ PAm2 BB (x1: [P] Arm2- Bl mmit)
O(1 —x;)®BES (xg [p ]Arm2)
+ PBody BG (x1: [PlBody: li(;i{)
BG (x2; [P]%odw Bi(r)ndi}t/)’
(20)
with BA™ = 0.9999, B°% = 0.995. In addition, the con-
straint
PBody = 1 — PPeak — PArm1 — PArm2 (@)
has to be fulfilled, which results in
/z(xl x)dxidxy = 1, (22)

as required for a probability density function. The function
given in Equation (20) will be used to describe the lumi-
nosity spectrum. The random variates according to the indi-
vidual parts of Equation are shown in Figure Each
summand of Equation (20) corresponds to one of the dis-
tributions. Due to the convolution of beam-energy spread
and Beamstrahlung functions, the region around the nominal
beam energies (x; ~ 1, x, ~ 1) is described by a superposi-
tion of individual contributions.
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4 Reweighting Fit

The separate one-dimensional parts of the luminosity spec-
trum were fitted to the parts of the Model. Now the complete
Model has to be fit to the two-dimensional spectrum.

It is possible to fit Equation (20) to the basic luminosity
spectrum. The convolutions with the §-distribution can be
performed explicitly. The other convolutions have to be per-
formed numerically, because the convolution between the
beta-distribution and the Gaussian function cannot be ex-
pressed in a closed fornﬂ

For the implementation of the function the numerical
convolutions are evaluated with the QACf] integration algo-
rithm [23] interfaced via the GSLIntegrator from ROOT
MathMore. The evaluation of the function takes about 160
seconds for the full range. A direct fit with the function, re-
quiring multiple iterations, would be slow. The fitting pro-
cedure can be sped up by using a reweighting fit and by ex-
ploiting the fact that the random variates according to Equa-
tion (20) can also be described by the sum of the random
variates of the individual functions [24]].

The principle of the reweighting technique is shown in
Figure A x? minimization, utilizing MINUIT [23] imple-
mented in ROOT, is used to fit a sample of Model events to
the GUINEAPIG sample. The procedure starts with the gen-

4We have no formal proof of this statement. However, neither the in-
tegral of the Gaussian function (resulting in the error-function) nor the
integral of the beta-distribution (yielding Gamma-functions) can be ex-
pressed in a closed form with a finite number of elementary functions.
5Quadrature Adaptive General integrand

scribed by Equation (20).

eration of a large number of events according to the Model.
This produces events consisting of pairs of beam energies
(x%,x4) and the corresponding probability £ (x},x5; [p]°) to
obtain a given event. The probability depends on the initial
set of parameter values [p]°.

The minimizer is used to obtain a new set of parameter
values [p]" that results in new probabilities .Z (x},x5; [p]")
for each event. The event weight

- L (x 1 [pIY)
i i L 2L O (23)
YT 2 (i )

is used to weight each event of the Monte Carlo distribution.
For every set of parameter values [p]" a reweighted Monte
Carlo distribution is obtained. The minimum j? between the
distribution of the Model and the distribution from GUINEA-
PIG corresponds to the optimal parameter values matching
the GUINEAPIG sample.

The x? between the two histograms is calculated from
the number of entries in bin j of the GUINEAPIG sample
N{p and its uncertainty 6p, the sum of the weights in bin

j of the Model sample NI</[odel’ and the uncertainty 61{,[0(161,
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Nep= X 1
GP Events i in Bin j
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i i 2
%2 _ Z (NéP —fs 'N1</lqde1)
Bins j (G(]‘,P)z + (fS : G]{dodel)z

(w)2.

(25)

where

1

_ GPEvents
fo= —Foe

(26)
w
Model Events i

is a scaling factor that takes into account the difference in
the sample sizes and the normalisation of the event weights
due to the limited number of Model-events. The entire pro-
cedure has the advantage that only one sample of Model-
events is needed, contrary to traditional template-fit proce-
dures that require generating new Monte Carlo samples for
every parameter-set.

However, by itself this requires even more evaluations
of Equation (20) — one for every Monte Carlo event used in

A BvtsSsg) - ittt

effects fit

Weight every
event i with
its weight w'
-
Compare
Model with
GUINEAPIG:

Start GUINEAPIG

1y winnoads rwn orseg

Histograms

x2 of - Fig. 11 Flowchart dia-
gram of the reweighting
fit procedure. The dashed
arrows indicate the dif-
ferent event samples used

for the different fits.

the generated sample — but the random variates according to
this function can also be described by the sum of the random
variates of the individual functions. The particle energy can
be built up from the individual contributions
XParticle = Xtrahl T XSpread T XG> 27
where xg,,,;,; is the random variate from the beta-distribution
for the Beamstrahlung, XSpread the random variate from the
beta-distribution for the beam-energy spread, and x; the ran-
dom variate from the Gaussian-function of the beam-energy
spread. Each random variate can be generated according to
its probability density function. Equation (27)) is connected
to Equation (IED: XStrahl — *EBeam + AxStrahl’ and xSpread +
XG = AXgpreaq- During the generation of events, the combina-
tion of functions is chosen according to the probability given
by the parameters for each region ppeak/Arm1/Arm2/Body- The
probability for a particle’s energy in an event is given by the
product of all individual probabilities

P(xStrahl’xSpreadva) = b(xStrahl) : b(xSpread) 'g(xG)v (28)

and the product of the probabilities for the individual par-
ticles multiplied by the probability for the region gives the
probability for the event

1 1 1 .2 2 2\ —
<z (xStrahl »XSpread»XG s XStrahl 7xSpread’xG) =

1 1 1 2 2 2
PRegion * P(xStrahlaxSpread’xG) : P(xStrahthpread?xG)' (29)
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Thus Equation becomes

Wi:

p{r\égionb( Strahl7 N)b( Spread’ pN)g(x 17[]7] )
p?egionb(xStrahl’ O)b('xSpream p O)g(-xlc,]y P] )

[
b(x§lrah1’[p}N)b(xSpread’ p N g( pN)
b (%St [P1)D (KSpreaas [P1°) 8 (45, 1)

and no numerical convolutions have to be calculated.

The probability for obtaining energies x; and x; is not
the same as the probability to obtain a specific group of vari-
ates, even if xétrahl +xépread +xé] =x and xétrahl +x§pread +
xZ = x,. There are many combinations of the variates XSpread®
Xgyran» and X, which can lead to the same x| or x;. To esti-
mate the probability for any given pair of energies . (x1,x2)
the convolutions have to be performed either numerically or
via Monte Carlo generation.

(30)

4.1 Application of the Reweighting Fit to Other
Distributions

The reweighting fit is also used to fit the distributions after
the inclusion of the Bhabha scattering, Initial and Final State
Radiation, and detector resolutions. The individual events
are passed through the Bhabha Monte Carlo generator and
detector simulation, which can be understood as additional
convolutions of the existing distribution. As can be seen in
Equation (30), if the parameter governing one of the con-
tributions does not change, the contribution does not affect
the new weight. This enables the use of the reweighting fit
also for the reconstruction of the spectrum from the Bhabha
events, because the Bhabha scattering and detector resolu-
tions D(Ok) are not varied during the fit. A measured dis-
tribution f of Observables Oy can be approximately written
as

f(O],Oz,...) ~
0(E1,E2;01,0,,...) x Z(E1,E2) ®ISR(E|,E2)®
FSR(O],OQ,.. ) ®D(O])D(02) ..., 3D

where o represents the centre-of-mass energy dependence
of the Bhabha scattering and the observables, ISR (E|,E»)
represents the probability for the energy distribution after
Initial State Radiation, and FSR (O}, 02,...) represents the
probability for the energy distribution after Final State Ra-
diation. If the cross-section and detector resolutions are well
enough known, the only difference between the measured
and generated distributions is the luminosity spectrum. For
this study the same Bhabha generator and detector simula-
tions are used for both samples, so the additional effects are
statistically the same. Any difference for the contributions

can lead to a systematic error in the reconstruction of the
luminosity spectrum

4.2 Equiprobability Binning

The x>-fit requires binned histograms. To obtain an unbi-
ased estimator of the compatibility in a y2-fit, all bins should
contain at least seven entries, and the number of events in
all bins should be similar [26) p.304]. These requirements
can be fulfilled when an equiprobability binning is gener-
ated based on the respective GUINEAPIG sample used in the
fits. With equal-size bins either a large number of bins could
be used — where most would contain very few or no entries
and would have to be rejected for the y? calculation — and
the peak substructure could be resolved, or fewer bins with
larger dimensions could be used, but then the peak could
not be resolved. Therefore, the equiprobability binning can
make better use of the available events.

Following the recipe of James [26} p.305], the events are
first evenly separated along one axis, and then all events
falling in the range on this first axis are again evenly sep-
arated in the second axis. If additional dimensions are used,
the separation is repeated. In this way each bin has different
dimensions along each axis, but the number of events per
bin is constant.

For the fit to the basic luminosity spectrum, as discussed
in Section the distribution of the two particle energies
is stored in a two-dimensional histogram. For the recon-
struction of the spectrum from the Bhabha events the en-
ergy of the scattered electron and positron, and the relative
centre-of-mass energy reconstructed from the acollinearity
VSicot /\/s2om are filled into a three-dimensional equiprobability
histograms. Figure [I2]shows examples for a two- and three-
dimensional bin structure. It can be seen that around the
nominal beam energies the size of the bins becomes smaller.
Because the separation of events is done individually along
each axis, the bin structures are not symmetric.

4.3 Uncertainty Estimation

In order to ensure that the Model is unbiased and consis-
tent, a large number of Model vs. Model fits were performed
with a varying number of bins. In each case, the procedure
is as follows: two sets of events are created according to the
Model of the basic luminosity spectrum. The samples are
then used in the fit procedure described before. In each fit
a cut on the centre-of-mass energy of /s’ > 1.5 TeV is ap-
plied.

The pull distribution of every free parameter is obtained
and fitted with a Gaussian function. The Model is unbiased,
if the mean of every pull distribution is close to zero. The un-
certainty is correctly estimated, if the pull width is compat-
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ible with unity. This is called the Normality condition [26]
p.310].

For all parameters the pull distributions are independent
of the binning. Most parameters are unbiased (i.e., the mean
is zero). Exceptions are the nEOdyl and nﬁodyz parameters,
whose pulls are not normally distributed. These parameters
describe the behaviour of the beta-distribution at the lower
edge of the respective particle energy distribution. There-
fore, the bias is caused by the cut on the centre-of-mass en-
ergy, which reduces the sensitivity to the lower energy part
of the Body. The lower limit of these parameters is zero,
which is often found by the minimizer instead of the nomi-
nal value. When the cut on the centre-of-mass energy is re-
moved, the pulls are symmetric, and the parameters are cor-
rectly estimated. It is also found that the width of the Gaus-
sian function is consistent with unity, so the uncertainties are
correctly estimated by the minimization procedure.

5 Luminosity Spectrum Reconstruction

All ingredients for the reconstruction of the luminosity spec-
trum — the Model and the reweighting procedure — are now
available.

The fits based on the basic luminosity spectrum (Sec-
tion[5.1)) are used to assess the similarity between the Model
and the GUINEAPIG spectrum. The energies of the elec-
tron and positron pairs are filled into the two-dimensional
equiprobability structure used in the reweighting fit. In the
next step, the cross-section scaling, the Bhabha scattering,
and the smearing for the detector-resolutions are applied and
the reweighting fit is done with the observables defined in
Section [2.4] The step-by-step inclusion of the intermediate
steps and their impact on the reconstruction is detailed else-
where [27].

The initial values of the parameters, used to generate the
Model events, are given in Table[2} All the regions are cho-
sen to start with a similar number of events (25%). The start-

Fig. 12 Example of the equiprobability bin-
ning in [(@)] two dimensions (zoomed to the
peak region) [(b)] and three dimensions. The
colours are arbitrary. By construction every
cell contains a similar number of events.

Table 2: Initial parameter values used for the generation of
the events. Also listed are the lower and upper bounds used
in the reweighting fits.

Parameter Lower Nominal Value  Upper
Ppeak 0.0 0.250000 0.4
PAm1 0.0 0.250000 0.3
PAm2 0.0 0.250000 0.3
Ot -1.0 —0.522336 0.0
Ot -1.0 —0.409289 0.0
O -1.0 —0.522336 0.0
O -1.0 —0.409289 0.0
O 1 -1.0 —0.522336 0.0
O i1 -1.0 0.350000 10.0
O} 2 -1.0 —0.522336 0.0
O% o -1.0 0.350000 10.0
N1 0.0 2.500000 10.0
N8t -1.0 —0.750000 0.0
N3mo 0.0 2.500000 10.0
N2 2 -1.0 —0.750000 0.0
Mody1 0.0 0.150000 10.0
MBodyl -1.0 —0.550000 0.0
Moty 0.0 0.150000 10.0
MBody2 -1.0 —0.550000 0.0

ing @ parameters are taken from the fit to the beam-energy
spread before the collisions (Table[I)). The other parameters
are chosen arbitrarily in a way to cause a behaviour similar
to the GUINEAPIG luminosity spectrum. The position of the
two boundaries for the beam-energy spread (xpyin and Xmax)
are also taken from Table [Tl Table Plalso lists the lower and
upper bounds limiting the values for the minimizer.

5.1 Fit to the Basic Luminosity Spectrum

To verify that the Model can represent the basic luminosity
spectrum from GUINEAPIG, the distribution of the initial
particle energies are used in the y-fit. The data histogram
is shown in Figure 2| The Monte Carlo sample is shown in
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Figure The GUINEAPIG sample consists of 3 million
events and the Model provides 10 million events. Fits are
done with a binning varied from 50 x 50 bins to 300 x 300
bins in steps of 10 bins. Only events with /s > 1.5 TeV
are used in the fit. The cut is applied because the Model has
limited validity range, and the events below half the nominal
centre-of-mass energy would have a negative impact on the
fit result.

As an example for the result of the reweighting fit, Fig-
ure [13[shows a small section of the histogram mapped onto
one dimension and the pull distribution for all the bins be-
fore and after the fit. The data histogram has a constant num-
ber of events per bin, as designed by the equiprobability bin-
ning. The pull distribution after the fit converged is well cen-
tred around O with a width of 2.3. The width of the pull dis-
tribution is not equal to 1, because the 2 /ndf is larger than
1. This means that the Model is not completely identical to
the GUINEAPIG distribution. Two of the differences are the
limited number of beta-distributions used to model the tail
of the spectrum (see Section [3.2)), where deviations appear,
and the differences in the peak of the spectrum (see Sec-
tion [3.1)), where a much larger number of parameters would
be needed. As the x2/ndf is not equal to unity, additional pa-
rameters would enable a better description of the spectrum.

For one fixed binning, the fit to the luminosity spectrum
was done 198 times with the same GUINEAPIG sample and
independent Model samples. All the parameter values vary
within their uncertainties. Therefore, the Model and the fit
procedure are consistent.

5.2 Fits to the Observables

The observables are defined in Section Binningsﬂ from
10 x 10 x 10 bins to 80 x 50 x 50 bins were used in the fits.
The binning step is 5 bins for the relative centre-of-mass
energy and 10 bins for the particle energies.

For the last step, the Bhabha events generated with the
scaled luminosity spectrum are smeared with the detector
resolutions as described in Section The selection cuts
had to be modified, and the cut is applied on the centre-
of-mass energy calculated from the smeared four-vectors
VS yee > 1.5 TeV and in addition on the individual parti-
cle energies E; > 150 GeV and E; > 150 GeV. To recover
Final State Radiation, the energy of all photons in a 3° cone
around an electron is summed up.

SFor the number of bins given, the first number represents the number
of bins for the relative centre-of-mass energy, and the second and third
number represents the number of bins for the two particle energies.

Table 4: Summary of the fraction of events with /s’ >
0.99y/Snom from GUINEAPIG and the reconstructed lumi-
nosity spectra from the different fit stages.

Fraction [%]

GUINEAPIG sample 35.41+0.06
Basic Luminosity Spectrum 34.61£0.01
with Scaled Spectrum and Det. Res.  34.72+0.07

5.3 Discussion of the Results

For the two stages of the reconstruction multiple fits with
different binnings were done. However, as the reconstructed
spectra are fairly similar, only one reconstructed luminosity
spectrum per stage is shown in detail. In addition, the pa-
rameter dependence on the number of bins is shown. For the
fits to the basic and scaled luminosity spectrum the results
with 100 x 100 bins are shown. For the reconstruction from
the observables the fits with 40 x 50 x 50 bins are shown.

In Table 3| the %2 /ndf and parameters extracted by the
selected fit stages are listed. The reconstructed parameters
are far away from the initial values of the parameters (cf. Ta-
ble [2)), therefore the fit results are not artificially improved
by using a good starting point. The final values of the beam-
energy spread parameters @ are close to the values found
by the one-dimensional fit to the beam-energy spread dis-
tributions detailed in Section 3.1l Because of the cut on the
minimum centre-of-mass energy, the sensitivity on the lower
Beamstrahlung parameter n? is lost, and both fits give a re-
sult of ~ 0 with large uncertainty for these parameters. The
reconstruction of the upper Beamstrahlung parameter n° is
consistent.

The largest variation in the parameters is observed for
the beam-spread parameters @. This increase is mostly due
to the detector effects. In total the uncertainty increases by a
factor ten, and the values are significantly different.

There are significant correlations between the parame-
ters. The largest correlations are between parameters from
the same beta-distribution. The correlations also increase
when the additional effects are taken into account. Some of
the changes of the parameter values could, therefore, be due
to increased correlations.

Table 4] lists the fraction of events with a centre-of-mass
energy larger than 0.99+/syom from GUINEAPIG and from
selected fits of the different fit stages. The uncertainty of
the GUINEAPIG value is the statistical uncertainty from one
million events. The uncertainty for the fits is calculated from
the uncertainty of the individual parameters and accounts for
the correlation between them.

The difference of the fractions between GUINEAPIG and
the Model is less than one percentage point. Given the size of
the uncertainties the difference is significant. However, pro-
cesses with lower cross-section will effectively use smaller



Fig. 13 (@) Blow-up of a small section of the

bins used in the re-weighting fit of the initial
electron energies. The histogram for GUIN-
EAPIG (black) has, by construction, a con-
stant number of events per bin. Also shown
are the histograms for the Model with the ini-
tial parameter values before the fit and af-
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the GUINEAPIG and Model samples before

‘ 300
22 | —GuineaPig 1 $ [ —Before
a 600 — Before b o550k — After
o L 4 - .
[ — After E o Gauss Fit | o
it 200F :
4004,
¥ 150F
200, 100F
50F
1%00 1600 1700 1800 -5
Bin Number
(@) (b)

and after the re-weighting fit. A Gaussian
function is fitted to the distribution of pulls af-
ter the fit.

Table 3: The parameter values found in selected fits to the initial electron and positron energies (first rows) and to the
observables (second rows). The details of the fits are given in the text.

x*/ndf PPeak PAm1 PAm2
63832/ 10000 0.2387 £ 0.0004 0.2672 £+ 0.0004 0.2659 £ 0.0004
100593 / 100000 0.2483 £ 0.0010 0.2681 4 0.0009 0.2632 £ 0.0009
wgeakl wll;eak 1 wle’leakZ w]l;eakZ
—0.2788 £0.0016 —0.3425 £0.0013 —0.2805 £ 0.0016 —0.3417 £ 0.0013
—0.3879 £0.0149 —0.3882 +0.0135 —0.3058 £0.0175 —0.3283 £ 0.0153
wjirm 1 erm 1 a)/a\rmZ wzgrmZ
—0.4399 + 0.0012 0.3243 +0.0037 —0.4399 £+ 0.0012 0.3364 + 0.0036
—0.4994 £ 0.0107 0.3054 £ 0.0305 —0.5501 £ 0.0098 0.1842 £+ 0.0292
T'/irml ngrml ngrmZ nerZ
0.0000 4+ 0.0008 —0.6253 + 0.0011 0.0000 4+ 0.0007 —0.6268 £ 0.0011
0.0000 = 0.0003  —0.6054 £ 0.0027 0.0000 = 0.0004 —0.6080 £ 0.0028
ngodyl ngodyl ngodyz ngodﬂ
0.0000 4+ 0.0002 —0.6640 + 0.0012 0.0000 #+ 0.0002 —0.6636 £ 0.0012
0.0000 = 0.0004 —0.6421 £ 0.0029 0.0000 = 0.0005 —0.6415 £ 0.0029

samples from the luminosity increasing the uncertainty to
around one percentage point. The difference in the fraction
of events in the top 1% might therefore be insignificant for
other measurements at 3 Te'V.

The basic luminosity spectrum from GUINEAPIG com-
pared with the reconstructed basic luminosity spectra from
the two fit stages for the selected fits are shown in Figures[14]
and[I6 For the ratios the green error bars show the statisti-
cal uncertainty for one million GUINEAPIG events and the
barely visible red error bars show the uncertainty coming
from the parameterisation.

In both cases the luminosity spectrum is reconstructed
within 5% between 0.55+/spom and 0.995+/spom. Close to
the peak, above 0.995+/snom, the beam-energy spread is the
dominant effect and the difficulty of modelling this peak be-
comes visible. Still, this difference is seen only, when look-
ing at small bin sizes (e.g., compare the bins around 1 in Fig-

ures [T4d| or [T4e] with Figure [T4f). As Table [ shows, the av-
erage fraction around the peak is reconstructed within 1 per-

centage point. Improved parameterisations should be able to
better describe and reconstruct the shape of the peak, at the
cost of longer run-time for the fit.

Below 0.5+/spom, the Model is much more inconsistent
with GUINEAPIG, but this is given by the design of this
Model and the cut on the centre-of-mass energy applied for
the fits.

Some of the reconstructed parameter values depend on
the number of bins used in the fit. Figure [I5] shows the de-
pendence of the reconstructed parameters on the number of
bins used in the fit. Fits with a binning of 50 x 50 bins to
300 x 300 bins with the same number of events were done.
In Figure [15|the results are sorted by x2/ndf, or increasing
number of bins. The Binning ID corresponds to the number
of bins.

The parameters nerl and nerZ’ which represent the
upper edge of the beam-energy spread of the Arms, show a
significant dependence on the binning. For the other param-
eters the change is below one sigma. It is also visible that
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with more bins the parameter ppeax rises, while the two pa-
rameters parmi1 and pamp2 fall, which is also visible in the
correlation matrix and their correlation coefficient of about
—-0.4.

Figure shows the parameters obtained in the fit to
the observables. The results are again sorted by decreasing
x%/ndf, which defines the Binning ID. In the figure the dif-
ferent markers give the number of bins used for the energy
observables. As the y2/ndf falls with increasing number of
bins the larger the Binning ID the large is also the number of
bins used for the relative centre-of-mass energy observable.

The parameter values depend much stronger on the num-
ber of bins. This is mostly due to the inclusion of the detec-
tor resolutions. Without a minimum number of bins the peak
structure cannot be resolved, and the w-parameters are com-
pletely different from the previous results and show large
fluctuations in their values. If a large enough number of bins
is used, the results are only a few sigma different from the
previous fit results. The detector resolutions have a strong
impact on resolving the structure of the luminosity peak.

6 Systematic Impact on Smuon Mass Measurement

There are significant differences between the reconstructed
luminosity spectrum and the one from GUINEAPIG when
looking at large event samples. Typical cross-sections for
New Physics phenomena will be much smaller than that of
Bhabha scattering, and the luminosity spectrum sampled for
a specific process will therefore have larger statistical fluctu-
ations, so that the difference between the reconstructed and
actual spectrum might not be significant. To estimate the
impact of the difference between GUINEAPIG and the re-
constructed spectrum, the measurement of the smuon mass
m+ and neutralino mass myo from smuon pair production
is used. In this model the masses are mg+ = 1011 GeV and
mgo = 340 GeV.

The smuon decays into a muon and a neutralino, so that
the energy spectrum of the muons f(E,,) can be used to ex-
tract the smuon and neutralino masses. The details of the
analysis are described elsewhere [28]], here only the parts di-
rectly concerning the systematic uncertainty from the lumi-
nosity spectrum are repeated. There are some differences in
the treatment of the statistical uncertainty between the ver-
sion of the fitting program used here, and the one used in the
original paper.

In an ideal situation — with a single centre-of-mass en-
ergy /snom — the muon energy spectrum is a uniform distri-
bution U(E,,) with the boundaries [29]

EH,LVS“°m<1 X°> 1+y/1—4— | (32

4 m%i Snom

The uniform distribution therefore depends on the smuon
and neutralino masses.

In reality, there is not a single centre-of-mass energy, and
for every centre-of-mass energy the uniform distribution has
different limits. Therefore, the measured muon-energy spec-
trum is affected by the basic luminosity spectrum, the Initial
State Radiation, the cross-section, and the detector resolu-
tion D(EH). The luminosity spectrum . (x), Initial State
Radiation ISR(x), and cross-section Og g (\/E) can be com-
bined into the number of events per centre-of-mass energy
Nege(x). The Initial State Radiation and luminosity spectrum
are convoluted and the resulting function is multiplied with
the smuon-pair production cross-section and with the total
integrated luminosity Lin

Netr(3) = Lin - (£ @ISR ) (x) - O3 (+v/Srom). (33)

The Initial State Radiation function ISR describes the dis-
tribution of the energy after the radiation of initial state ra-
diation. In this case, the distribution is obtained from the
Monte Carlo generator used to generate the smuon events. It
is here assumed to be independent of the nominal centre-of-
mass energy. The function to fit the muon energy spectrum
is then the convolution of the uniform energy spectrum with
the detector resolution weighted by the respective number of
events

FE) = [ Nl
0

Ey (\/57)
U(mgz,mg0,%v/Snom, T) - D(Ep — 7) drdx.  (34)

EL

S

Figure shows the background-subtracted signal sample
and an example fit with Equation (34). To estimate the im-
pact of the reconstruction, the fit results when the luminosity
spectrum is taken directly from GUINEAPIG are compared
with those, when the spectrum is coming from the recon-
struction.

The masses extracted from the fit with Equation (34) be-
come a function of the parameters p from the spectrum re-
construction m = m(p) with the luminosity spectrum recon-
structed from the Bhabha events. To estimate the systematic
uncertainty due to the reconstruction of the spectrum, the fit
is performed with the nominal set of parameters p and with
each parameter p; increased or decreased by half of a stan-
dard deviation o,

Oy O,
”l), m;:m(p—ei ”'). (35)

m; :m(p+ei 5
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The systematic uncertainty on the fitted value is then given
by

1/2
Oy = ZS,‘C,']'(S]'

i,J

(36)

with &; = mf —m; , and the correlation matrix C.

Table [3l lists the smuon and neutralino masses from the
fit when the luminosity spectrum in equation (33)) is directly
taken from GUINEAPIG and when the luminosity spectrum
is obtained from the reconstruction with the observables with
the scaled luminosity spectrum and detector resolutions with
a binning of 50 x 40 x 40 bins. The difference in the recon-
structed masses for these two luminosity spectra is smaller
than the statistical uncertainty. However, as the reconstructed
luminosity spectrum shows a dependence on the binning,
so do the reconstructed masses. Figure shows the re-
constructed masses for the spectra reconstructed with dif-
ferent binnings. There is a dependence of the reconstructed
masses on the number of bins, but the spread of the recon-
structed masses is smaller than the statistical uncertainty (cf.
Table[3).

As the difference between the obtained masses and the
spread of masses is smaller than the statistical uncertainty,
the reconstruction of the luminosity spectrum does not in-
troduce a significant bias compared with the statistical un-
certainty. The systematic uncertainty due to the luminosity
spectrum reconstruction is also much smaller than the statis-
tical uncertainty, so that the total uncertainty on the recon-
structed mass is not increased significantly.

7 Summary, Conclusions, and Outlook

A framework has been developed for the reconstruction of
the basic luminosity spectrum at future linear colliders. The
spectrum can be reconstructed from Bhabha events mea-
sured with the tracking detectors and calorimeters. All im-
portant effects were included: the luminosity spectrum from

beam-beam simulations — including the non-Gaussian CLIC
beam-energy spread — the +/s’-dependence of the Bhabha
cross-section, Initial and Final State Radiation, and the de-
tector resolutions.

The Model of the 3 TeV CLIC luminosity spectrum, re-
quired for the reweighting fit, has some limitations. For tech-
nical reasons the energy range to describe the tail of the
Beamstrahlung is limited to /s’ > 1500 GeV, and the pecu-
liar beam-energy spread cannot be modelled precisely with
few parameters. The reweighting fit itself does not impair
the reconstructed spectrum. The differences between GUIN-
EAPIG and the reconstructed spectrum do not significantly
change between the fit to the basic luminosity spectrum and
the fit to the observables with the scaled luminosity spec-
trum and including detector resolutions. With an improved
model, and increased processing power, an improved recon-
struction of the CLIC 3 TeV spectrum should be possible.

The fraction of events above 99% of the nominal centre-
of-mass energy is reconstructed within 1 percentage point.
The centre-of-mass energy distribution is reconstructed to
better than 5% between the nominal and about half the nom-
inal centre-of-mass energy, the validity limit of our Model.
These results are obtained regardless of the included level
of details, so that one can conclude that the limitations of
the Model cause most of the discrepancies to the simulated
spectrum, and if a better model is used, the discrepancies
should be reduced.

To estimate the systematic impact on other physics mea-
surements, the reconstructed spectrum was used in the study
of smuon decays, one of the CLIC 3 TeV benchmark pro-
cesses. The reconstructed spectrum does not induce a sig-
nificant bias on the measured mass, nor does it cause a sig-
nificant systematic uncertainty. The systematic uncertainty
from the spectrum reconstruction is two orders of magni-
tude smaller than the statistical uncertainty.

The spectrum is well enough reconstructed for the cho-
sen physics channel. In this case a good reconstruction of the
tail of the spectrum is tested. The reconstruction of the peak
is less important, because the process is far above threshold
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Table 5: Extracted smuon and neutralino masses from the fits to the signal sample using different (effective) luminosity

spectra.

Spectrum Smuon Results [GeV] Neutralino Results [GeV]
Mass Ostat Osyst Mass Ostat Osyst
GUINEAPIG-spectrum  1011.77 £ 3.05 342.86 £ 6.98
Fit 50 x 40 x 40 1011.56 + 3.05 +0.04 342.53 £ 6.82 +0.07

and the cross-section does not change significantly over the
peak region. More work is needed to evaluate and possibly
improve the reconstruction of the peak.

7.1 Outlook

The framework can also be applied for the reconstruction
of the luminosity spectrum at other centre-of-mass energies
and linear electron—positron colliders than CLIC. Depend-
ing on the beam-energy spread and the demanded range of
the reconstruction, the Model has to be adapted, but this will
not increase the computational complexity of the reconstruc-
tion.

The energy range of the current Model can be increased
by replacing the single Beamstrahlung beta-distributions by
linear combination of beta-distributions. Improving the de-
scription of the beam-energy spread is less obvious without
a large increase in the number of parameters.

The boundaries of the beam-energy spread — the param-
eters Xmin and xmax — were fixed during the fit. It should
be evaluated how much the measurement is affected, when
these parameter values differ from those of the beam-energy
spread. It should also be tried to vary the boundaries of the
beam-energy spread during the re-weighting fit. For vary-
ing these parameters during the reweighting fit the initial
samples have to be produced with overlapping regions. For
example, the peak region would be produced with an xp;,
smaller than the upper limit of the arm or body regions.
During the re-weighting the value for xpi, or xmax Would be
given by the minimizer, and events in the peak below xp;,
or above xmax Would be dropped, as would events in the arm
or body above their respective upper limit.

The observables from the Bhabha events can also be ex-
changed for other suitable choices, always keeping the de-
tector resolutions in mind. The impact of the detector resolu-
tions on the reconstructed spectrum can be easily studied by
changing the resolutions used in the four-vector smearing.
The same detector resolutions and Bhabha generator were
used for the GUINEAPIG and Model events. Differences in
the predicted detector resolution and Bhabha scattering to
the actual events can introduce systematic errors into the
reconstruction. These effects could be studied by varying
the detector resolutions or the Bhabha cross-section inde-
pendently for the two samples used in the fit.

Only Bhabha events — and no other physics processes
— were considered. It should be checked if multi-peripheral
two-photon events, in which the spectator electrons scatter
at large angles, are a background.

As the luminosity spectrum depends on the accelera-
tor, the impact of possible variations of the beam parameter
on the reconstruction of the luminosity spectrum should be
studied with realistic variations of the beam parameters.
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